RECLAIMING MEANING IN MATHEMATICS

A Presentation for the WSCC 2007 Mathematics Conference

William Bricken, PhD
Lake Washington Technical College
william.bricken@lwtc.edu

FOR TEACHERS

An educational chasm in mathematics occurs when students change learning styles from concrete manipulatives to abstract symbols.

Students learn through meaningful experience. The way ideas are conveyed makes a difference.

The concepts of mathematics can be presented using formal representations that are sensitive to human needs.

Spatial mathematics connects *number sense* to the formal structure of mathematics.

THEME

Toward humane formal mathematics

I. HOW MEANING HAS BEEN LOST

- * Separating meaning from structure
- Quality of representation
- **Cognitive effort**

II. FOUR TYPES OF SPATIAL MATH

Spatial algebra (slides)

W Unit-ensemble arithmetic (math theory)

Depth-value notation (video)

Spatial arithmetic (demonstration)

MEANING

MEANING IN ARITHMETIC

What do the objects and operations of arithmetic *mean*?

OBJECTS: integers name ensembles of identical units

unit ensembles

ADDITION: put ensembles together in the same space

fusion

MULTIPLICATION: replace units by ensembles

substitution

LOSS OF MEANING

OBJECTS:

integers name the set of sets with the same cardinality

... -1 0 1 2 3 4 ...

ADDITION:

memorize rules for digits (number facts) learn rules of position (align and carry)

$$2 + 3 = 5$$

56

+ 78

<u>134</u>

MULTIPLICATION:

memorize rules for digits (number facts) learn to add while multiplying

$$2 \times 3 = 6$$

56

78

448

+ 394

HILBERT'S PROGRAM

Separate mathematics and logic from spatial intuition.

"Mathematics is a game played according to simple rules with meaningless marks on paper." David Hilbert (c. 1900)

Formal structure: a finite sequence of signs, without:

- ***** intuition
- visualization
- physical interaction
- # parallelism

The rules of algebra are structural. Group theory is about notation.

TOKENS ARE A PROBLEM

The *current style* of mathematical expression is inherently difficult to understand.

$$2(x-3(x-(2y+1)))-4(3(y+1)-x)+6$$

Mathematical ideas are represented by *strings of tokens*. Token-strings bear no resemblance to their meaning. Icons, in contrast, look somewhat like what they represent.

Some problems with the formal language of tokens:

- meither intuitive nor natural
- * must be memorized rather than experienced
- * includes misleading structural redundancy
- ***** cannot represent concepts
- * makes people think they do not understand

DISPLAY MEDIA

A VARIETY OF MEDIA

Different display media provide different types of structure, each with *different properties*.

Clay tablets and pebbles

- unit ensembles
- * physical correspondence
- concrete and constructive

Pencil and paper (chalk and board)

- * token-strings
- * axiomatic correspondence
- * abstract and algorithmic

Digital display

- icons, pictures, animations
- virtual correspondence
- both concrete and abstract

Hilbert's signs

19th century reality

21st century reality

QUALITIES OF FORM

Some display media convey meaning more effectively.

- more expressive
- # less cognitive effort
- * simpler algorithms
- * visual, aural, tactile, experiential

"house"

actual bouse

Mathematical concepts, too, support a diversity of structural representations and rules.

QUALITY I: EASY

Some representations require less effort.

completely new rules

FRACTIONS:
$$\frac{1}{4} + \frac{1}{5} = \frac{5}{20} + \frac{4}{20} = \frac{5+4}{20} = \frac{9}{20}$$

two *different* notations with different rules

$$.25 + .20 = .45$$

little additional effort

QUALITY II: VISUAL

Some representations are more visual.

COORDINATE GRAPH:

visual

two *very different* notations with different properties

LINEAR EQUATION:

$$y = 1/2 x + 1$$

abstract and visual

two *similar* notations with different properties

GENERAL EQUATION:

$$-x + 2y - 2 = 0$$

abstract

QUALITY III: PHYSICAL

Some representations are physically manifest.

SILICON CIRCUITRY:

two abstract notations, one maps to the *physical*

BOOLEAN ALGEBRA:

two abstract notations, one maps to the *linguistic*

PROPOSITIONAL LOGIC:

 $sum = a \neq b$ $carry = a \times b$

symbolic and abstract

Sum IFF EITHER a OR b

Carry IFF a AND b linguistic

and abstract

QUALITY IIII: SIMPLE

Some representations support simpler operations.

PHYSICAL ACTION:

two different *activities*, one physical and one cognitive

interactivity

SYMBOLIC THOUGHT:

3 + 4

rote memory

SPATIAL MATHEMATICS

Spatial patterns are a formal alternative to token-strings.

ALGEBRA OF STRINGS:

{partitioned set-of-tokens: token-tuples → tokens}

ALGEBRA OF SPATIAL PATTERNS:

{partitioned set-of-patterns: patterns --> patterns}

does not include the concept of *arity*

Spatial forms are intuitive, visual, interactive, simple. Spatial axioms and algorithms are simple yet rigorous.

FOUR VARIETIES

Spatial Algebra with Blocks

- * how to map algebraic properties onto spatial presence
- compare to group theoretic token-strings

Unit-ensemble Arithmetic

- * how to return meaning to arithmetic
- * compare to token-based integer arithmetic

Depth-value Notation

- * how to make meaningful arithmetic simple
- * compare to place-value notation

Spatial Arithmetic with Blocks

- how to provide physical, interactive calculation
- compare to symbolic arithmetic

SPATIAL ALGEBRA WITH BLOCKS

SPATIAL ALGEBRA FACTS

numerals and variables are BLOCKS

additive zero is VOID

group theory → spatial presence

$$\boxed{3} \boxed{2} = \boxed{5}$$

$$3+2=5$$

addition is SHARING SPACE

$$\left| \begin{array}{c} 3 \\ 2 \end{array} \right| = \left| \begin{array}{c} 6 \end{array} \right|$$

$$3 \times 2 = 6$$

multiplication is TOUCHING

SPATIAL ALGEBRA ADDITION

associativity and commutativity are SHARING SPACE

add-zero is SHARING SPACE with nothing

SPATIAL ALGEBRA MULTIPLICATION

BLOCKS are unitary

TOUCHING explicit void annihilates

associativity and commutativity are TOUCHING

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix}$$

© William Bricken 2007. All rights reserved.

SPATIAL ALGEBRA DISTRIBUTION

distribution is SLICING or JOINING identical blocks

SPATIAL ALGEBRA FACTORING

polynomial forms are SLICED factored forms

© William Bricken 2007. All rights reserved.

DISTRIBUTION IN DEPTH

$$2(x-3(x-(2y+1)))-4(3(y+1)-x)+6=0$$

assume number facts

	X	X	У		У		X	
The state of the s	2	-6	12	6	-12	-12	4	6

UNIT-ENSEMBLE ARITHMETIC

UNIT ARITHMETIC

The *simplest arithmetic* is based on identical units: fingers, pebbles, shells, marks, strokes, or tallies.

Tally sticks were in use 30,000 years ago. Sumerian numerals are over 5,000 years old.

Unit-ensembles are groupings of units without specific names.

- * base-1, units are indistinguishable
- * one-to-one correspondence without counting
- # add by putting together (additive principle)
- ** often considered to be the ∂efinition of whole numbers

UNIT ADDITION

An integer is an ensemble of identical marks sharing a space.

A sum converts different spaces into the same space.

$$a + b$$

Addition is ensembles sharing a space.

Example: 4+3=7

UNIT MULTIPLICATION

A product converts individual units into ensembles.

• is the unit

[substitute a for • in b] is abbreviated as [a • b]

Multiplication is substitution of ensembles for units.

Example: $4 \times 3 = 12$

ADDITION AXIOM

ADDITION BY FUSION: to add, remove spatial partitions

fusion is part of mereology

fuse
$$\begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} b \\ c \\ a \end{pmatrix}$$

Notation: a|b|c = abc

Absent group properties:

- * zero
- * commutativity
- * associativity

Arity becomes concurrent sharing by many ensembles.

ANNIHILATION AXIOM

-1 () bole void 1 (whole

negative one is a first-class unit

SUBTRACTION BY ANNIHILATION:

to subtract, make whole/hole pairs void

void (i.e. nothing)
cannot be represented

$$+a = a$$

$$-a = a_{\diamond}$$

MULTIPLICATION AXIOMS

MULTIPLICATION BY SUBSTITUTION:

to multiply, replace each unit with an ensemble

Notation: [substitute a for b in c] = [a b c]

COMMUTATIVITY OF SUBSTITUTION

[a b c] = [c b a]

DISTRIBUTION OF FUSION OVER SUBSTITUTION

 $[alb\ c\ dle] = [acd] | [ace] | [bcd] | [bce]$

Absent group properties:

* zero

Arity becomes multiple dimensions.

substitution is a property of *equality*

COMPARATIVE AXIOMS

GROUP THEORY

$$a + (b + c) = (a + b) + c$$

 $a + b = b + a$
 $a + 0 = a$
 $a + (-a) = 0$

$$a \times (b \times c) = (a \times b) \times c$$

$$a \times b = b \times a$$

$$a \times 1 = a$$

$$a \times (1/a) = 1$$

$$a \times (b + c) = (a \times b) + (a \times c)$$

UNIT-ENSEMBLES

$$a \mid b = ab$$
 $[a \cdot b] = [b \cdot a]$ $\bullet \diamond =$ $[a \cdot b \mid c] = [a \cdot b] \mid [a \cdot c]$

DEPTH-VALUE NOTATION

© William Bricken 2007. All rights reserved.

POSITIONAL NOTATION

Positional notation with a zero place-holder is "one of humankind's greatest achievements".

A uniform base system facilitates simpler algorithms.

Sequential position determines the power of the base.

The same digit can have different meanings

3303.3 =
$$3 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 3 \times 10^0 + 3 \times 10^{-1}$$

place-holder

POSITIONAL EFFORT

Cognitive and computational load

- * Operations require memorization of digit facts
- **Carrying** is necessary for position overflows
- * Algorithms are inherently sequential

Digit facts increase as the base increases

* base-2, 4 facts

base

base-n requires n^A facts

base-10, 100 facts

for operators of arity A

Carry overhead increases as the base increases

**	base-2,	1/4 addition facts	25%	
**	base-2,	0/4 multiplication facts	0%	facts with
**	base-10,	45/100 addition facts	45%	a carry
	base-10	77/100 multiplication facts	77%	

DEPTH-VALUE NOTATION (BASE-2)

Standardization converts a unit-ensemble to its minimal form.

$$-2 \diamond \diamond = (\diamond)$$

$$3 \bullet \bullet \bullet = (\bullet) \bullet$$

$$4 \bullet \bullet \bullet \bullet = (\bullet)(\bullet) = (\bullet \bullet) = ((\bullet))$$

STANDARDIZATION RULES

$$\bullet \bullet = (\bullet)$$
 times 2

$$(a)(b) = (a b)$$
 distribute

DEPTH-VALUE NOTATION (BASE-10)

n						
0	no zero!	STANDARDIZATION RULES				
19	n	a _• a _◊	=	annihilate		
1		10	= (1)	times 10		
1090	(n)	(a)(b)	= (a b)	distribute		
100900	((n))	and 81 (x2) digit facts				
3258	(((3)2)5)8					
3258.46	[[(((3)2)5)8]	4]6 decim	nals can be inc	orporated		
3258.46	3(2(5(8[4[6]]))) notat	ion could be in	nverted		

MAXIMAL FACTORED FORM

POLYNOMIAL BASE-10 NUMERAL

3258:
$$3 \times 10^3 + 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0$$

MAXIMAL FACTORED BASE-10 NUMERAL

$$10 \times (10 \times (3) + 2) + 5 + 8$$

$$(((3) + 2) + 5) + 8$$
base implicit in boundary
$$(((3) 2) 5) 8$$
sum implicit in space

VIDEO

Spatial Arithmetic (base-2 enclosures)

DEMONSTRATION

Spatial Arithmetic (base-2 blocks)

SPATIAL ARITHMETIC

0

1

2

3

4

double

distribute

DEMONSTRATION: 5+7

DEMONSTRATION: 5 x 7 X 35 © William Bricken 2007. All rights reserved.

DEMONSTRATION: 7x5 X this configuration is identical to the second step in 5x7 35 © William Bricken 2007. All rights reserved.

BLOCK MULTIPLY (BASE-10)

$$1 \times \begin{array}{|c|c|c|c|}\hline 5 & & & 5 \\ \hline 4 & & & & \hline & 8 \\ \hline \end{array}$$

STRUCTURAL QUALITY

STRUCTURE

PURPOSE	unit ensembles	Roman numerals	token strings	spatial boundaries
reading/writing	D	С	A	В
computing	С	D	В	A
understanding	A	D	С	В
Grade-points:	7	4	9	10

SUMMARY

The representation of an abstract concept matters, to both humans and machines.

Mathematical meaning can be expressed in formal structures other than strings of meaningless tokens.

Spatial mathematics is rigorous while still respecting the needs of learners.

- * historically grounded
- visual, tactile and experiential
- simpler than token-strings
- # less cognitive effort
- more humane

THANK YOU!

Comments and suggestions are greatly appreciated. william.bricken@lwtc.edu

This presentation is available in the conference speaker notes, and on the web at http://www.wbricken.com/htmls/03words/0303ed/0303-ed.html

SUPPLEMENTAL SLIDES

MORE THAN STRINGS

Our delivery media for formal ideas are impoverished.

Mathematical structure is richer than token-strings

- # diagrams, graphs, maps, paths
- physical and virtual manipulatives
- * physical and abstract models
- simulated and actual experiences

Formal structure can (and should) incorporate human needs

- ***** intuition
- * visualization
- * physical interaction
- cognitive effort
- comprehension

SPATIAL ALGEBRA INVERSES

many design choices

negative blocks CANCEL positive blocks

TOUCHING inverse blocks form the unit

SPATIAL ALGEBRA FRACTIONS

to add fractions:
CONSTRUCT blocks to be joined,
JOIN inverse blocks

ENSEMBLES ON THE FLAG

Fifty stars → fifty states

Thirteen stripes → thirteen colonies

- * no particular star maps to a particular state
- * no particular stripe maps to a particular colony
- ** spatial arrangement is arbitrary
- color has no meaning
- one-to-one, cardinal but not ordinal

SUBSTITUTION FORMS

Multiplication $a \times b = b \times a$ $[b \bullet a] = [a \bullet b]$ Division, fraction $[ba \bullet] = [\bullet ab]$ b/a [• a •] Reciprocal 1/a a^2 [a • a] Exponent

Proof of the multiplicative inverse $a \times (1/a) = 1$

$$a \times (1/a) = 1$$

$$[a \bullet [\bullet a \bullet]] = [[a \bullet \bullet] a \bullet] = [a a \bullet] = \bullet$$

$$\begin{bmatrix} a \bullet \bullet \end{bmatrix} = a$$
$$\begin{bmatrix} \bullet & a & a \end{bmatrix} = \bullet$$

super-associativity of substitution

UNIT-ENSEMBLE PROOF

Spatial arrangement of units can provide abstract proof.

$$\sum_{1}^{n} (2i - 1) = (\sum_{1}^{n} 2^{i-1}) + 1 = n^{2}$$

NAMED GROUPS

Naming ensembles facilitates counting.

Sumerian cuneiform

 $3 = YYY 10 = \langle$

Egyptian hieroglyphics

Roman numerals

 $3 = III \qquad 10 = X$

IIIII = V VV = X XXXXX = L LL = C

Many early number systems included:

- * special names for some ensembles
- * base-10
- consistent base

They lacked a positional notation with zero place-holders.