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The objective of this project is to evaluate the performance of the ILOC software and the

CoMesh hardware architecture using a specific commercial design, SP700.  ILOC is a proprietary

circuit design analysis and optimization engine based on novel mathematical techniques.

CoMesh is a reconfigurable silicon architecture custom designed for ILOC capabilities.  Results

are reported for software and for hardware separately.  This technical report contains an

Executive Summary, a Technical Discussion and an Appendix that includes detailed statistics.

EXECUTIVE SUMMARY

CONCLUSIONS

When measured by the number of standard two-input logic gates, the ILOC software reduces

the structural VHDL netlist by 25%.  The critical path length of 75% of all submodules

decreased as a result of logic minimization.

When mapped onto a four-input LUT architecture, the ILOC reduction is highly sensitive to

optimization goals.  Current algorithms focus on routing rather than logic reduction.  ILOC LUT

mapping does not reduce the raw number of LUTs compared to the LUT map generated by the

Synplicity software, the ILOC mapping does however reduce the routing required by the LUTs by

over 35%.  As well, the critical path length of 70% of all submodules decreased.  The ILOC LUT

mapping algorithms lack the customization specific to the Virtex architecture incorporated in

the Synplicity software.

When mapped onto the CoMesh architecture, the entire design can be implemented in a logic

fabric area of approximately 111 mm^2 (.13 process geometry), with an expected pipelined

cycle time of 180 MHz.

The SP700 design analysis is proof in principle that ILOC can be applied to complex commercial

designs.  The analysis falls short, however, in providing clearly interpretable results upon which

to base business decisions.  A more rigorous design methodology and process is currently being

developed.

SUMMARY OF RESULTS

Results are reported for two top-level SP700 modules (SAMMEL_SPS and ARITHM).  The two

modules represent over one-third of the total design;  SAMMEL_SPS is a small module covering

2% of the design, while ARITHM is the largest module in the design, consisting of 36% of the

entire design.
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Software

The two modules represent approximately 70K two-input ASIC logic gates, and are reduced

using ILOC algorithms to approximately 52K gates of the same type, a logic reduction of 25%.

These modules incorporate approximately 2000 registers that are not included in this gate

count.  Path length reduction varied widely over submodules, from -20% to +24%.  In cases of

increased path length accompanied by logic reduction, a space/time trade-off choice is possible.

Further, applying ILOC path reduction tools to the longest critical path can be applied to reduce

the path length to a desired delay, with an accompanying increase in logic area.

To more accurately convey the performance of ILOC algorithms, ILOC settings and parameters

were not customized for any particular submodules.  In a real-world design environment, a

designer may specify different parameters for different parts of the design, emphasizing

reduction of path length, for example, along the critical path, while emphasizing area

conservation along non-critical paths.  By design iteration using different ILOC parameters,

almost all particular results can be improved.  The overall average results show substantial

overall average logic reduction across the entire design.  Specific results are in the Appendix.

The two analyzed modules require about 15K four-input look-up tables (4LUTs).  When logic is

mapped into 4LUTs without consideration of wiring requirements, ILOC increases the number of

required 4LUTs by 2% compared to the Synplicity log.  However, this increase in raw LUT count

is accompanied by a conversion of many 4LUTs into 2LUTs and 3LUTs, thus reducing the wires

required to route the design.  When LUT mapping is weighted using the Synplicity gate counting

metric, ILOC reduces the design complexity by 37%.  Along with the logic reduction, the critical

path length of 70% of the submodules decreased;  the critical 4LUT path length reduction

varied from -39% to +64%.  Again, in cases of increased path length accompanied by logic

reduction, a space/time trade-off choice is possible.   

LUT mapping results are from simple LUT-mapping algorithm written especially for this report.

LUT results do not reflect ILOC capabilities.  For example, the LUT-mapper does not use the

supporting logic found in Virtex chips, such as carry-chains.  As well, ILOC currently separates

reset and enable logic embedded in LUT registers.  In comparing LUT metrics to the Synplicity

log, ILOC results are adjusted for both register and non-LUT support logic.  Adjustments are

needed only for the LUT technology mapping comparisons.  We are currently preparing a

suggested methodology for making fair LUT-based comparisons of ILOC and Synplicity

performance.

Silicon

A .13u CoMesh block uses .05 mm^2 of silicon for reconfigurable logic and supporting global

routing.  The two SP700 modules require 740 CoMesh blocks, a total silicon area for logic and

routing of 37 mm^2.  The overall chip logic density after placement and routing of the design

modules is greater than 2500 gates per mm^2.   

The CoMesh silicon architecture bears almost no resemblance to the LUT-based architecture of

the original design.  Each CoMesh block includes pipeline and storage registers as well as five

levels of logic, while ILOC software completely retimes the design to fit the pipeline.  The

CoMesh design is intended to solve the performance problems of current LUT-based FPGAs.
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TECHNICAL DISCUSSION

The Technical Discussion includes an introductory description of the SP700 design and the

project activities.  Comparison metrics are described, followed by the ILOC reduction results for

these metrics, the LUT mapping results, and the CoMesh mapping and logic density results.

Following the results are sections on timing comparisons, treatment of registers, hierarchical

decomposition of the design, structure sharing, and validation.  Details of the optimization

process are described, as well as constraints and cautions on the results.

DESIGN DESCRIPTION

The sp700_src_lsp_prj folder was used as the source of all design specifications.  This folder

consists of 63 files,  described in the Appendix.  The VHDL code for the entire design occupies

14.4 Mb, of which 13.7 Mb (~95%) was parsed into the ILOC internal format.  ILOC storage area

for the design is 4 Mb, 30% of the VHDL storage area.

The ARITHM module is the largest component of the design.  It is supported by various bussing

modules, a PCI100 interface, a timing system, and i/o modules.  The ARITHM module itself is

dominated by a 32-bit multiplier (MULT32), which constitutes over 20% of the module, and 5%

of the entire design.  The cell library for the design consists of over 400 types, presumably

constructed for mapping into Virtex CLBs.  The ARITHM module uses about three-quarters of

the cell library types.

The Synplicity log reports disconnected design components, the number and type of LUTs

required by each design module when mapped to a Xilinx Virtex-II architecture, and a critical

path static timing analysis for the LUT mapping.

ANALYZED CODE

Two modules from the SP700 design were analyzed:  SAMMEL_SPS and ARITHM.  These

modules are defined in stand-alone files that contain the complete VHDL structural descriptions

of the modules.  These files are named

sp700-4 Folder/sp700_api__l1s0n0ft_src Folder/SAMMEL_SPS.vhd
sp700-4 Folder/sp700_api__l1s0n0ft_src Folder/ARITHM.vhd

The VDHL descriptions in these two files were supplemented by cell library definitions in the

files:

cb10vx_quick_1.vhd through cb10vx_quick_8.vhd

also located in sp700-4 Folder/sp700_api__l1s0n0ft_src Folder/

For parsing the structural VHDL code in these files, the complete file was first converted into a

text stream; then keywords and their accompanying information from VHDL were converted
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into equivalent forms within the ILOC internal data format; and finally the labels identifying

specific cell library elements were expanded into the ILOC forms for these functions.

PROJECT ACTIVITIES

1.  Become familiar with the design components, cell libraries, and VHDL descriptions.

2.  Write a parser to convert structural VHDL into the ILOC internal format.

3.  Verify that the parsed ILOC design accurately represents the VHDL design.

4.  Apply ILOC reduction algorithms to selected design modules.

5.  Measure the reduction in design complexity achieved by ILOC processing.

6.  Place and route the reduced design into the CoMesh architecture.

7.  Measure the CoMesh performance for reduced design.

8.  Write an N-LUT parser and EDIF-output parser for the reduced design.

9.  Map the reduced design into a 4LUT architecture.

10. (ongoing) Design a fair and informative methodology for ILOC evaluation.

COMPARISON METRICS

The evaluation strategy for this study was to compare design metrics for the VHDL structural

specification from within the ILOC internal format, both prior to any modification or reduction,

and after ILOC logic reduction.  The reduced design was then technology mapped to LUTs and

to the CoMesh architecture for silicon area performance comparisons.  Since FPGA layout details

are not known, and since the CoMesh global architecture is not yet modeled, only critical path

lengths are reported and no timing analysis is included.

ILOC

Five metrics were selected for comparison of design entities prior to and after ILOC reduction:

1.  Number of two-input NAND gates:  The cell library of the original design was

converted into two-input NAND gates, as was the output of the ILOC reduction.  FFs are

counted separately and not optimized.  Inverters are not counted.  This metric is a simple way

to measure before and after logic reduction.
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2.  Number of literals:  Independent of cell type, the number of input pins to each

internal cell is counted.  Inverters are not counted.  This metric has been shown to correlate

highly with overall logic and wiring requirements for ASIC designs.

3.  Number of nets:  Independent of cell type, the number of separate internal nets

connecting cells was counted.  Each primary input and output contributes one net.  This metric

indicates reduction of routing requirements for a design.

4.  Raw number of 4LUTs:  The Synplicity log provides a count of LUTs generated in

mapping the design to LUTs with four or fewer inputs.  The reduced design was mapped to

4LUTs (including 3LUTs and 2LUTs) and the total number of LUTs was counted.  This metric

indicates the logic resource requirements for placing the design into a 4LUT silicon architecture.

5.  Weighted number of LUTs:  The Synplicity log also provides a weighted average over

LUT mappings.  Each 4LUT is counted as one unit, with 3LUTs counting as 1/2 and 2LUTs

counting as 1/4 units.  This metric recognizes that LUTs with fewer inputs (i.e. 2LUTs and

3LUTs) require less routing and power resources.

Critical Path Lengths

Maximum path lengths are reported for all hierarchical submodules of the ARITHM module, in

two different forms:

1)  Critical path length measured by the number of two-input NAND gates, prior to ILOC

reduction and after ILOC reduction

2)  Critical path length measured by the number of 4LUTs, prior to ILOC reduction and

after ILOC reduction.

ILOC includes unique and powerful tools for reducing critical path length.  These tools identify

locations along the critical path that achieve the best timing and logic area trade-off.  No path

reduction is included in this report, since exact critical paths and timing points are not known.

CoMesh

The design modules were also mapped into the CoMesh silicon architecture in order to estimate

performance expectations for the CoMesh approach to reconfigurable computing.

1.  The number of CoMesh blocks required for each design module was counted.  The

silicon area of each block is known, providing a measure of the silicon area required to

implement the design using the CoMesh architecture.

2.  The number of CoMesh block cycles was counted, providing a cycle-time for each

design component for the pipelined CoMesh block architecture.  Since CoMesh is fully pipelined,

the clocked cycle-time of 360 MHz is achieved for most designs.  For the SP700 design, the
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block communication clock cycle-time was halved, to 180 MHz, effectively allowing two

sequential blocks to complete logic processing each cycle.

ILOC SOFTWARE LOGIC REDUCTION

The SP700 design is specified in a structural VDHL netlist composed of Xilinx cell library

elements.  Approximately 95% of the design was directly parsed into ILOC format, without any

modification of the library cells or of the design modules.  Design entities that included block

memory, and those that incorporated library cells customized to the Virtex architecture were

not analyzed.  As well, a few modules that were specified in behavioral rather than structural

VHDL were not analyzed.

Most of the Xilinx cell library elements, including FFs, are complex, each library element

represents an average of three simple two-input logic gates.  To provide a before and after

software logic reduction comparison, the logic complexity measures taken prior to reduction

were again applied after ILOC reduction.   

As a general strategy, ILOC reduction algorithms were applied uniformly and automatically to all

design components.  These algorithms were tuned prior to reduction, to conform algorithm

parameters to the general types of logic structures in the design.  However, no substantive

effort was made to locate parameter settings that would provide the best reduction

performance, either for individual entities or for the design as a whole.  Thus the reduction

results are indicative of what a typical user would get using the tool without any parametric

customization and without applying specialized algorithms to submodules in the design.

Summary results for the two analysis modules follow.  The table shows absolute counts and

percentage reduction for the five metrics.  "Before" data is from the literal transcription of the

VHDL netlist; "after" data is after the ILOC reduction of the netlist.  Details for the component

entities of these modules are in the Appendix.

ILOC Reduction of Design Components

                   MODULE         SAMMEL_SPS               ARITHM

    METRIC                     before after   %          before after    %

    Two-Input NAND Gates        2592  2434    6%         69152  52056   25%

    Internal Input Pins         4778  4306   10%         94877  63960   33%

    Internal Wire Nets          3944  2579   35%        102476  67674   34%

    Raw Number of LUTs           669   616    8%         14544  14803   -2%

    Weighted LUTs                449   413    8%         12578   7839   37%
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For the SAMMEL-SPS module in its entirety, the logic reduction was 6% expressed in NAND

gates, 10% expressed in internal pins, and 35% expressed in wire nets.  For the ARITHM module,

the logic reduction was 25% expressed in NAND gates, 33% expressed in internal pins, and 34%

expressed in wire nets.  LUT results are discussed in the next section.

The differences in logic reduction between the two modules can be understood in terms of

available logic complexity.  SAMMEL_SPS is a small module consisting mostly of small functions

with little reduction and little interaction with other components.  In contrast, ARITHM is

relatively large, providing substantial opportunities for identification and reduction of complex

and redundant logic across module boundaries.  

Results for the three structural metrics are highly correlated, although measured results varied

widely across design entity structures.  In general, ILOC reduction always improves an entity by

reducing its complexity.  This is because ILOC is deletion based, so that all changes are simply

removal of redundant structure.  Reduction gains range generally from a few percent to around

30% for larger complex entities without highly organized internal structure.  For example the

submodule DIV reduced by 22%, primarily due to a large unoptimized table entity.  The barrel

shift and mask submodules reduced only by 10%, because of their regular internal structure.

Register banks showed little reduction (2% for ACCU_REGS, for example).  The 32-bit multiplier

showed significant reduction (32%), however this reduction was accompanied by an increase in

critical path length of 20%.  This multiplier is entirely combinational, not taking advantage of

available pipelining.

Substantive ILOC gains in logic reduction occur primarily in:

1.  Library cells with redundant logic that may have been included for error checking.

These redundant checks are often associated with a specific technology mapping, and are not

necessary for the CoMesh architecture.

2.  Functions for which ILOC transformations are particularly powerful in exposing

redundant and inefficiently designed logic structure.  The relative weakness of current

optimization algorithms obscures available optimization transformations that ILOC makes

transparent in several classes of functional structure (such as deep nesting, distribution,

structure sharing, and branching abstraction).

3.  Large logic functions for which current software algorithms are simply too slow or

inefficient to identify redundancies.

4.  Hierarchical module boundaries.  Redundant functionality can exist in separate design

modules that must be flattened in order to optimize.  The multilevel logic of CoMesh permits

hierarchical flattening while maintaining deeply nested (and thus highly efficient) logic

structures.   

5.  Flattened functions for which retiming has not been applied.  ILOC register retiming

and optimization are fully integrated into ILOC logic optimization.

The obtained logic reduction results for SP700 are diluted by three factors:
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1.  Complex register structures in the Xilinx library were decomposed into simple CoMesh

FFs and supporting logic.  The supporting logic (such as resets, registered adders, and multiple

outputs) was added to the generic module logic, thus increasing the peripheral logic metrics.

2.  Technology mapping to NAND gates, LUTs, and other logic structures not native to

the CoMesh architecture reverse some optimization gains made by ILOC algorithms intended

specifically for the CoMesh architecture.  Optimization to CoMesh is reported in a following

section.

3.  Peripheral logic in the Virtex CLB, such as carry chains and MUXes, is counted

separately in the Synplicity log, but not separated in the ILOC reduction analysis.

LOOK-UP TABLE (LUT) MAPPED LOGIC REDUCTION

It is well known that different silicon architectures require different optimization structures and

strategies.  To output a LUT-based decomposition of the ILOC data structures, it is not

sufficient to simply partition optimized results into LUTs, since LUT-based architectures do not

resemble the CoMesh architecture.  To achieve a competitive LUT partitioning, the optimization

settings and computational modules of ILOC would require configuration specifically for LUT

mapping.  The current Bricken LUT mapping algorithms are not optimized for LUT-based

architectures, negating much of the CoMesh specific optimization.  These Bricken algorithms are

a first-pass and non-competitive version that have many opportunities for improvement.  In

particular, they would need to be extended to take advantage of the specialized logic within

Virtex Computational Logic Blocks (CLBs) that supports the 4LUTs within a CLB.  Therefore, the

results reported herein for LUTs do not accurately reflect the potential of ILOC capabilities for

LUT-mapping.

LUT Layout Area Comparison

The Synplicity log provides a LUT usage figure after layout using two different approaches.  In

one reporting, LUTs are counted in a weighted metric:  2LUTs are half as expensive as 3LUTs,

which are again half as expensive as 4LUTs.  Each FF and each 4LUT counts as one "gate".  In a

different Synplicity log, the raw number of required LUTs (Function Generators) is counted, in

recognition that a Virtex-based 2LUT still requires a 4LUT to implement.  However, LUTs with

fewer inputs operate faster, and do not put as much of a burden on routing.  Since there is

usually excess logic but restricted routing resources in an FPGA, the weighted average is

probably a better predictor of FPGA resource shortages.  Both metrics are reported below.

No attempt has been made to optimize ILOC output specifically for 4LUT mapping.  As well,

various special performance enhancing features of a Virtex CLB extend the simple LUT

functionality, making the rationale for mapping solely to 4LUTs less robust.   

The table below presents the count of LUT types for each analysis module, both for the

Synplicity mapping and for the ILOC mapping.  The log results below were taken directly from

the Synplicity log included in the design files.
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ILOC Reduction of Design Components Expressed in LUTs

               MODULE          SAMMEL_SPS               ARITHM

    LUT COUNTS              SYNPLICITY  ILOC       SYNPLICITY  ILOC

    Two Input                    114    240           1341     2301

    Three Input                  180    277           1941     4376

    Four Input                   375    380          11262    11534

    All LUTS                     669    897          14544    18211
      adjusted ILOC                     616                   14803
      % reduction                    8%                   -2%

    Weighted LUTS                449    503          12578    10416
      adjusted ILOC                     413                    7839
      % reduction                    8%                   37%

In the above tabulation, ILOC LUT figures have been adjusted in two ways for a more balanced

comparison.  The Virtex mapping includes usage statistics for various specialized logic within the

Virtex CLB.  It is assumed that each specialized logic component is on average equivalent to one

LUT.  The total LUT count for ILOC is reduced by one LUT whenever a specialized logic feature

is explicitly used in a CLB.  In contrast, the weighted LUT count is reduced by the relative

complexity of the specialized logic.  For example, a four-input MUX is considered to be

equivalent to one 4LUT, while a two input MUX is considered to be equivalent to 1/4 of a 4LUT.

This is the same weighting used by Synplicity in the design log.

A second adjustment was made to the ILOC data to compensate for additional logic inside CLB

registers that is not counted in the Synplicity log data, but is counted in the ILOC data.  No

adjustment was made for simple DFF registers or latches.  However, when register logic included

AND, MUX, or other logic functions, these functions occurred explicitly as separate logic

functions in the ILOC model.  To bring the two models into alignment, this specific register logic

is not included in the ILOC LUT totals.  As with specialized CLB logic, total LUT counts are

reduced by LUTs expressing the explicit register logic, while weighted LUT counts are reduced

proportionally to the amount of explicit register logic.

In the above table, the configuration of LUT types for reporting raw LUT count represents the

best results obtained by the ILOC LUT mapper using the objective of minimizing the total

number of LUTS, regardless of the type of LUT.  The row labeled Weighted LUTs presents the

best results using the criteria of minimizing the total number of input pins required by the

collection of LUTs.  This objective recognizes that routing is far more of a problem than logic

density in current FPGAs.  The distribution of LUT types for the unweighted results above is

different than the distribution of LUT types for the weighted results.

Three entities in ARITHM contained specialized Virtex cell library elements.  These elements

were not parsed into the ILOC data structure.  In counting the LUTs for these entities, the

number reported in the Synplicity log was simply used for both the log tabulation and the ILOC

tabulation.
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The Synplicity log selectively reports the LUT mapping for some lower level design modules, but

not for others.  The exact counting criteria used by Synplicity, and the specific types and levels

of optimization effort are not known.  In some cases, registers specifically within an entity were

not reported by the Synplicity tabulation and, in some cases, entire entities were not reported.

In such cases, the logic actually parsed into ILOC was used as a comparison.

COMPARISON OF PATH LENGTHS

Modification of critical path length is reported for the ARITHM module.  The critical paths are

measured using a unit delay model, essentially counting the maximum number of logic gates

between registers for each submodule in the case of sequential entities and between input and

output in the case of combinational entities.  Most entities contained multiple outputs;  the

critical path for an entity is the longest path for any output of that entity.  Two technology

maps are reported:  two-input NAND gates, and 4LUTs.  The ILOC tools include path

minimization algorithms for the NAND gate format, but not for the LUT format.  No attempt

was made in any circumstance to minimize the critical path lengths, thus critical path lengths

should not serve as a basis for comparative evaluation.  The Appendix contains complete data

for the entire ARITHM module.

The evaluation strategy was to compare path length metrics for the VHDL structural

specification from within the ILOC internal format, both prior to any modification or reduction,

and after ILOC logic reduction.  As a general strategy, ILOC reduction algorithms were applied

uniformly and automatically to all design components.

It should be noted that ILOC reduction incorporates desirable path design features that are not

measured solely by critical path length.  These include:

1) removal of reconvergent paths,

2) elimination of false paths,   

3) logic reduction over entire paths independent of the types of gates on a path, and

4) localized design flexibility to change path lengths with ILOC providing the exact

space/time trade-off for any localized modification.

For both formats, ILOC reduction resulted in incidental shortening of critical paths, as would be

expected to accompany reduced circuit structure.

Critical Paths for Two-Input NAND Mapping

The cell library of the original design was converted into two-input NAND gates, as was the

output of ILOC reduction.  The longest path through the NAND gate networks was then

measured for both the pre-reduction and post-reduction circuits.  FFs served as path terminals

for sequential circuits.  Inverters are not counted in the path length.  This metric is a simple way

to measure before and after path length reduction due solely to ILOC logic reduction.   

It is possible to decrease path length by increasing gate count using a distributive process.

ILOC includes powerful and unique tools to decrease the gate count of a path at specific
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locations.  These tools identify path locations for which the most efficient trade-off between

reduced path length and increased gate count can be achieved.  As well, all identified path

transformation locations include exact metric information about the trade-off, specifying the

number of unit delays removed from the path, and the number of gates added to the circuit to

achieve this path reduction.  No path reduction transformations were applied to the reported

critical paths.

Only fully flattened submodules from the ARITHM module are included in the reported data;

these cover the entire module.  Submodules are separated by type, either combinational or

sequential, and classified by whether logic reduction resulted in shorter, longer, or the same

length critical paths.  When submodules are combined into an entire circuit, only the longest

critical path in the circuit is of relevance, since this path establishes the greatest propagation

delay for signals through the circuit.  All other paths are non-critical.  Detailed data in the

Supplement Appendix shows exact path length changes for all submodules.  Reduction of paths

over many specific submodules can be viewed as an indicator of the consistency and power of

path reduction due to ILOC logic optimization for a diversity of function types.

Critical Path Reduction Due to Logic Reduction, NAND Gate Technology Map

Entity Type      Number     % of Entities with Paths
                of Cases       Shorter Same Longer

Combinational      39             29     7     3
Sequential         17             10     5     2

Total              56             39    12     5

In general, ILOC logic reduction decreases or does not change critical path length for about 90%

of all entities.  For those entities for which the critical path is longer, it is of course possible to

revert to the non-reduced form, making an explicit and known trade of more gates for a shorter

path.  For example, the MULT submodule increased in path length from 101 unit delays to 121

unit delays, in exchange for a decrease in gate count of 32%, which is over 5000 gates.  In such

cases, ILOC provides a designer with a powerful set of design option choices.  On the other

extreme, ILOC reduced the path delay of three large submodules (CONV, CORD, and EXLN) by

25%, resulting in a decrease in over 60 unit delays for each submodule, while at the same time

reducing the gate count of the three by an average of over 2000 gates (ranging from 6 to

19%)

Critical Paths for 4LUT Mapping

 Comparative critical path length results are reported for 4LUT technology maps applied both

before and after optimization, using a unit delay model for which each LUT contributed one unit

delay.  Critical paths for combinational entities are the longest series of LUT elements from

input to output.  Critical paths for sequential entities are the longest series of LUT elements

between any two registers.   
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To determine the pre-reduction LUT path length, the VHDL specifications were parsed directly

into ILOC format, and then immediately converted to LUT format by the ILOC LUT mapper.  To

determine the post-reduction LUT path length, the VHDL specifications were first parsed into

ILOC format, then ILOC reductions were applied, and finally the resulting circuits were mapped

into LUT format.

Critical Path Reduction Due to Logic Reduction, 4LUT Technology Map

Entity Type      Number     % of Entities with Paths
                of Cases       Shorter Same Longer

Combinational      39             29     5     5
Sequential         17             11     1     5

Total              56             40     6    10

Approximately 70% of the submodules decreased in LUT path length as a result of logic

reduction.  Reduction varies from -39% to +64%.

In general, the LUT path length reduction results mirror the NAND gate path length reduction

results.  The higher variance in LUT results is probably due to the ILOC LUT mapper.  Since both

before and after measurements of LUT results are based on LUT networks generated by the

same LUT mapper, the path reductions are in general not artifacts of the LUT mapper.  This is

supported by similar reductions in NAND-based path lengths.  However, no path length results

from the ILOC LUT mapper are comparable to path lengths generated by a commercial mapper,

such as Synplicity, since the mapping quality of the LUT mappers is not comparable.

There is one clearly identifiable case for which before and after LUT path lengths are not

comparable within the ILOC LUT mapper, this is when the after LUT map shows a large increase

in path length.  For example, the SQRT entity has a pre-reduction path length of 67 unit delays

and a post-reduction path length of 93 unit delays, even though the number of gates in the

entity is reduced by more than 25%.  This result is even more anomalous when it is observed

that the NAND gate path length is only 79 unit delays.  Closer inspection of this and two other

similar cases (FLAG_BASIC and P_WERKE_REG) shows that the relative increase in LUT path

length is due to a preponderance of wide functions.   

In conventional FPGA architectures, wide functions are accommodated by special feature MUXes

that permit two or more LUTs to be combined into a single functionally limited wide-input LUT.

In the Virtex architecture, for example, two 4LUTs can be converted into one 8LUT using special

MUX circuitry within the Virtex CLB.  CoMesh cells provide a similar option.  The present ILOC

LUT mapper does not include the wide-input MUX feature.  Instead, wide logic functions are

converted into narrower chains of LUTs.  This conversion significantly increases the critical path

length.  Pre-reduction LUT paths are shorter because the reduction process creates wide-input

functions during reduction.  NAND-gate paths are shorter because wide-input NAND gates are

converted into a binary tree (rather than a LUT chain) that conserves path length in exchange

for more gates.  Further refinement of the LUT mapper can remove this problem.
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SILICON AREA AND COMESH LOGIC DENSITY

The target process geometries for CoMesh are .13 microns and smaller.  Data is reported here

for both .13u and .18u process geometries since the CoMesh SPICE simulation is for .18u.

Reported CoMesh silicon areas are for logic and local routing only, as if the CoMesh

reconfigurable block were an embedded component of a larger chip.  The design of CoMesh

global routing is not yet fully simulated, nor are the i/o pads, clocks and other peripherals for a

complete CoMesh chip.  It is believed that the area for global routing and i/o will be less than

two times the area of the logic blocks.  Block interconnect, when placed on a separate metal

fabrication layer, may not add area to the logic footprint.  A conservative estimate of the area

requirements for block neighborhood and global interconnect is two times the logic area.   

CoMesh Logic Block Area

  Geometry    Block Dimensions       Block Area        Area Including Routing

    .18u:       260u x 118u      30680 u2 (~.03 mm^2)       ~.09 mm^2

    .13u:       188u x  85u      16000 u2 (~.016 mm^2)       .05 mm^2

CoMesh blocks are designed to have 32 registers terminating the five levels of asynchronous

logic.  Combined with the five levels of logic and the ILOC restructuring algorithms, the number

of registers per block is sufficient to implement a total design pipeline, and to accommodate

register intensive design elements such as FIFOs, counters and shift registers.  Each CoMesh

block accommodates approximately 100 two-input ASIC gates, after placement and routing.

Conventionally, each register is counted as six logic gates, thus a CoMesh block is equivalent to

up to 300 conventional logic gates.

Silicon area results for the design modules are reported below in mm^2 for both .18u and .13u

geometries.  Silicon areas are computed by multiplying the number of blocks required to

implement the module by the area of each block with routing area included.  Design component

details are in the Appendix.

CoMesh Silicon Area

                          SAMMEL_SPS     ARITHM     BOTH

    Blocks Needed            27           713        740

    Silicon Area  .18u:     2.43          64.2        66.6  mm^2

    Silicon Area  .13u:     1.35          35.7        37.0  mm^2

Based on these results, the extrapolated area required for the entire design is approximately

three times the area of the ARITHM module, which would be 111 mm^2.
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CoMesh Logic Density in Gates/mm^2

                           SAMMEL_SPS     ARITHM      BOTH

    Logic Gates               5792         87622     93414

    Logic Density .18u:       2380          1370      1400  gates/mm^2

    Logic Density .13u:       4290          2450      2520  gates/mm^2

Logic density for the SAMMEL_SPS module is based on 2592 two-input ASIC gates in the

design, plus 10 gates for each of the 320 registers in the module.  The ARITHM module density

is based on 69152 gates and 1847 registers.   

These densities are for a stand-alone CoMesh chip application.  For an embedded CoMesh

application for which peripheral support, i/o, and global routing are not required, the expected

logic density could approximately double the figures reported above.

The CoMesh silicon/software codesign is highly robust to logic changes and additions, since

timing across blocks and pin-out locations that can change during engineering redesign do not

change the CoMesh timing or logic placement.  Such changes can be accommodated using ILOC

place and route software.  This architectural model is substantively different than conventional

reconfigurable silicon, and has been achieved through intimate coupling of software and silicon

capabilities.  Unlike LUTs, CoMesh blocks can share unrelated logic, allowing CoMesh block

resource utilization to approach 90%.   

TIMING COMPARISONS

Separate entities may not be on the same critical path as others, so that delay times do not

add.  The SAMMEL_SPS module is not listed as being on the critical path for the entire design,

while the ARITHM module is implicated in all critical paths listed by the Synplicity log for the

SP700 design.  The Synplicity Clock Frequency Report indicates an achievable frequency of 2.3

MHz for the ARITHM module, with many critical paths incurring a delay of 333-336 us.

The CoMesh architecture takes a significantly different approach to timing than does the Virtex

architecture modeled in Synplicity.  In CoMesh, the entire design is pipelined, using the delay

through a single block as the significant path delay.  The number of blocks in the critical path

thus represents the pipeline set-up time, not the path delay.  Similar to the non-additivity of

delays in an FPGA architecture, the CoMesh block delays do not add.  CoMesh timing is

associated only with the pipelined layout structure of the entire flattened design.

At a .18u process geometry, the CoMesh pipeline SPICE model operates at 300 MHz (3.3ns

cycle delay).  This delay includes the  block delay of 2.2ns and the  global long-line delay of

1.1ns. Thus the register bank that terminates each logic processing block is clocked across the

CoMesh chip at 300 MHz.  For a .13 process, the chip pipeline is expected to operate at 360

MHz or more.
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The flattened ARITHM module spreads across 713 CoMesh blocks, and is expected to incur no

global communication delays.  Thus the achievable cycle time for this module is the local inter-

block-neighborhood pipeline delay.  At .18u, this delay is 2.2ns for the block delay and 1.1ns for

the inter-neighborhood routing delay synchronized with global routing delays, resulting in a

cycle time of 300 MHz.  At .13u, the total delay for a single cycle would be in the range of

2.8ns, or 360 MHz.

The significant cases when the CoMesh baseline pipeline processing rate is changed are when

designs have inner loops and outer loops, such that the outer loops must wait for more than

one processing cycle of the inner loops prior to passing processed data to the next block.  In

the ARITHM module, a cursory analysis indicates no such loops.  Specific techniques for loop-

unrolling can be applied when necessary, swapping area for time.

Allowing for two blocks to complete processing prior to clocking would permit an overall clock

frequency of 180 MHz at .13u.  This is the frequency used for the current analysis.

REGISTERS

Modification of the ILOC reduction algorithms to accommodate the dozens of different register

types in SP700 was not attempted.  Instead, all SP700 registers were converted into one simple

standardized format compatible with the CoMesh architecture.  In order to achieve

comparability to FPGAs, it is assumed that any LUT has one register that can be of any register

type.  Thus for the Virtex model the FF storage function, and the logic associated with resets,

enables, and the like, are counted as part of the mapped LUT without incurring additional logic

overhead.  In contrast, the initial ILOC register module counts all peripheral register logic as part

of the standard logic routed through CoMesh blocks.   

Statistics and metrics are adjusted for the different register models.  In particular, for the ILOC

optimization data, measurements include the external register control logic.  Thus, two-input

ASIC gate counts, etc. include separately counted gates for register logic.  Thus the CoMesh cell

area usage is overestimated to the extent that CoMesh register control logic is separate from

cell logic.  For LUT mapping comparison, register control logic is explicitly subtracted for LUT

counts, through a technique of assigning separate LUTs to control logic, and then reducing the

total LUT count by the number of LUTs used solely for register control.  See the details of LUT

mapping comparisons in the Appendix.

HIERARCHICAL EXPANSION

The ARITHM module contains five levels of design hierarchy, with the higher levels containing

very little logic, and serving solely to connect lower level components.  This programming style

incurs huge port and pointer overheads.  It is not known if this overhead is a cause of routing

problems for the design, however, the ILOC system eliminates nearly all of the port identifiers

while still maintaining modularity.  In addition, ILOC has the capability to abstract repetitive

patterns in a design;  abstraction can occur across logic patterns and functions, or across wire

patterns and groupings (busses, for example).
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One significant difference between ILOC and VHDL coding styles (and supposedly FPGA mapping

tools) is the approach to representation.  ILOC is primarily functional rather than either

procedural or behavioral.  A functional style achieves modularity by "in-line substitution" as

opposed to ports, connectors, and wires.  Thus to connect two components, the structure of

one component is substituted for the name of that component in the data structure of the

other component.  This approach is a consequence of the Boundary Logic model that combines

logic functionality and logic connectivity into a single concept.  (This concept is the "boundary",

for which crossing over a boundary represents wire connectivity, and encountering a boundary

represents logic functionality.)

In ILOC, any boundary is a potential hierarchical subdivision.  Structures with the same boundary

configuration, but with different collections of names are replicated modules.  These replicated

functionalities are identified dynamically during ILOC optimization, without reference to the

intent of the designer or the modular expression of the design within VHDL.  The general

approach is that once the design is functionally valid, how it looks is solely an issue of

technology mapping.  In conventional FPGA design, "conceptual" modules are placed and then

routed.  In ILOC technology mapping, the conceptual structure that dictates the design

decomposition is the CoMesh block rather than the design components conceptualized by the

designer.

The Appendix shows the gains due to hierarchical flattening of the ARITHM module.  In general,

such gains are minor, 1-2%.  And flattening gains are not cumulative, so that submodules

flattened at a lower level of the design hierarchy do not continue to show gain at higher levels

of the hierarchy.  Flattening significantly increases logic reduction processing time, since all

algorithms must address larger data structures.  Thus, flattening is not a particularly good use

of processing time for this design.

STRUCTURE SHARING

The ILOC structure-sharing algorithm first reduces a module to simple elements, and then

iteratively reconstructs the structure of the module from these elements. A physical analogy of

this process would be decomposing an object into the atoms composing it, and then optimally

reassembling the atoms into molecules.

This algorithm is relatively slow, but it is not intractable for large circuits.  More iterations

successively reduce a circuit to a minimal form.  Thus, a particular circuit, given sufficient

processing time, can often be reduced to fit into limited resources.

As an example, the following chart maps processing time against amount of reduction for the

ARITH component of the ARITHM module. To begin, the module is first reduced by all efficient

(N log N) ILOC algorithms.  Then the module is successively decomposed and restructured by

the structure-sharing tools.  Each cycle below represents about 10 CPU minutes for this module

(on a relatively slow machine).  The algorithm currently has no speed-up optimizations, and is

expected to increase in speed by ten to fifty times when optimized.

ILOC structure sharing is not a random search similar to techniques such as simulated annealing.

Rather, structure sharing is goal directed, stopping when reduction is not achieved within a



17

single cycle.  The irregular reduction behavior of the algorithm, as illustrated below by reduction

gains per cycle, is a result of successive structural organization that reaches critical stages of

organization.  The organizational structure then cascades throughout the remaining circuit

structure, resulting in a global reduction.

Structure-Sharing Reductions

CYCLE   ASIC GATE COUNT  CHANGE/CYCLE

  0         39281
  1         37441           1840
  2         37305            136
  4         37290              8
  6         37284              3
  9         37251             11
 10         36752            499
 12         36720             16
 14         36402            283
 16         36284             59
 20         36237             12
 24         36233              1
 26         36166             34
 28         36131             17
 30         36117              7
 32         36113              2
 33         36112              1  process completion

    Total reduction:     3169  gates (8%)

VALIDATION

Lacking test-vectors, the parsing from VHDL to ILOC and from ILOC to LUT-based EDIF could

not be rigorously tested.  However, since ILOC is a formal theorem prover, several internal

sanity checks are available to provide some reasonable confidence that all large and significant

errors have been avoided.

1.  All algorithms and transformation tools internal to ILOC are validated against a test

file of over 200 circuits with extensive test vectors.   

2.  ILOC includes many traps and filters to catch errors.  These include checking each

circuit for disconnected, isolated, and unused wires and logic, verifying that no logical or

structural contradictions are shorting or degenerating the circuit structure, and functional

equivalence checking for all internal transformations.

3.  Each design entity was checked by hand for correctness of port connections and

logic flow.  Unusual circumstances such as large changes in critical path length or number of

logic elements were filtered and warnings posted.

4.  Periodic printouts of intermediate reduction steps, frequency of calls to algorithms,

and processing times provided grounding for internal process verification.
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5.  Before and after entity structures were verified for functional equivalence.  This type

of checking was not possible across hierarchical design modules.

6.  Hierarchical and flattened versions were cross-checked for composition and

consistency.

Several validation cautions are in order:

1.  Since many processes, both computational and human, were applied to over 130

separate entities, it is possible for some errors to have occurred.  These errors would probably

effect the functional correctness of the design, but would be very unlikely to effect the general

accuracy of the logic density and timing results.

2.  A few library components were difficult to model.  These included some registers and

some Virtex components.  The sample ARITHM module contains a minimum number of these

difficult elements, and when their modeling was at all dubious, they were isolated from the

reduction processes.  Three entities in ARITHM had cells that were excluded from analysis since

their behavioral specification was difficult to interpret.

3.  The most difficult aspect of transforming the design was assuring that the

connectivity and wiring model from VHDL was aligned with the connectivity model within ILOC.

The two languages take substantively different approaches to the idea of connectivity, however

these differences were largely accommodated.  The greatest source of risk of error was in

modeling the very minor details of how signals were passed between modules, particularly

between modules that were not directly connected.  Three examples:   

3A)  Signals in VHDL could be passed from input to output without traversing

(symbolically) the interior of an entity.  Thus formal i/o parameter names could be subverted.  

3B) Names were not unique across VHDL entities, yet these names were often used by

the designer to identify the same wire in different contexts.  This provided the opportunity for

syntactic parsers to become confused.  

3C) Naming conventions across the two systems were significantly different, however in

two separate cases a naming conflict occurred, for which an internally generated ILOC name

conflicted with an explicit VHDL name.

4.  Another source of compatibility difficulty between VHDL and ILOC was that VHDL did

not support a strong or dynamic typing system, whereas ILOC is strongly and redundantly typed

to protect against transformational errors.  Thus, VHDL can pass a signal coming from a register

into another module without maintaining the information that the signal is in fact generated as a

register output.



19

LUT MAPPING and the VALUE PROPOSITION

The ILOC algorithms do not yet include sophisticated engines for LUT technology mapping or for

LUT path reduction.  All LUT results are from a naive 4LUT mapper written specially for this

project and in no way customized for competitive performance.  In particular,

1) The LUT mapper translates ILOC wiring reduction into LUT input reductions, and not

into a reduced number of LUTs.   

2) The LUT mapper is not a LUT optimizer.  It does not reduce the raw number of LUTs

in an entity, nor does it reduce the critical paths of a LUT-based design.

3)  The LUT mapper does not include any of the special features found in Xilinx CLBs and

used by Synplicity LUT mapping, including carry-chains, wide-input MUXes, and specialized XOR

functions.  As a consequence, Synplicity LUT mapping results should not be considered to be

comparable to ILOC LUT mapping results.

The ILOC reduction engine has been designed to minimize ASIC circuits in general and to

generate optimized configuration files for the CoMesh silicon architecture in particular.  It should

be recognized that due to the interaction of synthesis optimization and technology mapping,

gains in optimization targeted for one technology (such as ASIC design) do not transfer into

gains in optimization for a non-targeted technology (here, for example, LUT mapping).

The ILOC value proposition is an integrated silicon/software suite (CoMesh/ILOC) that provides

superior competitive performance for reconfigurable logic, as is documented in the main report.

The ILOC software shows exceptional potential when added to the standard synthesis tool-chain

for ASICs.  We believe that the ILOC software also has undeveloped potential when applied to

the standard tool-chain for FPGAs.  The main report and this supplement are intended to

provide preliminary evaluative information to support our value proposition, using the SP700.

REDUCTION DETAILS

1.  The parsing from structural VHDL to ILOC was structurally and functionally exact, no

reductions were applied. The Synplicity log includes flags for unused design components, as did

the ILOC code.  These were verified to match by hand.  As well, the ILOC code is rigorously

sensitive to design flaws such as missing connections, inappropriate gates, and logical

contradictions.  The final parse triggered no ILOC error filters.

2.  Two different generic FF models were used.   

2A)  The FF library provided within the design was used without modification or

optimization.

2B)  All FFs were converted to a simple homogeneous model used within CoMesh.

Resets, enables, and other control signals were separated from the basic FF and combined with

the other logic of the circuit directly.

3.  Modeling the Sp700 design FF library was difficult, since ILOC has not been

customized for a variety of FF models.  Since the ILOC code required significant modification for

generic simulation of the expanded FF library, and since the optimization routines do not
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deconstruct the library FFs, results are reported only for the simple CoMesh FF model.

Expressing the internal complexity of the FFs as part of the design logic increases the area of

the ILOC design relative to the VHDL model, while using simple FFs permits  automated

retiming, pipelining and other CoMesh related optimizations not directly available in VHDL or

Synplicity.

4.  After direct parsing into ILOC, four simple reductions were applied:

4A)  Ground values were removed and propagated.

4B)  Redundant and unused elements were removed.

4C)  Inverters were removed by combining them into ILOC gates using a technique

analogous to conventional bubble-logic.

4D)  All cells with no fanout were conglomerated, so that all nodes in the logic network

had fanout.  These conglomerate nodes were reduced using iconic logic.

5.  Two reductions were applied and selected based on positive results:

5A)  Distribution of logic elements.

5B)  Local expansion of logic elements.

These techniques are unique to ILOC.  Although they are known transformation rules for logical

analysis, these transformational rules are generally not applied in conventional systems due to

their complexity within those systems.

6.  All entities were flattened completely to primary inputs and outputs using the ILOC

canonical form of deepest possible nesting.  This permits bottom-up automated identification

and analysis of abstract logic structures, available modular decompositions, and existing data

vectors, independent of designer-provided information.  Some conventional analysis uses the

shallowest possible nesting (two-level logic, or SoP forms) for generic logic analysis, which

results in large data structures with simple logic structure and complex connectivity.

Conventional BDD forms do not provide accessible models of actual logic layout.  The ILOC

canonical form uses small complex logic data structures, the simplest connectivity, and

maintains a strict mapping to the final circuit structure.

7.  XOR and MUX structures were abstracted across all entities.  Abstraction of

elementary branching components controls the explosive growth of logic and wiring.

Conventional techniques cannot identify abstract logic patterns globally.

8.  Structure sharing was maximized across all entities to reduce logic area.

Conventional silicon architectures must manage fanout during structure sharing, while the

CoMesh architecture is not sensitive to fanout.  Performance in conventional reconfigurable

silicon is significantly reduced by fanout from the fine-grain LUT logic structures.  In CoMesh,

between cell wiring within each block is pre-optimized, so that the worst-case block traversal

time is 1.8ns at .18u.  Due to pipeline coordination, CoMesh blocks cannot be individually timed,

even though signals may propagate through one specific block much faster than through

another.  CoMesh blocks perform very much like simple PLAs, but with five levels of logic

instead of two.  Block logic organization is quite different than conventional product term

approaches in that logic is organized in deeply nested groupings that minimize wiring and
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functional expressability.  Block logic mapping is quite different than mapping to LUT structures

in that cells within the same block can be assigned to functionally independent components,

alleviating the need for both specialized logic processing structures such as carry chains and for

constrained logic packing in LUT-sized groupings.

9.  The resulting logic forms were technology mapped to three models:  two-input NAND

gates, inverters, and FFs only; N-LUTs and FFs only; and CoMesh blocks and block-

neighborhoods.  These technology maps were then used for comparison metrics.  Since ILOC

and CoMesh are intimately interconnected, the mapping to NAND gates and to LUTs

significantly decreases the optimization advantages of ILOC.  Since NAND gates and LUTs

impose more constraints than CoMesh on a design layout (such as fanout limits, depth of

nested logic limits, and library cell limitations), these metrics decrease the performance

advantages of CoMesh.  

The logic placement and routing process for CoMesh is determined entirely by the ILOC

software.  During optimization, logic structures are first completely decomposed into

elementary relational units.  These units are then clustered to form pattern-based groupings

accommodated by an individual CoMesh cell.  Then cells in a block are filled with no

consideration of the specific logic or the wiring relations between the logic.  Finally, filled cells

are relocated to fit into the 16x5 cell blocks, again paying no attention to the logical

functionality.  Valid cell relocation moves do not change logic functionality, and are thus

determined solely by available block cell and wiring resources.   

For routing between blocks, each block is treated as a single "black-box" unit.  Blocks that share

input/output signals are placed directly adjacent to each other.  Inter-block routing congestion

is avoided by a software vectorization process prior to technology mapping that identifies

groupings of signals and bundles them into a single unit.  Thus CoMesh routing is quite different

than conventional routing in that switching matrices are avoided by course grain logic module

grouping and direct wiring between blocks within a 16-block neighborhood.

CONSTRAINTS ON THE ANALYSIS

1.  RAM entities and those entities that incorporated them were not parsed into ILOC or

modeled (21 entities).  None are contained in the SAMMEL_SPS or ARITHM modules.

2.  The parsing of a few entities was questionable, because of missing references,

possible linking errors, and cell library elements that were not modeled structurally.  These were

not included in the analysis (fewer than 10 entities). None are in the SAMMEL_SPS or ARITHM

modules.

3.  Files that included behavioral VHDL were not parsed into ILOC, with the exception of

cell libraries, which were translated from behavior VHDL into internal ILOC patterns by hand.

4.  The type hierarchy and records were flattened to standard logic vectors.
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5.  The wide variety of FFs were not optimized, but rather modeled as is, and then

treated as rigid design elements.  For the CoMesh analysis, all FFs were converted into a single

format.

6.  No specialized, or targeted local, reductions were incorporated, such as minimizing a

particular critical path or a particular cell type.  No attention was paid to pin locations and i/o

configurations.

7.  The 363 entities parsed into ILOC were hierarchically expanded as components of the

largest entities using them.  This resulted in 203 separate entities that covered the entire

structural design.  This design was atypical in that very few entities were used multiple times.

The design had almost no modularization,  thus it was reasonable to hierarchically expand all

component entities.

8.  The SAMMEL_SPS and ARITHM modules were selected for initial analysis using criteria

of representivity, tractability and ease of processing.  The Synplicity log for SAMMEL_SPS

incorporates only LUTs, making comparison easier.  The log for ARITHM includes mapping to

various specialized features within the Virtex architecture, such as MUXF5, CCU_ADD and

CCU_AS.  These features provide a Virtex CLB with capabilities, such as wide functions and

carry chains, that are not efficiently achieved using LUTs alone.  The cost is often wasted silicon

resources.  None of these features are modeled in the ILOC parsing to LUTs, and they are not

necessary for the CoMesh architecture.

9.  The ILOC software is not optimized for performance, and in fact is highly redundant

in order to guard against implementation errors.  CPU time for the analysis should decrease at

least an order of magnitude when the code is industrialized.  Total CPU time for all analyses

(parsing and reducing 95% of the SP700 design, and technology mapping 35% of the design)

was under 6 CPU hours.

CAUTIONS

1.  ILOC reduction may have removed some components of the design that were

technology specific.

2.  ILOC reduction may have removed some components of the design that are not

used, but may have been intended to be used later, or are intended to be included redundantly.

3.  Since no test-vectors were available, reduction was verified only between ILOC

transformations.  The parsers to and from ILOC have not been verified.

4.  Comparison metrics that require forms not native to ILOC and CoMesh significantly

undermine the advantages of ILOC and CoMesh.  The ILOC tools solve design problems by

casting them into a different form.  Back-translating the ILOC and CoMesh solutions into

formats that are the source of the original problems reduces the benefits of the tools.

5.  The underlying model for the LUT comparison metrics from the Synplicity log is not

known.  In SAMMEL_SPS for example, several entities are not included by Synplicity, while much
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control logic is embedded into specialized structures within the Virtex CLB.  Thus the

comparison of performance is somewhat inexact.  

6.  The compile logs use different Virtex mappings, each with slightly different  results.

Thus different comparative statistics are used depending on the basis of comparison.

7.  Several minor anomalies were encountered while processing the complex ARITHM

structure.  Although the Synplicity log identified dangling and disconnected components, the

optimization process apparently did not carry the implications of these disconnects to their

conclusion.  ILOC did so, resulting in selective deletion of trees of logic structure that

propagated through the entire design module.

WORK IN PROCESS

About 95% of the design has been parsed into ILOC and placed-and-routed on the CoMesh

architecture without applying any optimization transformations.  Detailed reduction and analysis

of the entire design has not been completed.  The SAMMEL_SPS and ARITHM analyses are

prototypical, intended to clarify and validate comparison techniques and metrics.

Demonstration and validation of ILOC reduction capabilities can be achieved quickly and

efficiently by applying the prototypical analytic processes developed for SP700 to the post-

synthesis EDIF formats of more well-understood designs.  In this light, the internal test

validation suite for ILOC consists of over 200 diverse circuits with test vectors.  These circuits

consist of most common design elements (arithmetic functions, register structures, FSMs, and

commonly used larger design macro functions), as well as a rigorous collection of pathological

and difficult logic structures for synthesis tools.

The SP700 design analysis is proof in principle that ILOC can be applied to complex commercial

designs.  The analysis falls short, however, in providing clearly interpretable results upon which

to base business decisions.  A more rigorous design methodology and process is currently being

developed.
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APPENDIX:  SUPPLEMENTARY DATA

The Appendix includes supporting detailed information about reduction of the SP700 design

modules.  Tables in the Appendix include:

Description of the SP700 Design

Details of LUT Mapping

Before and After Reduction Data for Component Entities

Pre and Post Reduction Data for Submodules, Including Critical Paths

ARITHM Sequential Entities and Submodules

ARITHM Combinational Entities and Submodules

Reduction Gains Due Solely to Flattening the Design Hierarchy

CoMesh Block and Silicon Area Requirements

DESCRIPTION OF THE SP700 DESIGN

The top-level modules of the design, and their storage requirements are:

      FILE         MB  KB-ILOC  ENTITIES INSTANCES  % OF DESIGN

ADR_BUSS_UNIT      .5     116       24       2599
ADV                .5      96       15       1530
ARITHM            4.3    1200      116      26251        36
BEFADRRW           .1      32       10        600
BUSSWITCH          .3     116       13       1587
COR100            2.1     712       84      12250
OPADRRW           2.6     832       39      13273
PIPE_012          1.6     444       38       8346
RAM                 0      24        6         12
SAMMEL_SPS         .3      72       16       1359         2
SAMMEL1            .1      28        8        563
ZEIT_SYSTEM       1.1     336       40       5356

          SUM          13.5    4008      409      73726

The design files consist of

17 structural VHDL design files

5 behavioral VHDL design files

35 cell-library and type hierarchy files

6 project summary and log files

The 17 structural VHDL design files consist of

409 entities

375 cell-components

73726 gate instances, including complex gates and FFs
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DETAILS OF LUT MAPPING

The tables below show a summary of the Synplicity log generated by technology mapping to

the Virtex architecture for the two analysis modules. Data is from file

sp700_api__l1e0n0j9.sum.  

The Synplicity log reports area in terms of "gates", which have the following conversion table:

one   FF = 1    gate
one 4LUT = 1    gate
one 3LUT =  .5  gate
one 2LUT =  .25 gate

For the SAMMEL_SPS module, the number of FFs, 2LUTs, 3LUTs, and 4LUTs to implement the

design entity are presented.  The GATES total is a weighted sum of the LUT total.  The

Synplicity log also reports the number of LUTs in each type used to implement the design, and a

raw total number of LUTs used.  The raw LUT total reflects the layout constraint that any LUT,

regardless of number of inputs, uses a physical 4LUT on the Virtex chip.  The weighted sum, in

contrast, tracks routing usage, since a 2LUT requires two, not four, input ports, even when the

logic is implemented by a 4LUT.  Both raw and weighted LUT totals are reported for the ARITHM

module.

Synplicity counts one gate for each register, regardless of the complexity of the register (for

example, some registers are simple DFFs, while some incorporate enables and resets).  In the

ILOC analysis, registers were decomposed such that every register was a simple DFF, while the

additional logic internal to a register (such as reset and enable logic) was moved to the general

logic of the circuit.  This choice was made since ILOC is customized to optimize to the CoMesh

architecture, and the model of registers for that architecture treats register logic separately.

As a consequence, the LUT mapping by ILOC includes a disproportionate number of 2LUTs and

3LUTs that are actually register logic.  In the table below, the actual LUT count for the ILOC LUT

mapping is presented, and then adjusted by removing the register logic from the gate totals.

Similarly, the gate totals from the Synplicity logs have been reduced by the register count.  The

net result is that the gate totals in the LUT comparison tables below compare logic to logic,

without including registers for either Synplicity or ILOC.

For the ARITHM module, Synplicity log results are reported for DFFs and GATES.  One gate is

one 4LUT or one FF.  In the table, the DFF and the logic gate counts have been kept separate.

The PRE-GATE column lists the results from the Synplicity log.  The POST-GATE column lists

results from ILOC reduction followed by 4LUT mapping.   

Utilization of the Virtex CLB special logic features, primarily MUXes, has been adjusted by adding

a small number to the pre-reduction gate count.  The GATES total has been reduced by the

number of FFs, so that the entry represents solely logic implementation using LUTs.  The FF-

adjustment column shows the additional logic that was required to move register control logic

outside of registers. Gains are listed in both absolute and percentage terms.  Absolute gain is

the difference between the PRE-GATE count (with the extra-CLB logic added in) and the POST-

GATE count.  The FF-ADJUSTMENT has already been subtracted from the POST-GATE count.
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1LUTs, INVERTERs, and GROUNDs are not reported.  Any inconsistencies in these data tables

other than clerical error are probably due to the interpretation of how data was accumulated

hierarchically in the Synplicity log.

SAMMEL_SPS

ENTITIES      DFF     2LUT      3LUT      4LUT      LUTS     GATES    FF/MUX
                    PRE/POST  PRE/POST  PRE/POST  PRE/POST  PRE/POST  ADJUST

GRAND TOTAL
SAMMEL_SPS    320   114 240   180 277   375 380   669 897   449 503   254/27
  adjusted                                            616       413
% reduction                                          8%        8%

SAMMEL_SPS     85    18  62    45  53    47  35   110 150    70  75     49/6
  adjusted                                             95        57

  INTCON      136    63 102    56  88   155 154   274 344   172 169    134/5
  adjusted                                            205       131

  KLC          99    33  76    79 136   173 191   285 403   207 259    71/16
  adjusted                                            316       225

ARITHM

               DFF     2LUT      3LUT      4LUT      LUTS     GATES    FF/MUX
                     PRE/POST  PRE/POST  PRE/POST  PRE/POST  PRE/POST  ADJUST
GRAND TOTAL
ARITHM LOG    1847   1341      1941     11262     14544    12578
1706/1710
      ILOC               2301      4376     11534     18211    10416
  adjusted                                            14803     7839
% reduction                                         -2%       37%

ENTITIES
  ARITHM LOG    74     57        61       235       353      202
74/1
        ILOC               63        80       172       315      184
    adjusted                                            240      163

  WERKE  LOG   227    334       404      1246      1984     1402
117/646
        ILOC              307       576      1277      2160     1310
    adjusted                                           1397      954

  ARI    LOG   405    311       588      1980      2879     2302
405/174
        ILOC              399       907      2077      3383     2201
    adjusted                                           2804     2000

  ARITH  LOG  1141    639       888      7801      9328     8672
1110/889
        ILOC             1532      2813      8008     12353     6721
    adjusted                                          10362     4722



27

The above tables report numbers of 2, 3, and 4LUTs generated by the Synplicity and by the

ILOC LUT mappers.  Data is provided for several sub-modules to illustrate the relative

consistency of results.  ILOC data is provided in raw form, prior to adjustments to remove

register logic and to compensate for use of specialized CLB logic.  Data is also provide after

these adjustments.  The FF/MUX ADJUST column shows the number of FFs and the number of

wide MUXes used for ILOC adjustments

BEFORE AND AFTER REDUCTION DATA FOR COMPONENT ENTITIES

The tables below report specific results for different submodules using the ASIC gate and

internal wiring metrics, before and after optimization.  The before data is measured directly

from the structural VHDL netlist for the design.  The after data is measured after ILOC

reduction algorithms have been applied.  Algorithms were applied to the design as a whole, no

algorithms were applied separately to submodules in the design.

In the tables below, care should be taken reading the nested hierarchical components of the

design.  The design hierarchy is indented on the left, with composite entities farthest to the

left.  The hierarchical components have been flattened in the composite entities, so that the

results for each component represents the *sum* of the entities it contains.

The reason for reporting the lower-level entities is to show that even without logic reduction,

ILOC optimization reorganizes the entity structure to have fewer internal pins and fewer wires.

A significant part of the wire net gain is in eliminating the redundant port connections between

each individual entity.

SAMMEL_SPS

DESIGN ENTITIES                         NAND GATES   INPUT PINS   WIRE NETS
                              DFFS       PRE/POST     PRE/POST     PRE/POST

SAMMEL_SPS TOTAL               346       2592 2434    4778 4306    3944 2579

INTEXT                          52        173  120     399  266     381  194
INTCON                         132       1022  894    1987 1655    1487 1047
  INTPRI                                  198  174     331  310     328  264
KLC                            100       1265 1127    2309 1864    1917 1125
  KLC_STW                        9        148  136     273  250     248  160
  KLC_CNT                       16        539  439     968  543     764  359
    KLC_CNT_DW01_ADDSUB_16_0              284  204     472  216     316  172
  KLC_LTE                                  60   47     116   89     101   72
    KLC_LTE_DW01_DEC_5_0                   13   13      26   18      31   22
  KLC_REG                       75        344  388     727  711     642  525
    KLC_REGS                               33   33      72   72      80   74
    KLC_DBOUTMUX                          165  165     300  293     385  356
  KLC_CAS                                 202  170     381  266     355  210
    KLC_CAS_DW01_CMP2_16_0                 61   61     118  109     151   11
    KLC_CAS_DW01_CMP2_16_1                 61   61     119  109     151  112
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The ARITHM logic reduction tables reports before and after reduction measures on three

metrics, internal pins (literals), internal wires (nets), and two-input ASIC gates.  These

hierarchical tables are cumulative.  Data rows that are carried forward in duplicate is marked by

the word SUM, together with the hierarchy level the row entity comes from.

The "fully flattened" row is a separate accounting of logic complexity when the entire group of

entities is combined into a single entity with no hierarchical or structural boundaries.  The ILOC

algorithms applied to flattened groups of entities are more efficient in all cases and for all

metrics. The following table is the raw comparison date for the ARITHM module.

ARITHM

                         PRE/POST         PRE/POST         PRE/POST
                           PINS            WIRES          ASIC GATES

ARITHM                  179    143       484    330       132     99
ARI_STEU_REG           1323   1071      1189    924       798    693
WERKE                  9923   7219     10749   8440      7064   5911    SUM-3
ARI                   83452  55527     90054  57980     61158  45353    SUM-4
ARITHM GRAND SUM      94877  63960    102476  67674     69152  52056

=============================================================================
LEVEL 4 HIERARCHY

ARI                       4      4       313    240         2      2
FP_DECODE                74     61        56     44        44     36
ANZG                    396    243       432    249       267    182
EX                     2299   1574      2380   1379      1668   1237
ari/RS                 1253    784      2106   1410       911    769    SUM-1
ari/AL                 2033   1539      2541   1407      1465   1151    SUM-2
ari/SH                 4029   3017      4738   3769      2770   2437    SUM-2
ari/AC                 5089   4202      6397   5232      3188   2932    SUM-3
ari/ARITH             68275  44103     71089  44250     50843  36607    SUM-3
ARI                   83452  55527     90054  57980     61158  45353    SUM

=============================================================================
LEVEL 3 HIERARCHY

WERKE                    44     39       223    211        33     29
KL_OUTMUX                99     77       121    114        66     63
WERK_OUTMUX             208    186       313    326       150    147
P_WERKE_REG             622    524       649    427       375    336
W_PHI2                  223    156       273    143       148    109
werke/W_PHI1           1181    942      1364   1150       851    758    SUM-2
werke/CONV             7546   5295      7806   6069      5441   4419    SUM-2
WERKE                  9923   7219     10749   8440      7064   5911    SUM
     Fully Flattened       9337   6759      8625   6216      6706   5751

ari/AC                    0      0       189    187         0      0
AC_MX                    53     50        88     77        34     32
SPL_IMMED               217    147       301    178       153    116
ari/ac/AKKU            4819   4005      5819   4790      3001   2784    SUM-2
ari/AC                 5089   4202      6397   5232      3188   2932    SUM
     Fully Flattened       5068   3918      4527   3559     33182   2784
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ari/ARITH               183    129       675    363       149     99
FLAG_BASIC              424    343       445    312       337    312
FP_RET                  253    200       287    209       182    153
PRI                     854    635      1040    764       622    520
MX_SH_ADD              1041    833      1672   1373       813    766
SL_BUSAB                 80     71       113     93        54     49
MX_MD                  9693   2602      8013   2855      6944   2259
ARI_STEU                738    651       683    461       458    397
MANT_LATCH               67     99        67     67        32     32
SQRT                   1689   1069      1795    921      1329    924
STEU_ADSU                36     27        31     17        17     12
STEU_SQRT                55     50        59     31        32     28
CORD                  10491   8349     10232   7289      7232   6517
ari/arith/MULT        19501  11575     20075  11275     16116  11022    SUM-1
ari/arith/FINIEEE      2541   1692      3322   2246      1940   1408    SUM-1
ari/arith/SH_ADD       2702   2158      3113   2350      2713   1825    SUM-2
ari/arith/DIV          9190   6300      9135   5879      6177   4933    SUM-2
ari/arith/EXLN         8741   7320     10332   7745      5696   5351    SUM-2
ari/ARITH             68275  44103     71089  44250     50843  36607    SUM
     Fully Flattened      66193  43357     63011  38695     48986  36075

PRE AND POST REDUCTION DATA FOR SUBMODULES, INCLUDING CRITICAL PATHS

The table below reports specific results for submodules of the ARITHM module, before and after

optimization.  It has been extended to include critical path lengths, for all submodules.  Critical

paths are provided for two different technology maps:  two-input NAND gates, and 4LUTs.

Submodules are sorted into combinational and sequential categories.

Pre-optimization entries in the two tables that follow differ slightly (by 1-2% total) from those

reported directly above.  In this tabulation, grounds, 1LUTs, and duplicate logic have been

removed from the pre-reduction statistics, under the assumption that such simple

transformations would occur in any reduction system.

The critical paths are measured using a unit delay metric, essentially counting the maximum

number of two-input NAND gate unit delays (or 4LUT unit delays) between registers, or

between input and output, for each submodule.  The tables also report before and after

reduction measures on three metrics: internal pins (literals), internal wires (nets), and two-input

NAND gates.

Although module entities are hierarchical, within each category, no submodules contain

duplicate entities.  Sequential entities do contain some combinational entities, so that summing

across both tables will result in counting some combinational entities more than once.  The

totality of all submodules and entities completely covers the entire ARITHM module.

Combinational entries marked with an asterisk are not included in the sequential gate counts, all

others are.  Submodules with prefixed hierarchical nesting information (such as ari/...) are

composite; those entities without hierarchical nesting prefixes are single entities at the lowest

level of the ARITHM entity hierarchy.  Composite submodules have been fully flattened so that

critical path lengths are for the entire submodule.
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ARITHM Sequential Entities and Submodules

ENTITY              PRE/POST      PRE/POST    PRE/POST   PRE/POST    PRE/POST
                      PINS          WIRES     NAND PATH  LUT PATH   NAND GATES

werke/W_PHI1       1171   911    1199   973     29  23    25  14     839   752
werke/CONV         6998  4798    6368  4514    232 167   132 110    5109  4199
ari/AC             5068  3918    4527  3559    113  92   118  94    3182  2784
ari/arith/DIV      8957  6059    8422  5345    244 223   120 119    6075  4795
ari/arith/MULT    19501 11575   18682 11568    101 121    55  70   16078 11022
ari/arith/EXLN     8283  7101    8405  6267    262 200   218 196    5403  4968

ARI_STEU_REG       1308  1071    1165   924     13  15     8  10     785   693
P_WERKE_REG         622   524     626   427     52  31    23  26     375   336
W_PHI2              215   156     269   143      4   4     3   2     144   109
ANZG                394   243     430   249     14  12    12   8     266   182
EX                 2290  1574    2367  1379     33  29    21  18    1661  1237
ARI_STEU            726   651     651   461     64  64    62  51     451   397
SQRT               1630  1069    1706   921     79  79    67  93    1271   924
CORD              10368  8349   10070  7289    275 210   226 227    7213  6517
MANT_LATCH           67    67      67    67      2   2     2   2      32    32
STEU_ADSU            29    27      26    17      6   6     6   4      12    12
STEU_SQRT            54    50      50    31     14  12    11   9      31    28
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ARITHM Combinational Entities and Submodules

ENTITY              PRE/POST      PRE/POST    PRE/POST   PRE/POST    PRE/POST
                      PINS          WIRES     NAND PATH  LUT PATH   NAND
GATES

ari/RS*            1253   750    1776  1107     17  13    11  13     911   769
ari/AL*            2059  1502    2256  1203     78  77    38  49    1452  1185
ari/SH*            3983  3003    4187  3065     48  37    34  24    2759  2525
ari/arith/FINIEEE* 2481  1684    2858  1805     39  31    35  31    1913  1401
ari/arith/SH_ADD*  2643  2132    2852  2098     88  86    35  80    1966  1839
werke/w_phi1/TIZA   332   276     337   320     13  12    10   9     244   232
werke/conv/BCD     1475   919    1264   845     26  21    16  15    1143   832
werke/conv/BIN     1169   672    1013   648     16  14     9  11     931   668

FP_DECODE*           74    61      54    44      6   5    12   8      44    36
KL_OUTMUX*           99    77     117   114      6   5    11   4      66    63
WERK_OUTMUX*        208   186     312   326      6   6    11   5     150   147
AC_MX                53    50      87    77      4   4     3   3      34    32
FLAG_BASIC*         424   343     445   312     15  10    13  15     337   312
FP_RET*             253   200     287   209     11   9     9   7     182   153
PRI*                835   635    1031   764     28  28    18  17     618   520
MX_SH_ADD*         1041   833    1662  1373     17  10    11   7     813   766
SL_BUSAB*            80    71     110    93      7   7     9   5      54    49
MX_MD*             8853  2602    7642  2855      8   9     5   5    6537  2259
BIT_NETZ            258   188     242   189     11   9     8   6     187   150
NUEUS_BIT           278   216     340   243     18  14    13  11     209   183
BCD_FEHLER          260   179     335   212     13   9     9   6     192   148
CONV_IN_MUX         272   183     368   178      8   7     7   4     190   154
CONV_OUT_MUX        399   359     649   549      9   7     7   4     311   309
P_BANZ               55    32      75    29     10   6     7   4      41    27
P_MOD_A             245   207     329   258     13   9     8   7     189   177
P_S5T2T             202   178     276   232      6   5     5   4     157   141
P_T2S5T             180   140     235   156      8   6     7   5     133   118
AC1_MOD             594   440     714   510     12  13    10   8     460   356
OMUXA               575   450     904   745      5   3     5   3     417   417
OMUXB               388   277     358   454      4   3     3   2     245   245
EXLN_MD             273   271     463   460      6   6     5   4     196   193
EXLN_MX             432   312     770   476      4   4     3   2     337   257
P_HEXCONV           154   154     285   284      4   4     4   3     120   120
B_DT2D              307   226     249   198     13   9     8   6     210   203
B_SUB28             545   429     449   410     11   9     7   7     373   363
D_NETZ             5432  3552    5315  3345     70  86   158 129    3816  2999
TAB_EXPLN           637   581     701   538      8   7     7   5     429   405
ADD40_1             640   490     636   451     85  83    42  42     445   435
ADD40_2             640   490     636   451     85  83    42  42     445   435
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REDUCTION GAINS DUE SOLELY TO HIERARCHICAL DECOMPOSITION

The following data is taken from the previous table, comparing logic complexity prior to

reduction, after reduction of each entity separately, and after reduction of a group of entities

combined to remove hierarchical boundaries.  Gains are generally very modest.

                         PRE/POST-ASIC    FLATTENED    GAIN   %GAIN

WERKE                     7195   5994       5751       253      4
ari/AC                    3316   3060       3040        20      1
ari/ARITH                50807  36671      36075       596      2

werke/W_PHI1               851    758        752         6      1
werke/CONV                5441   4419       4199       220      5
ari/AL                    1465   1151       1148         3      0
ari/SH                    2770   2437       2432         5      0
ari/ac/AKKU               3001   2784       2637       147      5
ari/arith/SH_ADD          1979   1825       1824         1      0
ari/arith/DIV             6177   4933       4811        22      0
ari/arith/EXLN            5696   5351       4968       383      7

werke/w_phi1/TIZA          252    231        232         0      0
werke/conv/BIN             955    667        668         0      0
werke/conv/B_HEXCONV      1982   1787       1724        23      1
werke/conv/BCD            1279    891        832        59      7
ari/RS                     911    769        769         0      0
ari/al/E_ALU              1364   1060       1057         3      0
ari/sh/SHIFT              1749   1528       1508        20      1
ari/ac/akku/ACCU_REGS     1394   1365       1365         0      0
ari/arith/MULT           16116  11022      11022         0      0
ari/arith/FINIEEE         1940   1408       1401         7      0
sh_add/SHIFT_TR           1455   1321       1322         0      0
ari/arith/div/D_ARRAY     3979   3067       2956       111      4
ari/arith/exln/PSEUDO     2593   2513       2148       365     15
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COMESH BLOCK REQUIREMENTS

Cumulative CoMesh block requirements for the ARITHM entity hierarchy are presented below.

The CONV entity is marked (nominal) due to specialized Virtex elements.  Its data is an average

for entities of similar size.  Data is provided both before CoMesh placement and routing

optimization and after routing optimization to increase logic density.

ENTITY                 BEFORE        AFTER

TOTAL BLOCKS            1116          713
ARITHM                     1            1
ARI_STEU_REG              10            8
WERKE                    160           75   (nominal)
ARI                      945          629
=====================================================
LEVEL 4 HIERARCHY
ARI                                         629   SUM
FP_DECODE                  1            1
ANZG                       5            3
EX                        25           14
ari/RS                    13            8
ari/AL                    34           25
ari/SH                    49           35
ari/AC                    48           32
ari/ARITH                770          511
=====================================================
LEVEL 3 HIERARCHY

WERKE                                        74   SUM
KL_OUTMUX                  2            1
WERK_OUTMUX                6            4
P_WERKE_REG                7            4
W_PHI2                     4            2
werke/W_PHI1              14           10
werke/CONV               120           53   (nominal)
ari/AC                                       33   SUM
AC_MX                      2            1
SPL_IMMED                  5            3
ari/ac/AKKU               51           29
ari/ARITH                                   510   SUM
FLAG_BASIC                 9            3
FP_RET                     4            2
PRI                       13            8
MX_SH_ADD                 12            9
SL_BUSAB                   2            2
MX_MD                     48           24
ARI_STEU                   7            5
MANT_LATCH                 2            1
SQRT                      39           23
STEU_ADSU                  1            1
STEU_SQRT                  1            1
CORD                     110           78
ari/arith/MULT           205          141
ari/arith/FINIEEE         26           19
ari/arith/SH_ADD          52           30
ari/arith/DIV            150           98
ari/arith/EXLN            89           65


