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Project Summary

The two objectives of this project are to improve students' understanding of

basic algebra and to demonstrate the effectiveness of Virtual Reality for

attaining this end. We have developed a Spatial Algebra in which variables

and constants are represented by programmable objects and algebraic

operations are performed by moving the objects in space. Students enter the

spatial algebra virtual world by donning a helmet that places them in a

three-dimensional environment, and a glove that allows them to manipulate

virtual objects in natural ways. Interacting with the objects in the world,

the students build knowledge of algebra inductively.  Pedagogical strategies

are seamlessly woven into the virtual environment by varying the ways in

which the laws of algebra are enforced.  Transformations can also be

selectively automated, allowing students to work with a few operations at a

time.  Data on the performance of tasks in the virtual world, the extent to

which knowledge acquired in the virtual world transfers to other tasks,

"think aloud" protocols obtained from students in the virtual world, and

estimates of the feasibility of implementing Virtual Reality in schools allow

an assessment of the effectiveness of the approach for teaching algebra and,

potentially, other subjects.

An Introduction to Virtual Reality

Virtual Reality refers to a new conception of computing that fundamentally

redefines the way humans and computers interact.  It includes a body of

techniques that link natural human behavior to environments created by the

computer. The participant in VR interacts with hardware which senses natural

behavior, such as pointing, looking  and moving around. The virtual world

that the computer creates responds to these behaviors in "real time",

creating the illusion that the participant is part of the environment rather

than interacting with it through an interface.

A participant in a virtual environment wears a helmet that contains earphones

for three dimensional sound, "eyephones" for the presentation of stereoscopic

visual images, and various other behavior transducing devices which map the

participant's physical actions onto virtual events.  Computer software links

behavior and display in real-time, enhancing the participant's perceived

presence in the virtual environment.



Participants interact with the virtual world in several ways. Physical

movement can be mapped onto movement of the participant's virtual body.

Thus, by walking forwards or backwards, the participant moves forwards or

backwards in the virtual world. Hand movement and gestures can be tracked by

a "data glove" which controls a virtual hand for grasping virtual objects.  A

spatial joystick can be used for movement and orientation in three

dimensional space.  Position trackers can locate in space any part of the

body they are attached to.  In general, any bodily activity can be mapped

onto a corresponding activity in the virtual world.

The best way to think about the experience of VR is to look around the

physical reality each of us inhabits. When we turn our head, the world holds

still while we redirect our attention in the new direction. VR has the same

inclusive quality. In physical reality, we perceive objects. VR has objects

also, but they do not necessarily exhibit mass. VR objects are programmable,

their properties can be arbitrarily changed.  VR is a domain which is made to

seem real even though it is entirely imaginary.

Problem

The poor performance of many American students in Mathematics is well

documented and acknowledged.  Generally, many aspects of Mathematics are too

complex and too abstract for students, especially less able ones, to

understand. More specifically, the symbol system of Mathematics appears

arbitrary and has no easily understood relationship to things which students

find familiar. When students fail to comprehend the underlying symbolism of

algebra, they do not comprehend algebraic processes like factoring or solving

equations, and they do not transfer what they learn to practical applications

in the real world.

We believe that VR can overcome the problems of algebraic representation, and

of symbolic representation in general.  In VR students can learn mathematics

through direct experience with virtual objects in the virtual world.  Rather

than reducing experience to algebraic tokens and then having to interpret the

result of symbol manipulation, as is the case when students use traditional

methods to factor expressions or solve equations, in VR students can touch

and sense  environmental objects which embody the rules of mathematics

directly.  The traditional curriculum in algebra concentrates on the

techniques of token manipulation, techniques which have no relevance to

experience or functionality in the physical world.  In VR, students can

concentrate on concepts and meaning rather than on syntax and representation.

For example,  they can experiment with manipulating virtual objects that

represent variables, constants and operators that have been programmed to

obey particular laws of Mathematics, thus acquiring experience with

Mathematical principles that is much more concrete and direct than that

acquired by working problems on paper. Put another way, pedagogy can be



seamlessly woven into the mathematical rules that govern the virtual world,

facilitating knowledge construction and transfer.

Our project is confined to first year algebra, since the greatest gains for

students in understanding algebra (and mathematical abstraction in general)

can be achieved at this level.  Algebra is difficult for many students to

master although the rules of algebra are clear and manageable in number.  We

propose a virtual algebra world as a preliminary test of the potential

benefits of VR for mathematics education.  This is the initial step of a

larger program to develop an experiential mathematics curriculum for high

school, based in VR technology.  The techniques of spatial algebra can, in

general, be applied to any mathematical system.

Appendix A describes an approach to the spatial representation of algebra

that maintains the formal structure of algebra while providing direct

interaction with its abstractions.  We expect that this approach will help

students to overcome the most prevalent errors in first-year algebra

(precedence and distribution, negative numbers, and fractions).

The project's objectives are therefore as follows:

1. To provide "proof of concept" that VR can lead to marked improvements in

students' understanding of abstract mathematical content, exemplified through

elementary algebra.

2. To show that VR is particularly successful with students who typically

have problems learning abstract mathematical content.

3. To develop a virtual world that embodies the rules of algebra in a way

that lets them also function as pedagogical strategies. This requires that

we:

a. Develop a representational approach that allows us to embody the objects

and rules of algebra in a virtual world. Spatial algebra has been developed

for this purpose (Appendix A).

b. Develop pedagogical strategies that will lead to comprehension of

algebraic concepts as a result of a student's experience in the virtual

algebra world, and embed these into the rules that govern the world.

c. Identify appropriate methods for assessing student comprehension of

algebraic concepts and their transfer from the virtual to the real world.

4. To conduct the project in close collaboration with high school mathematics

teachers and students.

5. To initialize an experiential mathematics research program.



Relations to work in progress and long-term goals

The objectives of this project arise directly from the investigators' ongoing

research programs.  Two lines of inquiry are involved. At the Human Interface

Technology Laboratory at the University of Washington, innovative research

and development are leading to an understanding and realization of VR in

information systems, education, and training. The motivation behind this

research is to develop effective strategies for the use of VR. It is our

belief that an understanding of the way participants behave and learn in

virtual worlds is the key to the success of this research agenda. The long-

term goal of this work is therefore to develop strategies for using VR in

schools on as large a scale as is necessary to help students who have

difficulty learning abstract material from conventional instruction. If this

project is successful, the next step will be to put VR directly into

classrooms.

The second line of inquiry involves work in the Educational Technology

Program at the University of Washington. Generally, this work has been

directed at identifying and developing instructional theory and strategies

relevant to learning via technology. Here, too, the emphasis is on learning

processes and pedagogy. The long-term goal of this research is to identify

learning problems that are best addressed through technology. This requires

the exploration of the symbol systems of various technologies and determining

how they affect cognitive processes. More recently, the emphasis of this

research has shifted to an examination of how students construct knowledge

for themselves and away from the development of instructional prescriptions.

The VR project allows testing of a number of hypotheses arising from this

research. For example, it allows very direct observation of students

constructing knowledge, and thus the examination of strategies use  to solve

problems, and integrate knowledge into what they already know.  It is

particularly timely because it requires the development of a completely new

set of strategies that rely on perceptual as well as cognitive learning. The

VR project promises the consolidation of a lot of theory development and

basic research.

The Virtual Reality project is designed to address a significant problem in

learning Mathematics, elementary algebra, as an instance of a more generic

problem, students' difficulty in developing sound conceptual models of

complex, abstract domains. This brief review of literature examines the

nature of the difficulty many students encounter as they begin Algebra. Since

we propose to exploit the perceptual and constructivist characteristics of VR

to overcome these difficulties, we also describe how our project fits in with

current thinking about perceptual learning and constructivist applications of

technology. We conclude with an explanation of why we expect VR to succeed

where other technologies and instructional methods have failed.



1. Learning Algebra

The difficulties children have when they begin to learn algebra are well

documented (Bricken, 1987; O'Shea, 1986; Zehavi & Bruckheimer, 1984; Gerace &

Mestre, 1982; Sleeman, 1984). Frequently, these difficulties arise from the

novelty and abstruse nature of Algebra's symbol system. Thwaites (1982) found

that students are often baffled by algebra's non-visual nature, its apparent

arbitrariness, its complexity, and how problems are expressed using its

symbols. These difficulties arise from students' inability to grasp what

algebraic symbols stand for. For instance, students often do not understand

what variables are, how letters are used to represent them, or how equality

can be used (Rosnick, 1981; Kaput 1978; Bernard & Bright, 1982).  A

substantial difficulty is that algebraic symbolism itself is ambiguous and

context dependent.

If students fail to understand algebraic representation, then the only way

they can solve algebra problems is by the rote application of procedures they

have memorized. This memorization is brittle, often both over and under

generalized, and elaborated by motivations independent of the content of

Algebra (Bricken, 1987).  Gerace & Mestre (1982) reported that the students

they interviewed did not use proper algebraic techniques to solve problems

and treated algebra as a rule-based rather than as a concept-based

discipline. Unfortunately, the rule-based approach to Algebra is the one that

is often taught, even though this does not promote the development of good

conceptual models of algebra (Thwaites, 1982; Bright, 1981; Bernard & Bright,

1982; Greeno, 1985).

Since the symbol system of algebra is a major stumbling block to the

development of conceptual models, it is not surprising that a number of

attempts to help beginning students overcome their difficulties have focused

on helping them understand the algebraic way of representing concepts and

relationships. (Textbooks do not have a good record of doing this.  Rosnick

[1980] found that none of the 41 texts he reviewed adequately conveyed the

concept of continuous variability without becoming pedantic and cumbersome.)

Many of these attempts have started with the assumption that students find it

easier to master algebra if it is made concrete through the use of

manipulables, an assumption supported by many experimental studies (see the

meta-analysis of this research by Sowell, 1989). The symbols of algebra are

typically reified either in physical objects or in computer representations

or simulations of problems and problem- solving. Thus in the area of equation

solving, we find studies of the effectiveness of using pan balances (Austin &

Vollrath, 1989), spreadsheets (Watkins & Taylor, 1989), computer-based

graphing (Waits & Demana, 1989), and a variety of other strategies (Shumway,

1989). Usually, students can learn rudimentary aspects of algebra from these

techniques. It appears therefore that making algebra more concrete by having

students manipulate objects or computer-created symbols can be effective,

even as early as elementary school (Berman & Friederwitzer, 1989).



The strategies for teaching algebra by reifying it in concrete objects are

all to some degree analogical (e.g., balancing an equation is like balancing

the pans of a scale). However, analogies in complex systems like algebra are

oversimplifications that lead to the development and entrenchment of

misconceptions (Spiro, Feltovich, Coulson & Anderson, 1989).

Of course, the need for students to develop more generic, abstract and

powerful conceptual models has not been ignored in algebra instruction. For

example, Connell & Ravlin (1988) have proposed a microcomputer-based

instructional model for teaching linear equations that uses four types of

problems to encourage just this kind of development. Students begin by using

manipulables. Then they learn to represent the manipulables in sketches. The

next step is to internalize the sketches as mental images.  Only then is it

possible, through further abstraction, to arrive at a truly algebraic

conceptual model.

As a second, rather different, example, Wagner (1981) studied students'

conservation of algebraic relations under different forms of variable

notation. She argued that a key to success in algebra is for students to

learn that the meaning of the relationship in an equation does not change

when the way the variable is represented changes. Her sample included non-

conservers, conservers, and students in a state of transition between the

two. The results of her study allowed her to conclude that less than half of

her subjects were able to conserve the relation when the variable changed,

and that the ability to do so varied by age, gender, and background in

Mathematics.

Our purpose of this project, therefore, is to verify that VR can enable

beginning students to learn the rudiments of algebra, and its symbol system,

in a way that does not interfere with more advanced learning; and that it can

enable the development of more advanced and useful conceptual models of

algebra. Our confidence that VR can achieve both of these goals is based on

research reviewed in the next section.

We believe that there are two main reasons why VR can improve the

understanding of algebra and of other abstract domains. First, VR can express

algebraic concepts and rules in forms with which the student can interact

directly and concretely, thus allowing the student to use perceptual

processes in addition to cognitive processes to learn the material. Second,

interaction with the virtual world allows students to construct an

understanding of algebra for themselves rather than simply absorb what a

teacher tells them. This, too, has been shown to lead to better

understanding.

Virtual Reality improves upon screen-based diagrammatic display by including

the participant in an environment.  Inclusive environments have been shown to

be emotionally involving and extremely easy to use (M. Bricken, 1991a; M.

Bricken, 1991b).



There is abundant evidence that perceptual processes can assist students who

are having difficulty learning abstract material. Larkin and Simon (1987)

give an explanation. They argue that expressing ideas spatially, for example

in diagrams, allows the information to be analyzed much more efficiently by

perceptual processes than by linear cognitive processes. When a spatial

representation is used to solve a problem, the spatial relations among the

objects in the diagram convey important information which can be accessed and

used simply by looking.  Larkin and Simon demonstrated that, were the same

information to be expressed propositionally in text, more cognitive resources

would be needed first to find the information, and then to store it in memory

while the next relevant piece of information was sought. Winn, Li and Schill

(1991) found empirical support for the Larkin and Simon theory. Subjects were

far quicker at answering questions about kinship when they looked at family

trees than when they read corresponding text. VR uses Spatial Algebra,

described below, to exploit perceptual processes in similar ways by reducing

students' search and memory loads when working algebra problems. It can be

expected that student understanding will improve as a result.

In addition to perceptual processes promoting the more efficient extraction

of relevant information, there is also evidence that spatial representation

improves the learning and retention of material. Paivio (1971, 1983) has

proposed that spatial information is encoded in two different though

connected memory systems. One is image-based, and information encoded in it

is retrieved as mental images.  The other is propositional, and information

is retrieved from it verbally. Thus, material that is presented to students

in a way that uses spatial arrangement to convey information is encoded

twice, as images and as propositions.  Information presented verbally is

encoded only once, as propositions. If information cannot be retrieved using

one memory system, then it might be recalled using the other.  The redundancy

improves recall. The work of Kulhavy and his colleagues on maps (Kulhavy,

Lee, & Caterino, 1985; Schwartz, 1988; Schwartz & Kulhavy, 1987, 1988),

embodied in "conjoint retention" theory, proposes similar ideas. The Spatial

Algebra is likely to bring this advantage as well to learning algebra.

Finally, representing mathematical concepts concretely improves performance

because it provides the student with something to interact with directly.

Showing numbers as sets of objects that students can actually count makes it

easier for students to solve Arithmetic word problems (Lindvall, Tamburino &

Robinson, 1982). Arranging numbers to multiply into two-dimensional matrices

allows students to compute the answer by counting the cells in the matrix

(Carrier, Post & Heck, 1985). Indeed, a great variety of ways of making

mathematical concepts more concrete have been shown to be effective in

learning algebra (Shumway, 1989).

The second area of research relevant to learning in VR concerns students'

construction of knowledge. Recently, educational technologists have begun to

move away from developing systems, such as CAI and intelligent tutors, that



teach particular content, to building "shells" that facilitate certain

pedagogical strategies without specifying content. (Zucchermaglia [1991]

appropriately dubs these "empty" as opposed to "filled" technologies.) They

are based on the premise that students construct their own meaning by

interacting with material rather than being taught something explicitly

(Bransford, Sherwood, Hasselbring, Kinzer & Williams, 1990; Cognition and

Technology Group, 1991; Scardamalia, 1991; Spiro & Jehng, 1990; Spiro,

Feltovich, Jacobson & Coulson, 1991), and that therefore to specify a

particular content organization or instructional strategy is

counterproductive. These techniques are exemplified by the hypermedia system

developed by Spiro and his colleagues (Spiro, Feltovich, Jacobson & Coulson,

1991; Spiro & Jehng, 1990) that lets students learn problem-solving through

the exploration of ill-structured domains such as literary criticism,

military strategy and, cardio-vascular medicine; and by the interactive

videodisk materials developed by Bransford and the Cognition and Technology

Group at Vanderbilt University (1990, 1991) that facilitate the solving of

complex Mathematics problems by allowing children to interact with

dramatically presented adventures.

Some key theoretical elements behind constructivism are contained in Spiro's

Cognitive Complexity Theory (Spiro, Coulson, Feltovitch & Anderson, 1988;

Spiro & Jehng, 1990).Cognitive Complexity Theory proposes a number of

strategies to promote the acquisition of flexible knowledge.  For the

purposes of this project, the most important is that students "revisit the

same material, at different times, in re-arranged contexts, for different

purposes, and from different conceptual perspectives" (Spiro, Feltovitch,

Jacobson & Coulson, 1991, p. 28). The theory sets out guidelines for

achieving the appropriate amount of variability in examples in order to avoid

oversimplification yet retain contact with what students already know.

Students can also be guided or coached as they explore the domain. But they

are always in control, determining which material to revisit on the basis of

their own needs at the time.

These strategies are currently implemented in hypermedia systems which

provide students with easy access to material in any order at any time. VR is

even better suited to implement these strategies than hypermedia systems.

When we place the student inside the world that embodies the knowledge

domain, all material can be accessible, and the student can "visit" it simply

by turning towards it, pointing at it, or picking it up.

The differences between VR and the hypermedia technologies used by the

constructivists are that the virtual world can be programmed to obey the laws

of algebra, and that the student inhabits the world and can act on it

naturally. There is therefore no interface to come between the student and

the world. This section describes our innovative approach to teaching algebra

through virtual worlds.



The key idea of Spatial Algebra is that algebra is easier to learn and to use

when it is expressed in three dimensional space rather than in one

dimensional text.  In Spatial Algebra, students can bring perceptual and

psychomotor as well as cognitive processes to problem solving, operating

directly on the objects in the virtual world. Algebraic concepts can be

expressed more clearly when freed of textual manipulation and rearrangement

operations.  Commutativity, for example, is better represented by objects

placed in arbitrary positions in space than by X + Y = Y + X.

Numbers and variables can be represented by three-dimensional blocks. Number

blocks can have their magnitude written on them; variable blocks can be

unlabelled, or labeled with variable letters, or identified by colors.  We

propose to determine empirically successful representational strategies.

In the Spatial Algebra, algebraic operations are mapped onto spatial

configurations.  To do addition, the student places blocks into the same

space. Multiplication requires that blocks touch each other. Subtraction is

the same as addition, except that negative quantities have a -1 multiplying

block in their piles. The student divides by inverting a block. To collect

terms in an equation, the student simply moves blocks from one space (or

"side" of the equation) to another while adding a -1 multiplier to each stack

that is moved.  An alternative representation would involve normalizing the

equation by having the student  place all terms on one side (in the form A =

0). Because zero is equivalent to the void in Spatial Algebra, the students

solving an equation would attempt to make all terms disappear.

Since virtual objects are programmable, pedagogical strategies can be

embedded into the behavior of algebra blocks.  The world serves as an

experiential tutor.  When the behavior of objects in the Algebra World obey

the rules of algebra, actions can be classified as either "lawful" or

"unlawful".  For example, moving a block from one side of an equation to the

other without adding the -1 multiplier leads to an unlawful situation.

Substituting a 5 block for a 2 block and a 3 block is lawful. Pedagogical

strategies in the Algebra World reflect the ways that the world reacts when

it finds itself in an unlawful condition.

We propose to let the Algebra World act in one of three ways when an unlawful

condition arises. The world can ignore the condition, and let the student

figure out why the solution to a problem fails to develop. The world can

correct the condition, modeling for the student what should have been done.

The world can refuse to become unlawful and revert to its last lawful

condition. Thus, if the student failed to add a -1 multiplier to a block that

was moved from one side of the equation to the other, the world could: do

nothing, forcing the student to diagnose the problem and backtrack; add the

multiplier for the student, demonstrating the correct operation to make the

world's condition lawful; or move the block back to where it came from,

showing the student that an error had been made without precisely identifying

the error.  As well, the world could automatically add the multiplier serving



as an algebraic calculator which relieves the student of computational

details.

The programmability of Algebra World permits a great deal of pedagogical

flexibility.  We could automate arithmetic simplification, focusing on

algebraic skills.  We could permit only lawful transformations for all

operations except the distributive rule, focusing on a particular algebraic

skill. Pinpointing the sources of students' difficulties in this way also

provides an extremely useful diagnostic tool.

Work Plan

The project has five objectives which we stated above:

        

1) To provide "proof of concept" of VR for teaching math;

2) To show that VR is particularly useful with less able students;

3) To develop a virtual algebra world;

4) To collaborate with teachers; and

5) To develop an experiential mathematics curriculum.

1. "Proof of concept" of VR

Attainment of this objective will require three kinds of evidence. First, we

must show that students can learn algebra in VR. Several sources of data are

proposed to provide this evidence. Videotapes will be made of student

participants.  These tapes will provide precise records of what the student

experiences and of what the student does. The computer will make a trace of

all operations the students perform in the virtual world. This will provide a

complete record of all computations and manipulations, allowing us to assess

student progress.  Posttests will also be administered in VR. Student

performance on test problems will indicate whether or not they have mastered

algebra concepts. For each problem, we will record correctness of solution,

time to solution, number of steps to solution and method of solution.

Students will be expected to reach established criteria on each factor.

Second, we must show that students understand the concepts and rules of

algebra (for example, commutative and distributive rules, and the steps to

take to solve an equation for a variable), and not just learn algorithmic

procedures. We propose two additional methods to assess the degree of

understanding of algebra. First, students will be trained to "think aloud"

while they are working in the algebra world. Think aloud protocols are a

standard technique for assessing the development of understanding in a domain



(Ericsson & Simon, 1984). Second, students will be given algebra problems to

solve that require the transfer of what they have learned in VR to other

settings. Paper-and-pencil tests over the concepts they have learned will

assess transfer to standard classroom tasks.

Third, we must show that students perform better after learning in VR than

they do after learning from traditional methods. We will compare the

performance of VR students with the performance of students who are taught

with traditional classroom methods on all of the posttests described above.

We plan to start working with elementary algebra students at the beginning of

the 1992 school year.

2. VR and less able students

Our supposition is that VR will be especially beneficial for students who

have difficulty learning from traditional methods. We shall therefore divide

VR students and controls into high and low aptitude for learning algebra.

Assignment to groups will be based on MAT math scores, pre-algebra math

grades, and teachers' personal assessments.

3. Designing a Virtual Algebra World

Our intention is to develop and test the algebra world in the early part of

and Summer of 1992. Standard instructional design procedures will be used for

this (Gagne, Briggs, & Wager, 1988; Reigeluth, 1983, 1987). This will require

writing instructional goals and objectives; determining student performance

criteria; describing system performance, including which algebra rules to

employ, and how they are to be used as pedagogical strategies; developing

prototypes of the world; and testing and revising the world.

4. Collaborating with teachers

The long-term goal of the project is to improve the mastery of algebra in

schools. All too often, technology-based projects have failed because they

were developed in laboratories isolated from the classrooms in which they

were intended to be implemented. We propose to avoid this problem by

involving teachers and students in all phases of the project. Teachers will

serve as subject-matter consultants, will help build the algebra world, will

advise on pedagogical strategies for dealing with problems students typically

experience, and will work with us and their students during the evaluation

phase. We intend to consult with teachers about the most effective ways to

implement VR in schools, and to interview them more formally about their

experiences working with VR. These data will allow us to make recommendations

concerning a wider-scale implementation of VR in schools. A number of schools

and individual teachers have expressed an interest in taking part in the

project.



5.  Developing an experiential mathematics curriculum

We have developed spatial techniques for logic, arithmetic, and geometry, as

well as for algebra.  We intend to broaden the scope of this research to the

entire high school mathematics curriculum, should this project justify such

expansion.

Data and analysis

We shall analyze numerical data from posttests using 2 by 2 analysis of

variance. Two treatments (VR and control students) will be crossed with high

and low aptitude for mathematics. Interactions between aptitude and treatment

for the posttest and transfer measures will indicate whether or not VR is

more effective with low-aptitude students (Cronbach & Snow, 1977).

Transcripts will be made of the videotapes and think- aloud protocols. We

shall analyze these using Ericsson and Simon's (1984) techniques of protocol

analysis.

Researchers and collaborating teachers will keep logs of their activities.

These will serve both as "audit trails" for the non-experimental data and as

a means to determine the best ways of conducting similar projects in the

future.

We propose the following schedule of activities for our project. We will

begin Phases I and II in the early part of 1992. This will allow us to start

classroom work with students beginning algebra in the Fall of 1992.  We

intend to iteratively refine the Algebra World and its pedagogical strategies

during the 1992 school year.  Data analysis and reports will be completed

during the latter half of 1993.

PHASE I:  INSTRUCTIONAL DESIGN (6 months)

1.  Identify collaborating teachers and schools.

2.  With teachers, identify a specific area within introductory algebra to be

addressed by VR techniques. This content must include basic concepts, such as

"variable," "constant," "equation," and the basic algebraic operations.

3.  Write goals and objectives. Specify scope and sequence of curricular

material to cover.

4.  Identify instructional methods for comparison (non-VR) groups. Develop

testing materials.



PHASE II:  VIRTUAL WORLD DESIGN  (9 months, overlapping Phase I)

1.  Develop the virtual environment operating system and associated software

and hardware.

2.  With teachers, design the virtual algebra world.  Identify unique

instructional aspects of virtual world.

3.  Implement the virtual algebra world, with sample of first-year algebra

students for pilot testing, iterating development to meet instructional

objectives.

PHASE III:  EXPERIMENTATION  (9 months)

1.  Select sample of beginning algebra students.

2.  From MAT scores, course grades, and teachers identify those who are

strong and weak in math. Teach any lacking prerequisite skills and knowledge

for entry into the algebra world.

3.  Place students in virtual algebra world.

a.  Familiarize student with VR experience and with thinking  aloud.

b.  Allow free exploration of the world.

c.  Assign a task, depending on the current objective (Examples of

task: explore and manipulate the objects in the world, factor an expression,

solve an equation).

d.  Gather video, computational traces of activity, and think-aloud

data.

e.  Debrief student.

4.  Administer post and transfer tests.

5.  Analyze data.

a.  Analyze think aloud protocols.

b.  Determine whether students have mastered content.

c.  Interpret student success in terms of student aptitude.

6.  Carry out iterative revision from task 3.

a.  Modify instructional strategies.

b.  Modify virtual world.

7.  Test for transfer to academic and "real-world" knowledge and skills.

8.  Compare results from VR experiences to results from comparison groups.

a.  Analyze and abstract all research results.

b.  Publicly distribute refined Algebra World.

c.  Write reports.



We expect to share the results of our project through the normal publication

channels. Interest in VR among academic and professional colleagues has

already secured a presentation at the annual meeting of the American

Educational Research Association in San Francisco in April 1992. Both PI's

are active in professional associations, including AERA, AECT, ADCIS, ACM,

SIGGRAPH, and publish regularly in scholarly and professional journals. In

addition, it is our intention to place the software we develop into the

public domain. There is a great deal of public, professional, and academic

interest in VR and we expect our project to attract a great deal of

attention.

Attachment A:  Spatial Algebra
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