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[A synopsis of work I did with colleagues in modeling performance failures in

distributed systems.  My role was primarily that of implementation.]

Distributed processing poses several difficult technical problems.  A

Performance Maintenance System (PMS) that monitors the functioning of the

nodes in a distributed system is an integral component of a distributed

configuration, for these reasons:

1.  The PMS can identify failures and potential failures at a node of

the distributed system.

2.  The PMS can initiate recovery methods to restore partial

functionality.

3.  The PMS furnishes design information that contributes to the

achievement of proper distribution of system resources.

Our approach was to design a general architecture for Artificial Intelligence

(AI) based distributed system control, and to construct a simulation of a PMS

with limited capabilities within this general architecture.  The

architecture, which serves as the modeling environment, demonstrated real-

time functionality as an intelligent, distributed operating system.  The PMS

implemented within the architectural framework demonstrated a working

prototype of failure detection, and of (limited) diagnosis and recovery

techniques for controlling performance of a simulated distributed computation

system.

EXPANSION OF THE SIMULATION

The progress we have made in the characterization and implementation of

faults associated with intermittent hard failures of nodes has been at the

design level.  The primary problem is the incorporation of a representation

of time into a model of a distributed system.  An intermittent failure must

be communicated to other nodes as a state variation over time.  Consequently

this effort evolved into a study of the questions associated with the

representation of time, both locally and globally.  We are currently

considering the modeling of local time frames that are not necessarily

coordinated globally.  Another approach we are considering is the treatment

of time as a function rather than a parameter.  The representation of time is

a classically difficult problem in AI, and the constraints of the interim



funding period did not allow sufficient allocation for a full study of this

problem.

For the specification of intermittent hard failures, we recognized that we

needed to construct design tools to handle experimentation with time

variables.  Some effort has been focused on the design of these prototyping

tools.  One promising approach is the use of model-based representation and

reasoning techniques.  A node in a distributed system is represented by a

series of models that represent evolution over time.  Thus, the reasoning

system has access to a series of representations (models) of a particular

node, some of which may be characterized as functioning, others of which may

be failed.  Since the other nodes communicate with only one model at a

particular time, the functional state of that model can vary without

introducing interactions into the system.  In effect, intermittent failure is

modeled by the change of a state variable between two different times of

model construction.

ADDITIONAL CONTROL TECHNIQUES

The techniques we explored can be grouped under the concept of Qualitative

Model-Based Reasoning (QMBR).  Basically, the model-based approach focuses

the inference capabilities of a system on a collection of facts that provide

a model of the behavior of a node in addition to individual descriptive

parameters associated with that node.  We anticipate that this approach will

have several advantages:

1.  Models of a node would serve as the representational and inferential

basis for decisions about inter-node communication.

2.  Nodes can be modeled as composite (modular) components, that can be

viewed or addressed at various levels of detail.

3.  Messages between nodes can be modularized and lumped, decreasing the

number and the frequency of inter-node communications.

4.  Fault states can be represented abstractly, permitting both an economy of

representation, and an appropriate grain-size (abstraction level) from which

to characterize the fault.

5.  Different models or perspectives can be represented.  Thus, for example,

we could view a node from a logic-circuitry model or from a communication-

transmission model, specifying different functionalities depending on the

type of model.

Our initial investigation of this technique has been in a controlled testbed

environment on prototype hardware diagnostic problems (such as logic

circuitry).  



The selection of an appropriate model

There is no single model of reality that is suitable for all contexts. How a

component is modeled depends on the set of questions that are to be answered

about that model.  To aggravate matters, the possible models are not

necessarily independent of each other.  Our research in this area has

accentuated the care with which one must align the model with the intended

purpose.  For fault identification and diagnosis, a taxonomy of the expected

faults is critical.  Models designed to identify unbalanced processor loads

at a particular time, for example, may be poor for identifying time-varying

behaviors.

A related problem is the identification of the correct level of abstraction

for the analysis of a particular fault.  With the QMBR approach, a system can

be modeled by a hierarchy of models, each level of the hierarchy representing

a different level of qualitative abstraction or detail.  Generally, a fault

modeled at a given level will be represented at all the more detailed levels.

However, the expression of a fault at too refined a level of detail leads to

a clumsy and computational expensive representation, with a resulting

degradation of the system's ability to succinctly identify what to do to

correct that fault.  On the other hand, failure to model a fault state at a

sufficient level of detail may result in an inability to properly localize

the source of the failure.  The correct level of abstraction from which to

characterize a particular fault is critical; identifying this level appears

to be a domain dependent problem.

The complexity of representation and search

Closely allied with the question of appropriate models is the combinatorial

explosion associated with modeling fault states.  We have encountered this

phenomenon in our prototype diagnostic problems in two different forms:

a.  The number of fault states to be modeled.  Even in toy environments, the

number of ways things can go wrong is very large.

b.  The number of hypotheses about specific fault states.  The time evolution

of a fault state has a large branching factor.  It is difficult to know what

states a fault state will change to.

These complexity problems are common in AI reasoning.  Our preliminary

efforts to develop a diagnostic technique based on QMBR hold great promise in

addressing such problems.  In the Phase II effort we will extend this work on

QMBR as the basis for our real-time diagnostic and performance maintenance

inference techniques.



MANAGEMENT OF INDIVIDUAL NODES

The intent of this task was to design and incorporate management and control

specialist Knowledge Sources (KSs) within the control structure of each

simulated node.  These KSs would trigger whenever specific events occurred;

in turn, they would effect the control of node activity.  This task is design

intensive, since it is necessary to identify specifically the effects on

system management of each computational context.  We studied the design of

control regimes for these contexts which a node might encounter:

a.  load out of balance (compared to other nodes),

b.  incoming task assignments (from other superior nodes) and outgoing task

assignment (to inferior nodes),

c.  some simple types of failure at a node (total failure, goal abandonment

due to overload, goal abandonment due to insufficient time for completion of

task), and

d.  recovery processes for the failure types studied.

Preliminary results indicate that distribution of some control and management

responsibilities to individual nodes is both desirable and achievable.

Generally, the division of responsibility between a global control mechanism

and local node control mechanisms is context dependent.  We are working in

the direction of maximizing local control, and expect to be able to transfer

most global control mechanisms to local nodes.  The responsibility usually

invested in the global management system will be carried by the inter-node

communication protocols.  One promising avenue of research involves local KSs

that alter the priority of triggered control actions on the basis of changing

context.  Thus, for example, if a node experiences a heavy task loading,

local KSs would evaluate the agenda of triggered actions, and reprioritize

them to maximize the expected completion of critical tasks.  Another approach

involves the reestimation of probabilities associated with the hypotheses

that a node keeps about its current working environment.  The probabilistic

credibility of a hypothesis is locally recomputed, for example, as a function

of incoming messages.  This, in turn, leads to local control decisions

impacting the use of that hypothesis structure as control data.

Areas of focus for the integration of PMU hardware design with our software

simulation include:

1.  the set of messages necessary to convey fault identification information,

2.  the synchronization of timing and control across the nodes,

3.  the PMU monitoring protocols for error messages,

4.  the task-oriented message vocabulary, and

5.  the amount of message traffic necessary for fault diagnosis.



SUMMARY

Three specific tasks were addressed:

TASK 1:  Expansion of the simulation to include intermittent hard failures.

Design of fault models for intermittent hard failures raised questions about

the representation of time variables in the PMU simulation.  Designs

involving time were studied but not implemented.

TASK 2:  Qualitative model-based reasoning control techniques.

Prototype diagnostic problems were solved using the QMBR representation

technique.  Issues studied in depth were

a.  the selection of the appropriate model, and

b.  the complexity of representation and search.

Hierarchical levels of model abstraction was shown to be both a powerful and

useful representation technique.  

TASK 3:  Architecture integration.

We implemented a major redesign of the architecture, which included enhanced

uniformity and modularity of representation, and the development of rapid

prototyping tools.


