
EMBEDDING MATHEMATICS WITHIN A VIRTUAL WORLD

William Winn and William Bricken

January 1993

ABSTRACT

This project will provide for the first time an assessment of the

effectiveness of direct interaction with abstractions in virtual environments

for teaching mathematical problem solving. The goal is to embed the symbolic

processes of algebra into the behavior of virtual objects. The project will

develop virtual worlds which support abstract understanding without requiring

symbol manipulation, thus providing an opportunity for problem solving through

natural interaction. Two aspects of virtual environment design will be

emphasized: embedding the interactive mathematical functionality into the

behavior of virtual objects, and embedding pedagogical strategies. Embedded
mathematics means that virtual objects know their correct computational
behavior and can communicate it. Embedded pedagogy means that interactive
virtual objects embody a teaching strategy in their behavior. The

substitution of observable behavior for symbol manipulation encourages

constructive interaction as a basis for student learning. The project will

actively develop software design tools and virtual world experiences with

teachers, and evaluate the utility of this approach for standard curricula.

In general, all software embedding tools can be made available to the student

within a virtual environment, providing constructive educational interaction

with both definitional and transformational aspects of embedded concepts.

PROJECT SUMMARY

The goal of this project is to explore the effectiveness of virtual

environments for teaching mathematical thinking, in particular, algebraic

problem solving. The project will develop virtual worlds which support

abstract understanding without requiring symbol manipulation, thus providing
the opportunity for problem solving through natural interaction within a

virtual environment. Two aspects of virtual environment design will be

emphasized: embedding mathematical responsivity into the behavior of the

virtual world, and embedding pedagogical strategies. Embedded mathematics
means that virtual objects know their correct computational behavior and can

communicate it. Further, the appearance, attributes, and behavior of the

virtual object support its intended semantics. A virtual shopping cart, for

example, might know how to add the costs of its contents. If the accounting

is intended to keep a balanced budget, then the cart might present the

consequences of purchasing its contents as the current balance in a (virtual)

checkbook. Embedded pedagogy means that the interactive virtual objects embody
a teaching strategy in their behavior. The cart might voice a warning to the

user when it contains more than the checking account supports. The

substitution of observable behavior for symbol manipulation encourages

constructive interaction as a basis for learning. A student determining how

many 15-cent avocados can be purchased for a dollar can use the virtual cart

as a tool (an incremental adder, for example), rather than backing into the

problem abstractly by solving the equation 15x=100. In general, all software

tools for constructing embedded behavior can be made available to the student

within a virtual environment, allowing students to call upon existing

definitions, axioms, and transformations (functions and rules) to

constructively modify situations into simpler solutions.

Worlds will be constructed using the innovative VEOS software for virtual

environments, which includes situated environmental/biological modeling and

programmable entities. VEOS provides a substantive infrastructure (such as

process coordination, communication, database management, sensor integration,

graphics output management, platform compatibility, virtual body performance

optimization, and the application programmers interface) which removes several

layers of software complexity from the development of embedding tools.

Software design tools and virtual world experiences will be developed actively

with teachers, and evaluated in the context of standard curricula. Data will

be gathered on student performance in the virtual world, the extent of

transfer to similar tasks in the physical world, and improvement on

standardized tests. The project therefore will provide for the first time an

assessment of the effectiveness of direct interaction in virtual environments

for conveying understanding of mathematical problem solving.

PROJECT DESCRIPTION

We plan to explore how the software tools of virtual reality might help

students who have trouble learning symbolic mathematics, by constructing both

responsive environments and empowering tools. Our strength is in the project

team’s deep experience with creating educational virtual environments and the

supporting software tools. We intend to assess the transfer effects of

embedded mathematics for problem solving in classroom environments. Our

contribution to Mathematics Education will be a generic set of software tools

(independent of specific display technologies) which empower teachers and

students to construct responsive pedagogical environments.

Embedded Symbolic Manipulation

Traditionally the domain knowledge of science and mathematics is represented

symbolically., and taught through manipulation of algebraic equations. The
symbol systems taught in school exhibit many difficulties: they are difficult

for novices to understand; they are abstract rather than contextually

anchored; the operational meaning of many symbols is often unclear, ambiguous

and context dependent; and mastery of a symbol system is usually confused

with mastery of the system’s referential content.

Virtual environments permit symbolic processes to be hidden from a

participant, while the behavior of objects in the virtual environment provides

direct evidence of the consequences of those symbolic processes. A virtual

ball, for example, programmed to obey the laws of motion, will travel along

the expected trajectory, mimicking physical behavior. The computation of the

trajectory is hidden but evident, it is embedded within the virtual object.
In the virtual world, however, the ball’s simplest behavior is not in accord

with the laws of motion. The non-programmed ball, having no substance, sticks

to the exact spot of its release. Inertia, gravity, and force must be

programmed in as symbolic computations. This apparent weakness, that virtual

environments are heavily dependent on symbolic computation, is also a

strength, for it permits complete computational control over observed

behavior. In particular, we can program virtual worlds so that the behavior

of objects in the environment embeds both symbolic and pedagogical processes.

Students could learn literally though direct experience of behavioral

consequences (in simulated environments with embedded symbolic processes).

By embedded computation, we mean more than interaction with a process.

Embedding implies natural interaction with realistic (or at least

naturalistic) objects in an environment, objects which react and respond to

environmental perturbations (such as a participant’s query), objects which

met the expectations of interacting agents. Embedding is semantic rather than

syntactic; interaction is well-intended rather than well-formed.

A handheld calculator embeds numerical computation, it’s addition button

performs as expected. The keypad enforces well-formed input by limiting

transactions to keyed operations on digits. But people have difficulty

sequencing complex numerical calculations on a calculator because it does not

embed computational strategies, teaching techniques, or naturalistic language

domains. Thus, the simple calculator provides a very weak embedded

functionality. Stretching an environmental concept, we might say that

embedded capabilities are the affordances of an object, they are provided by

the object as part of its interactional character.

A computational interface has natural semantics when the display has a meaning
that does not require explanation. Consider a house. A textual description

requires reading skills, a procedural database (lists of coordinates) requires

decoding, a picture can be recognized immediately but is not interactive. A

house in a virtual environment is most like a physical house, you can walk in

the front door and explore each room while looking around. Transformations

can be expressed as natural behavior. Opening a window, for example, can be

achieved by grabbing it and pulling it open, rather than by editing the

symbolic attributes of the window to change the values that represent the

location of the window. A virtual house has natural semantics, no one needs

to explain it. Natural semantics is what a child learns before symbolic

schooling. Most sciences have natural semantics, most symbolic studies (the

three Rs) do not.

Embedded mathematics presents symbolic computational processes as behavior
with natural semantics. Virtual objects are constructed so that they perform

both the physical and the computational behaviors expected of them. Virtual

objects which embedded mathematics can include word processors, checkbooks

(the spreadsheet application), lumber (which could generate its own bill of

lading when assembled into a house), most scientific visualizations (such as

pollution clouds, deep-sea rifts, four-dimensional cubes, and galactic

collisions), and intelligent software agents.

The thrust of this proposal is to embed more abstract concepts, such as the

operation of mathematical division, into naturalistic object interactions.

Students could compute an average, for example, by placing a set of objects in

the same Averager basket. The basket itself would enforce identification of

the metric being averaged, by either deduction, by action such as rejecting

non-conforming objects, or by interaction with the student. Interactional

style is also embedded within objects, with the same configurability (using

deduction, action, and interaction).

More generally still, software tools which permit programmers to define

embedded symbolic and pedagogical behaviors, world-building tools, can be
provided to students as they learn. With the ease of interface provided by

virtual environments, students can construct their own problem solving tools

dynamically while interacting with the problem as manifest within the virtual

environment. Thus, virtual environments provide a context for the development

of meta-skills, generalized tools and strategies for solving classes of

problems.

To assist the student in construction of problem-solving skills, we propose to

embed pedagogy into the behavior of virtual objects.

PROJECT GOAL

We intend to demonstrate that students can learn abstract mathematical content

in virtual environments without first having to master a symbol system. We

also propose to show that after the concepts and rules of an embedded domain

have been understood, the symbol system is learnable, meaningful, and can be

used to represent the content of a domain and to communicate it to others.

The project's specific objectives follow:

1. To develop a virtual world that embodies algebraic rules in the behavior of

objects, and embodies pedagogical strategies for making those rules accessible

to a participant. This requires that we:

a. Develop software tools which permit embedding algebraic and rule-

based behavior in virtual objects.

b. Develop modeling techniques for incorporating designed educational

problem solving experiences in virtual environments.

c. Develop pedagogical strategies that will lead to the understanding of

mathematical concepts through experience in virtual environments.

d. Identify appropriate methods (which may not rely on symbolic

abstraction) for assessing student comprehension of mathematical concepts and

their transfer from the virtual to the real world.

2. To provide "proof of concept" that direct experience in designed virtual

environments can lead to conceptual learning, without mediating symbolic

representations. And to validate that mathematical content can be learned by

non-symbolic techniques.

3. To conduct the project in close collaboration with teachers and students in

classrooms.

4. To develop the first tools for empowering virtual world participants for

the construction of conducive digital learning environments.

ANTICIPATED OUTCOME

The project will have two types of outcome: data and products.

Data

The data gathered in the project will either provide evidence that embedded

mathematics and pedagogy is effective in improving students' understanding of

abstract content or will furnish reasons why it is not. Because we expect

this approach to be more effective with students who have difficulty with

symbolic computation, we anticipate gathering correlational evidence for

differential effects on students with different types of mathematical ability

(spatial, symbolic, logical, kinesthetic, ...). We also anticipate gathering

information on the ways in which learning from virtual environments impacts

the classroom, and whether teachers can integrate these techniques into

classroom activities.

Products

The project will allow us to create functioning virtual worlds in which

students construct knowledge of mathematics. Effective pedagogical strategies

for use with virtual environments will also be developed, as well as

techniques for assessing their effectiveness. We will extend the rich base of

virtual world programming tools developed over the last four years at HITL,

customizing them for use in educational applications. These tools will serve

as an infrastructure for the development of a non-symbolic curriculum in

mathematics.

DIFFICULTIES OF LEARNING SYMBOLIC ALGEBRA

The difficulties children have when they begin to learn algebra are well

documented (Bricken, 1987; O'Shea, 1986; Zehavi & Bruckheimer, 1984; Gerace &

Mestre, 1982; Sleeman, 1984). Thwaites (1982) found that students are often

baffled by algebra's non-visual nature, its apparent arbitrariness, its

complexity, and how problems are expressed through its symbols. Students

often do not understand what variables are, how letters are used to represent

them, or how equality can be used (Rosnick, 1981; Kaput 1978; Bernard &

Bright, 1982).

If students fail to understand algebraic representation, then the only way

they can solve algebra problems is by the rote application of procedures they

have memorized. This memorization is brittle, often both over- and under-

generalized, and elaborated by motivations independent of the content of

algebra (Bricken, 1987). Unfortunately, the rule-based approach to algebra is

the one that is often taught, even though this does not promote the

development of good conceptual models of algebra (Thwaites, 1982; Bright,

1981; Bernard & Bright, 1982; Greeno,1985).

Many attempts to address symbolic abstraction make it concrete through the use

of manipulables, a positive approach supported by many experimental studies

(Sowell, 1989). The symbols of algebra are typically reified either in

physical objects or in computer representations or simulations of problems and

problem-solving. Thus, showing numbers as sets of objects that students can

actually count makes it easier for students to solve arithmetic word problems

(Lindvall, Tamburino, & Robinson, 1982). Arranging numbers to multiply into

two-dimensional matrices allows students to compute the answer by counting the

cells in the matrix (Carrier, Post, & Heck, 1985). In the area of equation

solving, we find studies of the effectiveness of using pan balances (Austin &

Vollrath, 1989), spreadsheets (Watkins & Taylor, 1989), computer-based

graphing (Waits & Demana, 1989), and a variety of other strategies (Shumway,

1989).

We propose to develop virtual worlds with objects which both obey the rules of

mathematics and can be used as tools for problem solving. The flexibility of

virtual objects allows us to transfer our semantic intentions more easily, to

make them look and act like we expect. Virtual objects are situated in

virtual environments, permitting us to design contextual cues, object

interactions, and circumstantial affordances to assist meaning making.

As an example, imagine a student trying to solve the standard two unknown

problem of the ages of two people, when the sum and product are known (say,

x+y=22, xy=120). The computation can be approached by algebraic symbol

manipulation, by geometric construction, by typing the equations into a

symbolic processing program such as Mathematica, or by reasoning. Embedding

mathematics in a virtual world provides automated symbolic, geometric, and

computational solutions, but each of these presumes skill. Non-symbolic

learners may not use abstract constructions, they may, for example, ask to see

all the pairs of integers that add to 22. They may then discover duplicate

pairs due to the commutativity of addition. So they request to remove the

duplicates. The next request is for each of these pairs to be multiplied.

The pair (there might have been more than one) that creates the expected

product is the desired solution.

Here, the learner prescribed a computational algorithm, but one that is not

generally available in physical reality or in software without embedded

mathematics. The virtual environment assists the search for a solution by

removing all symbolic burden. Not only is computation and simplification

immediate, generation, filtering and search of large sets of instances is also

facilitated.

Embedded mathematical worlds allow students to interact with the objects and

concepts of mathematics in natural, intuitive ways and perhaps therefore to

construct understanding of abstract concepts more easily. Rather than trying

to predict or to design or even to evaluate the best solution to a problem in

a virtual world, we propose to provide software tools which empower students

and teachers to design their own best solution tools to whatever problems they

encounter, and to provide at least prototypically good examples of designed

worlds for facilitating problem solving techniques.

RATIONALE FOR LEARNING IN VIRTUAL ENVIRONMENTS

Our expectations for the success of VR to help students learn abstract

material, and the guidelines that direct our design of virtual environments,

are based on the theories of constructivism, multiple intelligences, and

representation. Constructivism leads us to expect that first-person

experience will create deeper understanding of abstract concepts. Multiple

intelligences suggest that learning has many pathways and many modalities.

The theory of representation provides us with display and interaction

techniques which remove the disassociation of abstract symbols while

maintaining formal semantics for computation.

Non-symbolic representation

Virtual environments finesse the semantics/syntax barrier by providing the

representational flexibility to construct symbols which reflect meaning as

well as abstract patterns (W. Bricken, 1991). Interaction is direct and not

mediated by an interface (M. Bricken, 1991). Objects in algebraic

relationships can quite literally be picked up and moved around algebraically,

while the student observes the consequences (Winn & Bricken, 1992).

Multi-modal learning

The comprehension of abstract rules and concepts can be significantly improved

when represented by several sensory modalities. Animated computer graphics

and graphs make it easier to learn concepts and rules in Chemistry (Kozma ,

Russell, Jones, Marx & Davis, 1993). Adding sound effects to graphic

representations improves comprehension of complex data sets (Scaletti & Craig,

1991). Spatial display and interaction are particularly important (Larkin and

Simon,1987; Paivio,1971, 1983; Winn, Li, and Schill, 1991). Inclusive

environments have been shown to be emotionally involving and extremely easy to

use (M. Bricken, 1991a; M. Bricken,1991b).

Knowledge construction

Students construct their own meaning by interacting with material rather than

being taught something explicitly (Bransford, Sherwood, Hasselbring, Kinzer, &

Williams, 1990; Cognition and Technology Group, 1991; Scardamalia, 1991; Spiro

& Jehng, 1990; Spiro, Fel tovich, Jacobson, & Coulson, 1991) To specify a

particular content organization or instructional strategy is

counterproductive. These techniques are exemplified by the hypermedia system

developed by Spiro and his colleagues (Spiro, Feltovich, Jacobson, & Coulson,

1991; Spiro & Jehng, 1990) that lets students learn problem-solving through

the exploration of ill-structured domains such as literary criticism, military

strategy, and cardio-vascular medicine; and by the interactive videodisk

materials developed by Bransford et al. (1990) and the Cognition and

Technology Group at Vanderbilt University (1991) that facilitate the solving

of complex mathematics problems by allowing children to interact with

dramatically presented adventures.

Some key theoretical elements behind constructivism are contained in Spiro's

Cognitive Complexity Theory (Spiro, Coulson, Feltovitch, & Anderson, 1988;

Spiro & Jehng, 1990). Cognitive Complexity Theory proposes a number of

strategies to promote the acquisition of flexible knowledge. For the purposes

of this project, the most important is that students "revisit the same

material, at different times, in re-arranged contexts, for different purposes,

and from different conceptual perspectives" (Spiro, Feltovitch, Jacobson, &

Coulson, 1991).

SOFTWARE TECHNIQUES

The motivation to build a virtual environment interaction toolkit for

mathematics education includes

• control of software complexity,

• an interface based in natural behavior and multiple intelligences,

• enhancement of native human abilities of spatial understanding and

experiential learning,

• support of concurrent multiple participants and cooperative work, and

• direct, non-symbolic communication.

We currently use computers as symbol processors, interacting with them through

a layer of symbolic mediation. The computer user, just like the reader of

books, must provide cognitive effort to convert the screen’s representations

into the user’s meanings. Virtual environment software systems, in contrast,

provide interface tools which support natural behavior as input and direct

perceptual recognition of output. The idea is to access digital data in the

form most easy for our comprehension; this generally implies using

representations that look and feel like the thing they represent.

Immersive environments redefine the relationship between experience and
representation, in effect rendering the syntax-semantics barrier transparent.

Reading, writing, and arithmetic are hidden from the computer interface,

replaced by direct, non-symbolic environmental experience.

Virtual environment software attempts to restructure programming tools from

the bottom up, in terms of spatial, organic models. The primary task of a
virtual environment operating system is to make computation transparent, to

empower the participant with natural interaction. The technical challenge is
to create mediation languages which enforce rigorous mathematical computation

while supporting intuitive actions such as talking, walking, pointing,

grabbing, and abstraction (tool creation and problem solving). The design

goal for natural interaction is simply direct access to meaning, interaction
not filtered by a layer of textual representation. This implies both

eliminating the keyboard as an input device, and minimizing the use of text as

output.

Taxonomies of the component technologies and functionalities of virtual

environment systems have only recently begun to develop (Naimark, 1991;

Zeltzer, 1992; Robinett, 1992), maturing interest in virtual environments from

a pre-taxonomic phenomenon to an incipient science. Ellis (1991) identifies

the central importance of the environment itself, deconstructing it into

content, geometry, and dynamics.

More comprehensive overviews have been published for VR research directions

(Bishop et al. 1992), for software (Zyda et al, 1993), for system
architectures (Appino et al, 1992), for operating systems (Coco, 1993), and
for participant systems (Minkoff 1993).

Entities

The VEOS programming model is based on entities. An entity is a coupled
collection of data, functionality and resources, which is programmed using a

biological/environmental metaphor. Each entity within the virtual world is

modular and self-contained, each entity can function independently and

autonomously. The biological/environmental metaphor introduced in VEOS is

unique, originating from the artificial life community (Langton, 1988; Meyer &

Wilson, 1991; Varela & Bourgine, 1992); it is a preliminary step toward

providing a programming development environment for modeling and interacting

with concurrent autonomous systems within an inclusive environment (Varela,

1979; Maturana & Varela, 1987).

The organization of each entity is based on a mathematical model of inclusion,

permitting entities to serve as both objects and environments. Entities which

contain other entities serve as their environment; the environmental
component of each entity contains the global laws and knowledge of its

contents. From a programming context, entities provide an integrated approach

to variable scoping and to evaluation contexts. From a modeling point-of-

view, entities provide modularity and uniformity within a convenient

biological metaphor. From an educational point-of-view, entities permit

modeling of natural and abstract phenomena with customized behaviors and

“personalities” that can interact directly with each student in an

individualized manner.

The functions normally included within (fern-entity...) define the following

characteristics:

• aattributes: (fern-put-boundary-attribute...) Properties which are

associated with state values are constructed within the entity’s boundary

resource. Examples include position, color, sound, mass, and name.

• wworkspace: (fern-put-local...) Local memory and private workspace

resources are reserved within a local partition of the database.

• behavior: (fern-define-method...) Methods which define an entity’s

response to the messages it receives are defined as functions which are

evaluated within the local context.

• pprocesses: (fern-persist...) Persistent processes within an entity

are defined and initialized. An entity can engage in many processes

which timeshare an entity’s computational process resources.

• pperceptions: (fern-perceive...) When specific changes occur in an

entity’s environment, the entity is immediately notified, modeling a

perceptual capability. An entity can only access external data which it

can perceive.

• pperipherals: (sensor-init...) Connections to any physical sensors

or input devices used by the entity are established and initialized.

• ffunctionality: (define <function-name>...) Any particular

functions required to achieve the above characteristics are defined

within the entity’s local context.

Complexity in Information Systems

A central design issue is the development of a computational infrastructure

that supports the complexity of non-linear information systems while providing

a seamless interface to the human attempting to understand the inherent

complexity of these systems. The rules of elementary algebra, for example,

permit the construction of tremendously large useful systems, such as

electricity distribution networks and VLSI microprocessors. Present day

information environments call upon visualization, audio cueing, kinesthetic

feedback, and the full dynamics of participation within the complex
environment.

Complex natural phenomena and networked information environments can both be

characterized as having large numbers of different varieties of "agents"

(objects capable of storing, processing, and transmitting information)

interacting with and modifying each other, with no single agent having

complete knowledge of all of the rest of the agents. These agents are, in

general, semi-autonomous and relatively simple, they may represent firms in

an economy or antibodies in the immune system or quantum states in a lattice

of atoms. The entity model implemented in the VEOS software was developed to

place agent architectures at the heart of virtual environment control regimes.

APPENDIX

Software Infrastructure Tools

for Constructing Embedded Educational Environments

We propose to build upon the VEOS tools (particularly the construction tools)

to create toolkits for the construction of virtual environments with embedded

behaviors that are easy-to-use by students and teachers.

Many of these tools are independent of display medium, sensory bandwidth, and

input devices, insuring their utility in multimedia, windowing, and monitor-

based contexts. The tools are classified into three general categories:

interface (physical to virtual)

construction (of virtual environments)

environmental (design and programming)

INTERFACE TOOLS

Mercury, The Virtual Body Mercury is a participant’s interface to the

virtual world (Minkoff, 1993). Mercury monitors the sensors that track the

user's physical state, sends this information to the database, and displays

the data in the database appropriately.

SensorLib SensorLib is a library of device pollers for VR sensors, such as

6 degree-of-freedom tracking devices (Polhemus, Logitec, Ascention), joysticks

(GEO-Ball, SpaceBall), behavior sensors (BioMuse, MIDI instruments, Wand), and

other VR input devices.

Imager The Imager is a fast graphical rendering system which provides

consistent, hardware-independent imaging. The Imager handles the details of

stereo rendering for both head-mounted, fully inclusive and liquid-crystal

shutter displays, and can also render into an on-screen window.

SpatialSound The Sound Renderer is the auditory counterpart to the Imager.

It provides spatially localized (3D) sound to virtual environments. The Voice

system recognizes isolated speech, using Natural Language Understanding.

The Wand The Wand is an interface tool which uses 6 degree-of-freedom

sensor on a rod to supply position and orientation information. The sensor

information inhabits a virtual rod held by a virtual hand.

CONSTRUCTION TOOLS

UniversalMapper The UniversalMapper provides a graphical means of

specifying entity behaviors. Using this system, we program entity attributes

by drawing graphs that specify relationships between attributes.

EntityEditor This tool permits a designer to specify both form and

behavior of entities. The editor will provide form-based templates (later

extendible to behaviors in the virtual environment) for specifying entity

attributes, workspace (local memory), behavior (methods), processes

(persistent and reactive behavior), perceptions, peripherals (associated

physical inputs), and functionality (local functions which support the

maintenance of characteristics).

SpaceEditor The SpaceEditor provides first class modeling and dynamics

tools for environments. Environments consist of a space and objects within

that space. Characteristics of every object within a space can be abstracted

to be characteristics of the space itself. Other properties of space include

metric structure (grids, orderings, sets, reals), gradients (gravity, wind,

electromagnetic forces), continuity, grain-size and coordinate systems.

DynamicsToolkit A software library of dynamical functions that enable the

simulation of Newtonian motion, with the type of motion determined

interactively by the user at run-time. The implementation of extremely

efficient numerical algorithms will permit the simulation of complex systems

(systems with large numbers of degrees of freedom) in real time. This toolkit

also incorporates collision detection, surface contact maintenance, and

joints.

DigitalStudio Humans use stories to structure their interaction with

knowledge. DigitalStudio has the goal of providing story telling tools

(characterization, dramatic tension, plot, voice) within a dynamic,

interactive virtual environment. It includes a minimal behavioral vocabulary,

timing and synchronization primitives, and a scripting language.

BoundaryLanguage The BoundaryLanguage project has as a goal to provide a

functional experiential (visual, auditory, tactile and behavioral) programming

language. We have been able to demonstrate that foundational mathematics

(logic, integers, algebra and sets) can be expressed concretely, using 3D

arrangements of physical things, such as blocks on a table, doors open or

shut, rock walls that respond to gravity, the things of everyday life.

Boundary mathematics provides a formalism for the fundamental concepts of VR.
Applied to particular virtual worlds, boundary mathematics provides spatial

logic, a formal technique for embedding control structure in space rather than

in tokens. Applied to programming, boundary mathematics provides a visual

programming language. The formal foundations provide structure for

computational implementations, identify tools for description and composition,

and suggest techniques for interactivity (Bricken & Gullichsen, 1989; Bricken,

1993).

APPLICATIONS

VEOS was developed iteratively over three years, in the context of prototype

development of demonstrations, theses and experiments. It was constantly

under refinement, extension and performance improvement. For the purposes of

embedding mathematics and pedagogy, the following applications suggest the

range of design choices that has already been established.

Tours Tours allow a participant to navigate through an interesting

environment. Examples of tours built in VEOS include a configurable (and

flyable) aircraft, a topographically accurate replica of the Seattle area, and

a metropolitan transit vehicle.

Physical Simulation Physical simulations are challenging since they

require very precise control of the computation. Coco and Lion (1992)

implemented a billiard ball simulation with eighteen dynamically interactive

entities.

Multiparticipant Interactivity Block World allows four participants to

independently navigate and manipulate moveable objects in a shared virtual

space. Catch lets two participants play catch with a virtual ball while

talking with spatially-localized voices. The Catch application emphasizes

independent participant perceptions. Participants customized their personal

view of a shared virtual environment in terms of color, shape, scale, and

texture. Although the game of catch was experienced in a shared space, the

structures in that space were substantively different for each participant.

Manufacturing Karen Jones (1992) developed a factory simulation

application which provided interactive control over production resources

allocation.

Spatial Perception Daniel Henry wrote a thesis on comparative human

perception in virtual and actual spaces (Henry, 1992). He compared the

subjective perception of size, form, and distance in both a real gallery and

its virtual model.

Scientific Visualization Many applications have been built in VEOS for

visualizing large or complex data sets, including satellite collected data of

the Mars planet surface, changes in semiconductor junctions over varying

voltages, and volcanically active deep-sea rifts.

Education Meredith Bricken and Chris Byrne (M. Bricken, 1991) led a program

to give local youth the chance to build and experience virtual worlds. The

program emphasized the cooperative design process of building virtual

environments. These VEOS worlds employed the standard navigation techniques

of the wand and many provided interesting interactive features. The

implementations include an AIDS awareness game, a Chemistry World and a world

which modeled events within an atomic nucleus.

BIBLIOGRAPHY

Agha, G. (1988) Actors: a model of concurrent computation in distributed
systems. MIT Press.

Appino, P.A., Lewis, J.B., Koved, L., Ling, D.T., Rabenhorst, D. & Codella, C.

(1992) An architecture for virtual worlds. Presence, 1(1), 1-17.

Arango, M., Berndt, D., Carriero, N., Gelertner, D. & Gilmore, D. (1990)

Adventures with network linda, Supercomputing Review, October 1990, 42-46.

Betz, D. & Almy, T. (1992) XLISP 2.1 User's Manual.

Bishop, G., Bricken, W., Brooks, F., et al. (1992) Research directions in
virtual environments: report of an NSF invitational workshop. Computer
Graphics 26(3), 153-177.

Blanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A., Oberman, M. &

Teitel, M. (1990) Reality built for two: a virtual reality tool. Proceedings
1990 Symposium on Interactive Graphics, Snowbird Utah, 35-36.

Blau, B., Hughes, C.E., Moshell, J.M. & Lisle, C. (1992) Networked virtual

environments. Computer Graphics 1992 Symposium on Interactive 3D Graphics,
157.

Bricken, M. (1991) Virtual worlds: no interface to design. in Benedikt, M.

(ed) Cyberspace first steps. MIT Press, 363-382.

Bricken, W. (1990) Software architecture for virtual reality. Human Interface
Technology Lab Technical Report P-90-4, University of Washington.

Bricken, W. (1991a) VEOS: preliminary functional architecture, ACM Siggraph'91
Course Notes, Virtual Interface Technology, 46-53. Also Human Interface
Technology Lab Technical Report M-90-2, University of Washington.

Bricken, W. (1991b) A formal foundation for cyberspace. Proceedings of
Virtual Reality ‘91, The Second Annual Conference on Virtual Reality,
Artificial Reality, and Cyberspace, San Francisco, Meckler.

Bricken, W. (1992a) VEOS design goals. Human Interface Technology Lab
Technical Report M-92-1, University of Washington.

Bricken, W. (1992b) Spatial representation of elementary algebra, 1992 IEEE
Workshop on Visual Languages, Seattle, IEEE Computer Society Press, 56-62.

Bricken, W., Pezely, D., Evenson, M. & Almquist, M. (1993) A second step

towards virtual reality: the entity model and system design. Human Interface
Technology Lab Technical Report M-93-1, University of Washington.

Bricken, W. & Gullichsen, E. (1989) An introduction to boundary logic with

the LOSP deductive engine, Future Computing Systems 2(4)., also Human
Interface Technology Lab Technical Report P-89-1, University of Washington.

Bricken, W., Pezely, D., Evenson, M. & Almquist, M. (1993) A second step

towards virtual reality: the entity model and system design. Human Interface
Technology Lab Technical Report P-93-1, University of Washington.

Coco, G. (1993) The virtual environment operating system: derivation, function
and form. Masters Thesis, School of Engineering, University of Washington.

Coco, G. & Lion, D. (1992) Experiences with asychronous communication models

in VEOS, a distributed programming facility for uniprocessor LANs. Human
Interface Technology Lab Technical Report R-93-2, University of Washington.

Cogent Research, Inc. (1990) Kernel linda specification: version 4.0.

Technical Note, Beaverton, Oregon.

Cruz-Neira, C., Sandin, D.J., DeFanti, T., Kenyon, R. & Hart, J. (1992) The

cave: audio visual experience automatic virtual environment, CACM 35(6), 65-
72.

Dershowitz, N. & Jouannaud, J. P. (1990) Chapter 6: rewite systems, Handbook
of Theoretical Computer Science, Elsevier Science Publishers, 245-320.

Ellis, S.R. (1991) The nature and origin of virtual environments: a

bibliographical essay. Computer Systems in Engineering, 2(4), 321-347.

Etzioni, O., Lesh, N. & Segal, R. (1992) Building softbots for UNIX.

Department of Computer Science and Engineering, University of Washington.

Etzioni, O., Levy, H., Segal, R. & Thekkath, C. (1993) OS agents: using ai

techniques in the operating system environment. Department of Computer

Science and Engineering, University of Washington.

Emerson, T. (1993) Selected bibliography on virtual interface technology.

Human Interface Technology Lab Technical Report B-93-2, University of
Washington.

Feiner, S., MacIntyre, B. & Seligmann, D. (1992) Annotating the real world

with knowledge-based graphics on a “see-through” head-mounted display.

Proceedings of Graphics Interface ‘92, Vancouver Canada, 78-85.

Fisher, S., McGreevy, M., Humphries, J. & Robinett, W. (1986) Virtual

environment display system, ACM Workshop on Interactive 3D Graphics, Chapel
Hill, NC.

Fisher, S., Jacoby, R., Bryson, S., Stone, P., McDowell, I., Bolas, M.,

Dasaro, D., Wenzel, E. & Coler, C. (1991) The ames virtual environment

workstation: implementation issues and requirements. Human-Machine Interfaces
for Teleoperators and Virtual Environments. NASA 20-24.

Gelertner, D. & Carriero, N. (1992) Coordination languages and their

significance. Communications of the ACM, 35(2), 97-107.

Gelertner, D., & Philbin, J. (1990) Spending Your Free Time, Byte, May 1990.

Goldberg, A. (1984) Smalltalk-80, Xerox Corporation; Addison Wesley.

Green, M., Shaw, C., Liang, J. & Sun, Y. (1991) MR: a toolkit for virtual

reality applications. Department of Computer Science, University of Alberta,

Edmonton, Canada

Grimsdale, C. (1991) dVS: distributed virtual environment system. Product

documentation, Division Ltd. Bristol, UK.

Grossweiler, R., Long, C., Koga, S. & Pausch, R. (1993) DIVER: a distributed

virtual environment research platform, Computer Science Department, University

of Virginia.

Henry, D. (1992) Spatial perception in virtual environments: evaluating an
architectural application. Masters Thesis, School of Engineering, University
of Washington.

Holloway, R., Fuchs, H. & Robinett, W. (1992) Virtual-worlds research at the

University of north carolina at chapel hill, Course #9 Notes: Implementation

of Immersive Virtual Environments, SIGGRAPH’92 Chicago Ill.

Jones, K. (1992) Manufacturing simulation using virtual reality. Masters
Thesis, School of Engineering, University of Washington.

Jul, E., Levy, H., Hutchinson, N. & Black, A. (1988) Fine-grained mobility in

the emerald system. ACM Transactions on Computer Systems, 6(1), 109-133.

Kazman, R. (1993, to appear) HIDRA: an architecture for highly dynamic

physically based multi-agent simulations. International Journal of Computer
Simulation.

Langton, C. (1988) Artificial life: proceedings of an interdisciplinary
workshop on the synthesis and simulation of living systems. Addison-Wesley

Maturana, H. & Varela, F. (1987) The tree of knowledge. New Science Library.

Meyer, J. & Wilson, S. (1991) From animals to animats: proceedings of the
first international conference on simulation of adaptive behavior. MIT Press.

Minkoff, M. (1992) The FERN model: an explanation with examples. Human
Interface Technology Lab Technical Report R-92-3, University of Washington.

Minkoff, M. (1993) The participant system: providing the interface in virtual
reality. Masters Thesis, School of Engineering, University of Washington.

Naimark, M. (1991) Elements of realspace imaging: a proposed taxonomy.

Proceedings of the SPIE 1457, Stereoscopic Displays and Applications II. SPIE
169-179

Oren, T., Salomon, G., Kreitman, K. & Don, A. (1990) Guides: characterising

the interface. in Laurel, B. (ed) The art of human-computer interface design.
Addison-Wesley.

Pezely, D.J., Almquist, M.D. & Bricken, W. (1992) Design and implementation of

the meta operating system and entity shell. Human Interface Technology Lab
Technical Report R-91-5, University of Washington.

Robinett, W. (1992) Synthetic experience: a proposed taxonomy. Presence 1(2),
229-247.

Robinett, W. & Holloway, R. (1992) Implementation of flying, scaling and

grabbing in virtual worlds. Computer Graphics 1992 Symposium on Interactive 3D
graphics. 189.

Spencer-Brown, G. (1969) Laws of Form. Bantam.

Tanimoto, S. (1993) The pixelspace cooperative-learning environment.

Department of Computer Science and Engineering, University of Washington.

Torque Systems, Inc. (1992) Tuplex 2.0 software specification. Palo Alto,

Calif.

Varela, F. (1979) Principles of Biological Autonomy. Elsevier North Holland.

Varela, F. & Bourgine, P. (1992) Toward a practice of autonomous systems:
proceedings of the first european conference on artificial life. MIT Press.

von Eicken, T., Culler, D.E., Goldstein, S. C. & Schauser, K. E. (1992)

Active messages: a mechanism for integrated communication and computation,

ACM, 256-266.

VPL (1991) Virtual reality data-flow language and runtime system, body

electric manual 3.0. VPL Research, Redwood City, CA.

Wenzel, E., Stone, P., Fisher, S. & Foster, S. (1990) A system for three-

dimensional acoustic ‘visualization’ in a virtual environment workstation.

Proceedings of the First IEEE Conference on Visualization, Visualization ‘90.
IEEE 329-337.

West, A.J., Howard, T.L.J., Hubbold, R.J., Murta, A.D., Snowdon, D.N. &

Butler, D.A. AVIARY - a generic virtual reality interface for real

applications. Department of Computer Science, University of Manchester, UK.

Winn, W. A conceptual basis for educational applications of virtual reality.

Human Interface Technology Lab Technical Report R-93-9, University of
Washington.

Winn, W. & Bricken, W. Designing virtual worlds for use in mathematics

education: the example of experiential algebra. Educational Technology
12/92, 12-18.

Wolfram, S. (1988) Mathematica: a system for doing mathematics by computer.
Addison-Wesley.

Woodward, G. (1993) Interactive dynamics for virtual worlds: background and

preliminary architecture. Human Interface Technology Lab Technical Report R-
93-8. University of Washington.

Zeltzer, D., Pieper, S. & Sturman, D. (1989) An integrated graphical

simulation platform. Graphics Interface ‘89, Canadian Information Processing
Society, 266-274.

Zeltzer, D. (1992) Auonomy, interaction, and presence. Presence, 1(1), 127-
132.

Zyda, M.J., Akeley, K., Badler, N., Bricken, W., Bryson, S., vanDam, A.,

Thomas, J. Winget, J., Witkin, A., Wong, E. & Zeltzer, D. (1993) Report on

the state-of-the-art in computer technology for the generation of virtual

environments, Computer Generation Technology Group, National Academy of

Sciences, National Research Council Committee on Virtual Reality Research and

Development.

Zyda, M.J., Pratt, D.R., Monahan, J.G. & Wilson, K.P. (1992) NPSNET:

constructing a 3D virtual world. Computer Graphics, 3, 147.

