
1

COUNTING GATES

William Bricken

December 2001

2001 Xilinx FPGA product listings assign 12 "logic gates" per logic cell,

with 9 logic cells per CLB. So "maximum logic gates" is 108 times the number

of CLBs.

"System gates" refer to logic plus memory. This metric is fudgable, since

each logic cell (look-up table) can be used as 12 logic gates or as

approximately 50 memory "gates". The percentage of logic cells used as

memory generates the "typical system gate range". "System gates" is also

greatly distorted in architectures which add bulk RAM (eg Virtex-EM vs.

Virtex-E), since bulk RAM adds to system gates but not to logic

functionality.

Recommend: use "logic gates", not system gates. Use 50% of maximum logic

gates as a conservative capabilities estimate.

Maximum logic gates must be decreased due to at least three factors:

1. Assumes perfect logic mapping onto arbitrary 4LUT structures.

Experience suggests this mapping is about 50-70%.

2. Assumes unlimited routing resources. Not! Limitations in routing

reduce possible mappings to about 50%, worse for smaller gate parts and for

inexpensive Spartan parts.

3. Assumes perfect integration between memory and logic use. This is

perhaps the biggest problem, since logic/memory integration is an unsolved

problem. Percentage logic to memory vary widely across applications.

As well, all Xilinx FPGAs are flip-flop limited, so sequential logic

structure as well as combinational logic structure limits mappability.

One major benefit of BTC architectures is that we don't distinguish logic

from memory, and like Xilinx, can swap off logic for memory (for us it is 4-

to-1 logic gates per FF, not 1-to-4 as in LUTs). The main point is that we

do not have a flip-flop ceiling, we are flexible there.

And as a reminder: FPGA architecture wastes huge amounts of territory in

routing resources which are *not used* once the functionality is mapped.

Similarly, the available logic/memory on a Xilinx part is *fixed*. The only

option available for designs "close to the maximum" is to buy a larger chip.

(BTC has excellent tools for time/space design trade-off to solve this

problem.)

2

How Should BTC Count Gates?

We have used 4 gates per row, with no consideration of flip-flops or block

RAM memory. We should probably use close to the same memory/logic ratios as

Xilinx. They have 4 flip-flops per CLB (i.e. per 108 logic gates), 1 FF per

28 logic gates. Given a logic usage of 50%, this is 1 FF per 14 effective

gates.

Block RAM is in addition to FFs, and is a different issue. To be realistic in

the FPGA market, we will have to address dual-usage Occlusion Arrays, part

memory, part logic. Not so for the CPLD market, which is even more FF

limited, and has no concept of block RAM.

Rounding, I'd suggest 1 FF per 3 rows (1 FF per 12 gates), i.e. 75% logic

usage, 25% FF. We get 1 FF per row. So per 1000 rows (~ 1 mm^2 chip area),

we'd have 3K logic gates and 250 FFs. In truth, we can mix in any

proportion: 1 row gives either 4 gates or 1 FF.

With the compiler, it is a bit more complex, since the placement and use of

FFs is tailored for ASIC architectures, not BTC architecture. I estimate we

can eliminate (compile out) 50% of the FFs in a naive FSM design. Another

main use of FFs is pipelining. We get pipelining from the compiler, and

don't need to use FFs. In summary: the BTC architectures use FFs in a

fundamentally different way which largely eliminates the FF bottleneck in

other FPGA and CPLD architectures.

Note: the above has a few very important selling points which we are

neglecting to mention:

1. flexible logic/FF usage

2. far less FF dependency

3. compile time logic/FF trade-off

