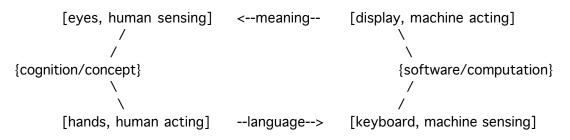
Notes on Psychology

Summary of design perspectives

Interface refers to the static look; interaction refers to the dynamic feel.


Machines are characterized by extreme similarity (replacability, predictability) Humans are characterized by extreme uniqueness (individuality, unpredictability) Therefore measure artifacts, but consult people.

Fundamental Principle of Design:
Fundamental Method of Design:Minimize cognitive load.
Measure and modif

Generations of Interface

Year	machine	substrate acces	s interi	face huma	an activity
1945-55	ENIAC	vacuum tube	knobs & dials	plugboard	plug wires, watch tubes
1955-65	PDP1	transistor	batch mode	countertop	punch cards, read print
1965-80	VAX	integrated circuit	t timesharing	dumb terminal	type keys, read terminal
1980-90	68020	VLSI chip	menu	desktop	click mouse, watch monitor
1990-99	RISC	multimedia chip	multisensory	simulation	touch, talk, watch
2000!	parallel	array	whole body	movement	act naturally

A Simple Model of Human-Computer Interaction

Note: connections in human between sensing and acting are two-directional connections in machine between sensing and acting are one-directional

Friendliness

People use conceptual models to guide their actions.

These models are not necessarily symbolic or encoded.

Friendliness of an interface: the match between conceptual model and input options common language from idea to human action to machine sensingFriendliness of a software tool: the match between conceptual model and display output common meaning from machine acting to human sensing to idea

1

Formalism

Computers use formal systems to guide their actions.

These models are necessarily symbolic and encoded.

A formal system:

- * a map between meaning and symbols that is invariant over symbol transformation
- * what you do as machine input does not undermine your understanding of the output
- * the software does not violate the user's model

Using a Formal System

[situation]	difficult	route>	[solution]	
I			/ \	
I			I	
(meaning in)			(meaning	out)
Í				
\backslash /	(blir	nd rules)	I	
[representation	n]easy	/ route>	[symbolic	result]

Interaction Styles

command line programming language	Progression is from symbolic	and abstract
semi-natural language		formal
menu	I	
forms		
icons		
windows	I	
direct manipulation	I	friendly
graphical interaction	\/	
inclusion	to spatial and	interactive

Text, Multimedia, and VR

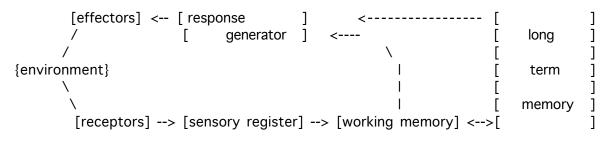
Property	text	multimedia	virtual environment
access	sequential	parallel	experiential
space	1D	2D	nD
transfer	slow	fast	immediate
representation	abstract	pictorial	as-if-real
reference	indirect	graphic	interactive
display	static	dynamic	inclusive
metaphors	symbolic	iconic	natural

•••••	e ei eyeneleyy	
1900	introspection (t	hought)
1920	/ behavioral (action)	v psychoanalytic (fantasy)
1950	l cognitive (information)	ا humanistic (potential)
2000	l constructive (organism)	ا organizational (task)

Cognitive Science

Schools of Psychology

Cognition is information processing (not sensing, intuition, emotion, action, faith)


\vee	\vee
thinking	psychology
remembering	linguistics
understanding	neuroscience
learning	computer science
languaging	philosophy
perceiving	

Hilary Putnam

1960: the father of functionalism. The mind is functionally equivalent to a computer. 1990: Functionalism is completely false.

Meaning is holistic Meaning is normative Concepts depend on evolution Mental states do not exist.

Information Processing Model of Human Cognition

The VR Paradigm Shift

 from We adapt to digital processes.
 to Digital processes adapt to us.
 through broader information interaction activity within an environment, multiple models of intelligence multiple sensory modalities, intelligence amplification (interactive problem solving)

Mechanical/information models

Old technology models embedded in new technology capabilities mismatch of affordances

Cognitive/implementation models

Software design is toward cognitive not implementation model so software engineers don't design analogy to carpenters vs architects use hammer to buy a house

ask: what is goal of interaction how to make task easier how to hide implementation details usability is orthogonal to efficiency

Examples of

calendar as single page of paper vs scroll tabs as mechanical rather than spatial trains and no moving camera in early film horseless carriage looks like carriage early tv as live radio

Shifts

visual <- graphical user-centered <- machine-centered sensory <- silicon interactive <- symbolic

reduce cognitive complexity: vision is subconscious text is conscious

levels of human understanding perceive respond, recognize evaluate apply understand, analyze, synthesize

Models of computer

computer levels of architecture hierarchy of abstraction specification languages machine language specification vonNeumann tradeoff circuit behavioral specification hierarchy of realization specification languages

design model	abstract behavior
architecture model	abstract structure
performance model	abstract efficiency
correctness of behavior	functionality
efficiency of behavior	performance
actual behavior of physical circuit	reality

bit, word, instruction, program, message, application, user interface

Program levels, hierarchy

User interface: metaphoric system which makes design interface accessible to non-experts.

Design interface: hidden symbolic system which provide conceptual language for non-expert human to specify design abstractions.

Design abstraction: pure symbolic system which expresses a human objective

High-level programming language: symbolic system which closely models expert human models (math) and hides machine needs [Often math and algorithm are confused.]

Programming language: symbolic system which expresses assembly steps in human writable form. Does not cleanly differentiate between requirements of the human and those of the machine.

Assembly language: symbolic system which expresses machine language in process steps over specific logic function systems

Machine language: symbolic system which transfers low level machine instructions into processes within designed physical logic function systems

Logic function systems: physical system, integrated networks of gates

Gates: physical system represented by dnet graph format which has parens and pun components

Transistors: ignored physical system, assumed to be bundled in gates

Physiology

The human sensorium

cranial:	smell, see, taste, hear, motion, balance
integumentary:	touch, pressure, cold, heat, pain
muscular:	position, tension

Retinal variables

size, value, hue, orientation, texture, shape, position

Gestalts

proximity		
similarity		,,,,,,
continuity		
closure		()()
area	(())	
symmetry		<<<::>>>>

Varieties of Meaning

physical semantics:

map between digital representation and activity in the physical world virtual semantics:

map between digital representation and perceived virtual world activity natural semantics:

hiding the digital layer, map between physical activity and virtual consequence

Environments

qualities
 partially observable
 strongly parallel
 apparently infinite
 turns into an object when viewed from outside
coordination of interaction between contained entities
hierarchy of relative containment systems
holds global attributes
 consistency (common time)
 continuity (metric and origin of space)
 linearity
 flows and fluids
 granularity
 invariants (laws of the local universe)