
 Programming Methods

1

JAVA

Features

simple

object-oriented (relatively pure oo, not procedural + oo extensions)

distributed

both interpreted and compiled instruction sets

robust

secure

architecture neutral

portable

high-performance

multi-threaded

dynamic

Object Orientation

class = abstraction

class variables

class functions

instance

fields are instance variables

methods are functions

hierarchy

subclasses = design by difference

inheritance

overloading

constructors

accessors

encapsulation (public, package, protected, private)

Implementation Features

virtual machine

byte-code = machine instructions for a virtual machine (VM)

VM maps closely to most native hardware machine

call-by-value parameter passing (compare to call-by-name, call-by-need)

the value of an object is its reference

copies binding into parameter field of method

automatic garbage collection

streams

type-safe references (strong typing)

exception handling

multiple threads (multitasking, lightweight)

simultaneous processes and shared objects

locks; user provided deadlock avoidance

automatic switching, scheduling, synchronization

 Programming Methods

2

Language Features

base data-types are not objects

first-class strings, read-only

international Unicode character set

first-class exceptions, checked by compiler

HTML inline interface

first-class network interface (URL, TCP, sockets)

protection and security model

class Object is root

interface concept for limited multiple inheritance

no pointers (use references instead)

no global variables (use root classes)

no goto (use catch/throw and labels)

no operator overloading (static basic operators)

no delete

Language Keyword Features

final: constants, unforgable classes, non-overridden methods

this: reference to self object

new: constructs a new object or class

. : accessor function

[] : arrays

{ } : sequential block

super: references things from the superclass(es)

try-catch-finally: exception handling

labeled break: for skipping sequences and exiting loops

Packages

class libraries

functionality groups

user interface code provided

user provide application specific abstract data types

Provided Java API Packages

java.lang the language

java.net networking

java.io streams and files

java.util utilities, higher-order data-structures

(enumeration, vector, stack, dictionary, hashtable)

java.awt Abstract Window Toolkit

java.awt.image image processing

java.awt.peer interface with native interfaces

java.applet basic applets

 Programming Methods

3

Interfaces

unique in Java

separate design inheritance from implementation inheritance

can inherit a contract without inheriting an implementation

tie together dissimilar classes for object reference

subclasses provide code for all interface methods

multiple inheritance (classes can implement multiple interfaces)

no root, does not default to Object root-class

constrained to:

abstract class (no instances, only subclasses)

no code, only abstract method declarations

static and final variables

public methods

Exceptions

catch and throw handlers

programmer declared compile-time errors

cleanly checks for errors without cluttering code

try/catch/throw environment

finally clean-up

Protect ion

runtime system does not permit memory access

public full access by all classes

package access by classes in common library

protected access by subclasses only

private no access by other classes

Streams

usually paired as InputStream, OutputStream

Piped, Filter, Buffered

StreamTokenizer

System Programming Classes

Runtime (state of Java at runtime)

Process (running java process)

System (state of environment)

Math (standard computations)

Native (foreign function interface)

 Programming Methods

4

Abstract Window Toolkit (AWT)

embedding within the local browser

standard component set

button, checkbox, choice, label, list

scrollbar, textarea, textfield,

windows, menus, dialog boxes

containers

graphical collections of components

layout management

event handling

mouse clicks and movements

keyboard

graphics

drawing, color, fonts, clipping, image handling

Sample HTML Applet Call

<HTML>
<HEAD>
<TITLE>Applet Page</TITLE>
</HEAD>
<BODY>
<H4>This is an example of a Java applet:</H4>
<HR> <APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=50> </APPLET> <HR>
</BODY>
</HTML>

Sample Applet

import java.applet.Applet;
import java.awt.Graphics;
public class MyApplet extends Applet

{public void paint(Graphics g)
{ g.drawString("Hello world.", 5, 10); } }

Web Resources

http://java.sun.com/ ...from the Source

http://www.rpi.edu/~decemj/works/java.html/ a Java book author

http://www.gamelan.com/ registry of programs

http://sunsite.unc.edu/javafaq/javafaq.html FAQs

http://www.well.com/user/yimmit/ links to resources

http://www.natural.com/ major developer

http://www.io.org/~mentor/J__Notes.html more resources

http://www.acm.org/~ops/java.html ACM resources

http://www.yahoo.com/Computers/Languages/Java/ search engine resources

http://rendezvous.com/Java/hierarchy class diagrams

 Programming Methods

5

DEFINITIONS

Abstract (oo)

a class which is intended to have no instances

Accessor (prog)

special function to retrieve hierarchical data

Applet (java)

a dynamic, interactive program that runs inside a Web page

Attr ibutes (prog)

the instance variables of an object

Bytecode (java)

machine instructions for a virtual machine

Casting (java)

changing the type of data. Coercing.

C lass (oo)

template which abstracts objects with similar features

C l i p p i ng (graphics)

redrawing within a container

Constructor (prog)

special method for creating and initializing new instances

Contract (java)

semantics of the set of methods, no class implementation

Encapsulat ion (oo)

limited access to class methods and fields (public, package, protected, private)

E r r o r s (java)

Runtime violation of system constraints; usually not recoverable.

Exceptions (java)

Compiler checked violations of typing, ranges, assignments; usually catchable.

F i n a l i z e r (java)

special method for closing and reclaiming old instances. Inverse of constructor.

Garbage Collection (java)

automated management of memory

Inher i tance (oo)

hierarchy of included functionality; design and implementation by difference.

Single inheritance: inherit from only one superclass (tree)

Multiple inheritance: inherit from several superclasses (DAG)

 Programming Methods

6

Instance (oo)

concrete digital objects with bound properties. Same as Object.

Interface (java)

limited type of class which provides multiple inheritance

abstract class, no method implementation, static and final variables

Method (oo)

the functions within an object or a class

Ove r r i d i ng (oo)

subclass methods which redefine superclass methods

Package (oo, java)

set of classes, usually with functional similarities. Same as Class Library

Po l ymorph i sm (oo)

objects belong to all classes in their class hierarchy

S ignature (prog)

the abstract form of a method (name, type of object returned, parameter list)

Statement (prog)

A program component. Expressions return a value; declarations define a scope.

Streams (prog, java)

A communication path between data source and destination

Subc lass (oo)

the class(es) below a class in the class hierarchy

Superc lass (oo)

the class(es) above a class in the class hierarchy

Threads (prog)

basic unit for multitasking, used for long processes

Var iable (prog)

the data within an object or a class

Virtual Machine (java)

software which emulates a physical machine

