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Standard reference books on the design, synthesis, optimization, and testing
of digital circuits [see references] identify a small set of circuit
configuration problems and research issues. This paper identifies the most
prevalent of those problems, and maps them onto the existing and proposed
capabilities of the Losp engine. I identify our innovations and strengths,
and areas for which we have no substantive contribution.

Two-level Combinatorial Logic Optimization

Two-level optimization is a classic problem and is very well understood. We
assume multiple output functions.

Uses: PLA arrays, intermediate step in multi-level optimization.
Goals: minimization of the number of terms and the number of literals.

Problem: exact minimization by finding the minimum Boolean cover (prime
implicants). Heuristic minimization by applying a variety of transformations
to the two-level representation.

Standard techniques: variants of Quine-Mc(Cluskey, using a canonical form of
the logic function such as the sum-of-products.

Programs: ESPRESSO-EXACT, ESPRESSO

Weakness: Exact methods are exponential, requiring additional techniques to
constrain the space of implicants. Inappropriate for more than about ten
input variables, thus works only for semi-trivial circuits.

Recent developments: signature cubes, clever notations for storing and
manipulating cubes.

Losp: Not particularly useful for two-level forms. Losp transformations map
onto most heuristic tools with no particular improvements. Losp rules tend to
convert problems to multilevel form.

Comments: two-level circuits are no longer highly motivated. Tautology
algorithms identify covers directly. Losp tautology identification is
extremely efficient, but probably equivalent to those which use smart search
and storage notations.

Extensions: opcode minimization permits arbitrary input encoding. Losp and
traditional approaches can use algebraic techniques which are independent of



input encodings. When output encodings are free, the problem is complex,
requiring multi-level techniques.

Conclusions: We should replicate two-level tools in Losp for completeness,
but expect no performance improvements.

Multi-level Combinatorial Logic Optimization

Multi-level optimization is relatively new, with no exact methods. Of utmost
importance, particularly for circuits with >50K gates.

Uses: controlling manufacturing costs of most complex circuits

Goals: minimize drea and delay, optimize testability, prepare for cell
library mapping

Problem: 1identify critical path (slowest true path) in logic network,
determine trade-offs between area and delay. Global optimization.

Standard techniques: transform by elimination, decomposition, extraction,
simplification, and substitution. Both algorithmic and rule-based techniques
are used. Kernel extraction, rectangle covering using matrices. Delay
optimization through flow analysis.

Programs: MIS

Weakness: Heuristic approaches do not provide a systematic way to generate
all equivalent multi-level circuits using logic transformations. No way to
identify global optimum. Heuristics rely on iterative refinement (classical
gradient search). Polynomial algebraic models (as opposed to Boolean models)
are weak.

Recent developments: Observability and satisfiability don't-care analysis

Losp: Pervasion is ideal for multi-level optimization. We have a solution to
systematic exploration of equivalent circuits. Identification of false
critical paths appears to be straight-forward. Don't-care analysis is also
straight-forward.

Comments: Losp approach is similar to BDD data-structuring, with less
difficulty in determining variable ordering. Only difficulty is that the
given formulation of circuits is often flat (few levels), so distribution is
needed to build deeper forms. All the technical problems with variable
ordering, distribution ordering, etc. show up for us, but in a much simpler
context.

Extensions: Sequential circuits can be easily expressed as multi-level
structures with registers as labeled coordination points.



Conclusions: Really big win. traditional problems seem to be greatly
simplified, although still intractable.

Sequential Logic Optimization

Synchronous (clocked) models are well studied, but most methods are practical
only for semi-trivial circuits. Asynchronous models fit naturally into dnets.
Many open problems.

Uses: most circuits
Goals: state encoding and minimization, cycle-time optimization

Problem: determine valid states from FSM, find best weighted path in FSM,
minimize register requirements.

Standard techniques: state transition diagram partitioning and restructuring,
retiming via edge-weighted graph search

Programs: SIS

Weakness: FSM models do not correlate with optimization criteria (good for
area improvement but not performance). FSM compatibility is not an
equivalence relationship. State encoding depends on register type. Fanout
and fanin (i.e. structure) interacts with optimization. Heuristic algorithms
are hard to assess for quality.

Recent developments: FSM decomposition and factorization, interconnected
FSMs, synchronous don't-care analysis.

Losp: Use time-labeled variables, deconstruct registers by collapsing time
neighbors. Peripheral retiming appears to work well.

Comments: Retiming using time-labeled variables is a natural extension of
Losp techniques. Rearranging registers appears to be straight-forward, since
cycle-time is related to circuit topology. Registers appear to be used far
more than necessary. Should connect this to programmed loops directly. Easy
to estimate costs of unrolling non-abstract loops.

Extensions: C(yclic networks fit nicely into our model, but are relatively
unexplored in conventional models.

Conclusions: Easy extension of Losp, no new techniques (other than transition
analysis). Need to program the extension. Combine with logic optimization,
since timing and combinatorial delay interact.



Technology-mapping, Library Binding

A necessary step in converting a mathematical structure (such as a logic
network) to a physical structure (such as a transistor network).

Goals: optimize the physical resources mapped onto by a mathematical
description.

Problem: graph covering with weighted nodes, determining the mapability of a
library onto a logic network

Standard techniques: heuristic graph covering, rule-based models. Tree-
covering using replicated logic.

Programs: specialized and proprietary

Weakness: Standard NP-hard issues. Binding algorithms are dependent on
initial formulation of circuit, should be dependent only on behavior. Have
circular dependency between scheduling, binding, and estimation of execution
delay.

Recent developments: FPGA architectures, concurrent optimization and binding

Losp: Converting dnets to any arbitrary technology is straight-forward and
fairly easy. Since optimization of area and delay are implicated in
technology mapping, the Losp multi-level combinatorial strengths contribute
strongly. FPGA technology mapping appears to be straight-forward.

Comments: Binding is essentially a multi-level issue, so Losp techniques
should be expected to perform well. NOR-based decompositions are common, but
not combined with pervasion techniques.

Extensions: wvarious FPGA and cellular array hardware technologies

Conclusions: Big win due to the flexibility of dnet representations. Need to
program a simple FPGA mapper in Losp.

Mapping Graph Theory to Dnets

Dnets express minimal logic graphs by confounding graph structure with logical
implication. Dnet transformations, particularly the varieties of pervasion
(extract, subsume, cancel), are deep in that they effect graph structure at a
distance. This property makes pervasion particularly powerful for graph
minimization.

As well, dnet arithmetic (with bound Boolean signals) is particularly
efficient and parallel. Since optimization can be expressed as a series of



decision problems, and the tautology decision problem for dnets is very
efficient, dnet search algorithms are inherently strong.

The standard graph optimization problems (below) do not become more simple
with dnets. The advantage is that dnet notation and structure severely limits
the space of graphs, making behavior invariant transformations efficient and
direct. Since only distribution can be bidirectional, dnet algorithms have
very constrained transformation spaces, again enhancing efficiency.

Graph-based algorithms

-- single-source shortest path (weighted connections)
fundamental, shortest path from one place to another
acyclic graphs done by topological sorting (ordered nodes)
longest path = shortest by changing sign of weights
relevance: longest as critical path, cycles are sequential

-- vertex cover
each edge has at least one endpoint in set of vertices
minimum size of vertex set
vertex cover is NP while edge cover is P

-- vertex coloring
no edge has same color/id on both ends
minimum number of colors/ids

-- clique partitioning
derivative of vertex coloring

In several cases (such as identification of critical paths and standardization
for technology mapping), the dnet representation obviates the need for graph
algorithms. Where they are needed (eg: covering and partitioning), the dnet
structure minimizes the search inherent in standard algorithms.

Tasks to do within the DeMicheli graph theory model:

unify graph theory with Boolean algebra using distinctions
done semi-adequately, lots of refinement needed
losp has integrated Boolean and algebraic capabilities
solve fundamental problems with unified distinction model
satisfiability done well
covering done adequately but not implemented
coloring not done but inherent in BM



apply solutions within task context
scheduling and resource sharing not done
Boolean minimization done as major focus, more to go
two-level not done (subsumed)
multilevel done well
sequential not done but ready to do
state minimization not done but studied
testability mostly done but not implemented
binding partially done
routing not done
evaluate with pragmatics
all modeled but not implemented

Sample Problems

We have sample (significant toy) problems done in boundary math for the
following:

transcription and manipulation of form (MCNC benchmark set)
tautology and satisfiability identification

Boolean minimization

don't care optimization

mux technology mapping

true critical path identification

algebraic partitioning and rearrangement

hierarchical rearrangement and abstraction

selected layout tradeoffs (factorization, structure sharing)
BDD and all possible functions generation

selected evaluation and testability issues
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