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Introduction

This paper discusses the use of Virtual Reality (VR) to help students learn

school subjects, in this case elementary algebra. Our view is that previous

attempts to use innovative technologies in classrooms have not been as

successful as they might have been because fundamental assumptions about how

students learn and about how technology might best represent course content

have been addressed as afterthoughts, if at all. Our project is concerned

first and foremost with applying current research on learning to improve

students' classroom experiences. This approach has allowed us to preserve the

benefits to students that arise from judicious application of learning theory

and from the unique system that one of us (Bricken) has developed to

represent part of the Algebra curriculum. In short, our approach has

emphasized responsible design and has led us to interesting innovations in

learning strategy and in the representation of the content of mathematics.

Virtual reality is a computer generated, multi-dimensional, inclusive

environment which can be accepted by a participant as cognitively valid (W.

Bricken, 1992).  VR presentation systems overcome the inconvenience of an

insufficiently abstract physical reality by combining mathematical

abstraction with the intuition of natural behavior.  The programmability of

VR allows a curriculum designer to embed pedagogical strategies into the

behavior of virtual objects which represent mathematical structures (M.

Bricken, 1991b).  Using a VR presentation system, the axioms of algebra can

be, so to speak, built into the behavior of the world.

This paper is a report of work in progress.  We have thus far focused on

experimental and representational design.  During the next phase of our

research, we will observe the use of VR in ninth grade Algebra classrooms.

The report first addresses learning theory. We believe that students learn

best when they construct understanding for themselves. Our approach therefore

has an obviously constructivist flavor. We then address knowledge

representation. The symbolic system used to represent the concepts and

procedures of Algebra in traditional approaches to Mathematics instruction is

textual, somewhat arbitrary, and difficult for many students to master. This

impedes their understanding of essential fundamental algebraic concepts. The

Spatial Algebra we describe represents a totally new way of representing

algebraic concepts and procedures. We believe that it removes the impediments



imposed by the traditional text-based symbol system. We conclude with some

arguments for the use of VR in classrooms.

Knowledge Construction: A Basis for Learning in VR

In the past, instructional designers have put a great deal of effort into

getting technologies to do what teachers do. The assumption has been that if

pre-designed instruction can use the same strategies that teachers use, with

similar or better results, then the designer has been successful.

Instructional systems have therefore been didactic and based upon

reductionistic and deterministic theories of learning, instructional design

and teaching. There is growing opinion and evidence, however, that these

theories and the instructional models that arise from them are severely

constrained in their ability to explain human learning and to guide effective

instruction (Bednar, Cunningham, Duffy & Perry, 1991; Streibel, 1989; Winn,

1990).   

Recently, educational technologists have begun to explore alternatives to

didactic, deterministic systems that teach particular content, such as CAI

and intelligent tutors. These alternatives are shells that facilitate certain

pedagogical strategies without specifying content. Zucchermaglia (1991)

appropriately dubs these empty as opposed to filled technologies.  These

systems embody the idea that technologies employ symbol systems that engage

cognitive processes in unique ways (Salomon, 1979). Once these aspects of

technologies become the focus of designers' attention, they can become "tools

for thought" (Salomon, 1988; Salomon, Perkins & Globerson, 1991).

Shell systems are based on the premise that students construct their own

meaning by interacting with material rather than being taught something

expicitly (Bransford, Sherwood, Hasselbring, Kinzer & Williams, 1990;

Cognition and Technology Group, 1991; McMahon & O'Neil, 1991; Scardamalia,

1991; Spiro & Jehng, 1990; Spiro, Feltovich, Jacobson & Coulson, 1991).

Constructive techniques are exemplified by the hypermedia system developed by

Spiro and his colleagues (Spiro, Feltovich, Jacobson & Coulson, 1991; Spiro &

Jehng, 1990) that lets students learn problem-solving through the exploration

of ill-structured domains such as literary criticism, military strategy, and

cardio-vascular medicine; and by the interactive videodisk materials

developed by Bransford and the Cognition and Technology Group at Vanderbilt

University (1990, 1991) that facilitate the solving of complex Mathematics

problems by allowing children to interact with dramatically presented

adventures.

Algebra is different from the content embodied in the systems of Spiro, and

Bransford. While Algebra is certainly challenging to students when they begin

to study it, it is not ill-structured in Spiro's sense. For this reason,

there are "right answers" that students should arrive at and procedures that

they should follow. The virtual Algebra world can therefore be designed to



guide students in their knowledge construction somewhat more extensively than

in the systems we have just described.

Unlike the real world, a virtual world can be programmed by the designer, or

by the student, to behave in a specified manner. For example, objects in the

Algebra world could obey the laws of Algebra, not those of Newtonian Physics.

When a student lets go of a virtual object that represents a term in an

equation, it could fall into the proper place in the equation, rather than

falling to the ground. A student's understanding of Algebra could be guided

by the ways in which the rules of Algebra are programmed to act in the

virtual world. For example, if a student fails to change the sign of a term

as it moves from one side of an equation to the other, the rules of Algebra

might be programmed to apply in one of three ways:

(1) The term could "float back" to where it came from, indicating that

the student had made a mistake without revealing what the mistake was;

(2) the sign of the term could be changed by the program, indicating

that a mistake had occurred, what it was, and what the correct transformation

is; or

(3) the program could allow the student to make the mistake without

correcting it on the assumption that ultimate failure to solve the equation

would lead the student to "debug" what had occurred.

In this way, guidance can be seamlessly woven into the virtual world simply

by varying the degree to which the laws of Algebra, govern behavior of

objects in the virtual world. Students therefore would learn to construct

their knowledge of algebra from the way in which the virtual world is

programmed to act.

The Symbol Systems of Algebra

The difficulties children have when they begin to learn algebra are well

documented (Bricken, 1987; O'Shea, 1986; Zehavi & Bruckheimer, 1984; Gerace &

Mestre, 1982; Sleeman, 1984). Frequently, these difficulties arise from the

novelty and abstruse nature of Algebra's symbol system. Thwaites (1982) found

that students are often baffled by algebra's non-visual nature, its apparent

arbitrariness, its complexity, and how problems are expressed using its

symbols.

If students fail to understand algebraic representation, then the only way

they can solve algebra problems is by the rote application of procedures they

have memorized. This memorization is brittle, often both over and under

generalized, and elaborated by motivations independent of the content of

Algebra (Bricken, 1987).  Gerace & Mestre (1982) reported that the students

they interviewed did not use proper algebraic techniques to solve problems



and treated algebra as a rule-based rather than as a concept- based

discipline. Unfortunately, the rule-based approach to Algebra is the one that

is often taught, even though this does not promote the development of good

conceptual models (Thwaites, 1982; Bright, 1981; Bernard & Bright, 1982;

Greeno, 1985).

Since the symbol system of algebra is a major stumbling block to the

development of conceptual models, it is not surprising that a number of

attempts to help beginning students overcome their difficulties have focused

on helping them understand the algebraic way of representing concepts and

relationships. Many of these attempts have started with the assumption that

students find it easier to master algebra if it is made concrete through the

use of manipulables, an assumption supported by many experimental studies

(see the meta-analysis of this research by Sowell, 1989). The symbols of

algebra are typically reified either in physical objects or in computer

representations or simulations of problems and problem-solving (Austin &

Vollrath, 1989; Watkins & Taylor, 1989; Waits & Demana, 1989; Shumway, 1989).

Usually, students can learn rudimentary aspects of algebra from these

techniques.  

Of course, the need for students to develop more generic, abstract and

powerful conceptual models has not been ignored in algebra instruction. For

example, Connell & Ravlin (1988) have proposed a microcomputer-based

instructional model for teaching linear equations that uses four types of

problems to encourage just this kind of development. Students begin by using

manipulables. Then they learn to represent the manipulables in sketches. The

next step is to internalize the sketches as mental images.  Only then is it

possible, through further abstraction, to arrive at a truly algebraic

conceptual model.

We have combined the findings of this research with theory of knowledge

construction to create a new way of representing Algebra. Spatial Algebra is

concrete, intuitive to work with, comprehensive and appealing. It is designed

both to make algebra easier to learn and to permit easy implementation of the

concepts and operations of algebra in VR.

Spatial Algebra

Our understanding of a concept is tightly connected to the way we represent

that concept.  Traditionally, mathematics is presented textually.  As a

consequence, novice errors in elementary algebra, for example, are due as

much to misunderstandings of the nature of tokens as they are to

miscomprehensions of the mathematical ideas represented by the tokens.  This

section outlines a spatial algebra by mapping the structure of commutative

groups onto the structure of space.  We interact with spatial representations

through natural behavior in an inclusive environment.  When the environment

enforces the transformational invariants of algebra, the spatial



representation affords experiential learning.  Experiential algebra permits

algebraic proof through direct manipulation and can be readily implemented in

virtual reality.  The techniques used to create spatial algebra lay a

foundation for the exploration of experiential learning of mathematics in

virtual environments.

How we think about mathematical concepts is often constrained by our

representation of those concepts.  Syntax and semantics (representation and

meaning) are tightly connected.  The addition operation, for example, is

conceptualized as binary when written in linear text:  

x + y

To add three numbers, we must use two addition operations:  

x + y + z

Column addition, however, reconceptualizes the addition operation to be

variary (one operator can be applied to an arbitrary number of arguments):  

   x

   y

 + z

-----

Naturally, the addition algorithms and techniques taught to students differ

for the different representations.

In general, how we represent numbers is a matter of convenience.  For

learning mathematics (and for doing mathematics) it is often more convenient

to call upon visual interaction and natural behavior than it is to conduct

symbolic substitutions devoid of meaning.  Spatial algebra uses the three

dimensions of natural space to express algebraic concepts.  A higher

dimension of representation greatly simplifies the visualization and the

application of algebraic axioms.   Algebraic transformation and the process

of proof are achieved through direct manipulation of the three-dimensional

representation of the algebra problem.  

Spatial Representation of Algebra

One possible map from algebraic tokens to algebraic spaces is:

  Constants:      { 1, 2, 3, ...}   -->   { labeled-blocks }

  Variables:      { x, y, z, ...}   -->   { labeled-blocks }

  Operators:      { + }             -->   { sharing-same-space }

                  { * }             -->   { touching-each-other }

  Relations:      { = }             -->   { partitions-between-spaces }



Examples of a spatial representation of the above map follow.

Constant as labeled block:

3

Variable as labeled block:

x

Space sharing as addition:

3 + 2 = 5

Touching as multiplication:

3 * 2 = 6

The gravitational orientation of the typography (top to bottom of page) in

the above examples is not an aspect of spatial algebra, although

gravitational metaphors are useful for the representation of sequential

concepts such as non-commutativity.  As well, the sequencing implied by

stacked blocks is an artifact of typography;  stacks only represent groups of

objects touching in space.   

Generally, spatial representation can be mapped onto group theory.  A

commutative group is a mathematical structure consisting of a set and an

operator on elements of that set, with the following properties:

--  The set is closed under the operation.

--  The operation is associative and commutative.

--  There is an identity element.

--  Every element has an inverse.

The integer addition and multiplication operators taught in elementary school

belong to the commutative group.



Commutativity

Spatial representation permits the implicit embedding of commutativity in

space.  The commutativity of addition is represented by the absence of linear

ordering of blocks in space (visualize the blocks in this example as floating

in space rather than in a particular linear order):

x + y = y + x

Commutativity of multiplication can be seen as the absence of ordering in

touching blocks:

x * y = y * x

Again, in space there is no preferential ordering to touching objects:

Associativity

Associativity of addition is the absence of an explicit grouping concept in

space:

  (x + y) + z = x + (y + z)

From an intuitive perspective, operations embedded in space apply to any

number of objects in that space.  Whatever grouping we use is a matter a

choice and convenience.  

Associativity of multiplication is the absence of an explicit grouping

concept in piles:



(x * y) * z = (x * z) * y

The apparent visual ordering of piles can be overcome by assuming that all

objects in a pile touch one another directly.  Rather than displaying stacked

objects, VR might present objects in piles as completely interpenetrating.

Every object in this non-physical representation is in contact with every

other object, forming a Cartesian product of touching objects.

Distribution

Precedence operations associated with the distributive rule are the most

common algebraic error for first year students (National Assessment, 1981;

Bricken, 1987).  The representation of distribution in spatial algebra is

particularly compelling.    Example:

2x + 3x = (2 + 3)x

Generally, the distributive law permits combining blocks with identical

labels into a single block with that label.  The ability to arbitrarily

divide and combine blocks with a common name is the same as the ability to

arbitrarily create duplicate labels in a textual representation.  Changing

the size and the number of occurrences of a labeled block is easy in a

virtual environment.

Identities

Zero is the identity element for addition.  The identity in the spatial

metaphor is the void;  identities are equivalent to empty space.

The additive identity:  

x + 0 = x

That is, zero disappears in space:



The multiplicative identity:

1 * x = x

The One block disappears only in the context of an existing pile.  A zero in

a pile makes the entire pile disappear:

0 * x = 0

Additive Inverse

The inverse of a positive number is a negative number.  Negative numbers are

the most difficult aspect of arithmetic for elementary students.  One way to

directly represent inversion is to create an inverter block.  Another way is

to create an inversion space; for example using "under-the-table" for

inverses.  Inverses can be represented in many ways: as inverters, as colors,

as orientations, as different spaces, as binary switches, as dividing planes,

as inside-out objects.

In this version of spatial algebra, piles are inverted by the inclusion of an

inverter block:     

Since a negative number can be seen as being multiplied by -1, the inverter

block is expressed as touching (multiplying) the pile which is inverted:  

-x  = (-1) * x

The inverter block expresses subtraction as the addition of inverses:  

x - x = x + (-x)



The additive inverse:  

x + (-x) =  0

Calculus of Signs

The use of the inverter block for negative numbers introduces a calculus of

signs into the algebra of integers.  A sign calculus requires the explicit

introduction of the positive block:

The positive block is the inverse of the inverter block.  It introduces the

concept of polarity and the act of cancellation.  Numbers without signs are

usually assumed to be positive.  Making signs explicit removes this

assumption.  

The following rules of sign calculus assume each sign has a unit value

associated with it.

Additive cancellation in space:

Cardinality in space:

Multiplicative cancellation in piles:



Multiplicative dominance in piles:

The calculus of signs permits a model of arithmetic simplification.  This

example of integer subtraction graphically illustrates the distribution and

cancellation processes:  3 - 2 = 1

Multiplicative Inverse

Finally, division is the multiplicative inverse.  Again, there are many

possible ways to represent an inverse in a spatial representation.  Since the

traditional notation for fractions is primarily two-dimensional, it already

has many spatial aspects.  The division line that separates numerator from

denominator could be carried over to the spatial representation as a plane

dividing a pile into two parts.  Here however, the multiplicative inverse is

represented by inverse shading of the block label:  

1/x

The multiplicative inverse:

x * 1/x = 1

In the sign calculus, a sign is its own multiplicative inverse:

One weakness with the choice to represent a reciprocal as differently shaded

labels is that composition of reciprocals -- for example: 1/(1/x) -- is not

visually defined.  Choice of representation necessarily effects pedagogy.  It

is an empirical question as to which representations facilitate learning

algebraic concepts efficiently.



Fractions are the second most difficult area for students of arithmetic.  A

typical problem using fractions requires the application of the distributive

rule:

   a/b + c/d = (ad + bc)/bd

Factoring

Factoring polynomial expressions is equivalent to multiple applications of

distribution.  For example:

   x^2 + 4x + 3 = (x + 1)*(x + 3)

One advantage of the spatial representation on the right-hand-side of this

equation is that both the factored and the polynomial forms are visible

concurrently.  Looking from the side, we see two completely touching spaces

which represent the factored form:

(x + 1) * (x + 3)

Looking down from the top, we see four piles which represent the polynomial

form:  



x^2 + 1*x + 3*x + 1*3

Here, the factored form is converted to the polynomial by slicing each

addition space through the middle.  

Conclusion: Why Use VR in School?

On the basis of the research and theory that we have discussed above, we have

concluded that VR has the potential for making a significant improvement in

the way students learn Mathematics.  Our approach has been to identify a

clear application of VR techniques to evaluate in a classroom application.

We believe that Spatial Algebra allows the concepts and procedures of algebra

to be represented in a virtual world that embodies constructivist learning

principles, while at the same time supporting the kind of pedagogical

strategies that are required when students build knowledge in structured

domains.  More generally, the following observations contribute to our

confidence that VR has a great deal to contribute to providing effective

learning experiences to students.

Virtual worlds are totally engaging, entirely immersing the student

cognitively and affectively in the environment.  VR places the participant in

a three-dimensional visual, auditory and visceral environment. The sensations

that the participant receives are pervasive and convincing. Evidence from a

study of children working with VR (Bricken & Byrne, 1992) has shown that it

is indeed engaging and motivating.

Interaction with the virtual world is intuitive because students interact

with objects in natural ways, by grasping, pointing, etc.  The interface is

often an impediment to interaction with traditional CAI systems. At the very

least, the keyboard, mouse, screen or touch pad come between the student and

the program. In VR, there is no interface (M. Bricken, 1991a). The

participant interacts directly with the objects in the virtual world. In a

very real sense, the participant's natural actions and the participant's

senses replace the interface. Because the participant's actions are mapped by

the program in virtual space, the participant is part of the program.  

The virtual world can be programmed to provide various types of guidance to

students.  Virtual worlds, like simulations, are programmed environments with

which participants can interact in real time. VR goes further than

simulations, however, in that virtual worlds can embody arbitrary objects,

abstract or concrete, and can be programmed to behave in ways that have no



equivalence in the real world. The great strength of the algebra world is its

programmability, which allows it to embody the rules of Algebra.

Virtual objects behave in concrete ways.  In addition to its embodiment of

the rules of algebra, the algebra world provides students with the

demonstrated advantages of manipulable concrete objects which, as we saw

earlier, help students construct knowledge of algebra. The student can

manipulate virtual objects in the same way that real objects are manipulated

-- by picking them up, moving them, turning them over, combining them, and so

on.

Students can explore and return to the same place repeatedly, building an

increasingly sophisticated understanding of concepts and procedures.  A

virtual world is created by a non-linear program. (It is "object-oriented" in

the computer science sense too.) This means that participants act freely in a

responsive environment. They can return many times to the same object and

move freely in the virtual world for activity to activity, and even from time

to time. This ability to "criss-cross the landscape" (Spiro et al., 1991) is,

as we have seen, a necessary strategy for knowledge construction by students.

The system can automate some procedures, allowing students to concentrate on

others.  Finally, should the need arise, the algebra world can take over some

tasks from the student, allowing the student to concentrate on those tasks

that need more practice. For example, the arithmetic involved in factoring an

expression can be automated by the system so that it ceases to distract the

student from other operations.

For these reasons, we are convinced that VR has great educational potential.

As research and development in the Human Interface Technology Laboratory and

the College of Education proceeds, we are hopeful that the scope and

constraints of VR's potential will become clear. We do not expect that VR

will revolutionize education. Nor do we expect that worlds and the systems to

run them will be generally available for a number of years. However, we are

encouraged by the speed at which research and development are proceeding, and

look forward to assessing the effectiveness of VR in math education and in

other areas of the curriculum.
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