
Programming Methods

1

ALGOL-60 and ALGOL-68

ALGOL-60 was developed cooperatively between the US and Europe, with the goal of

standardizing an international general-purpose programming language.  Its primary design goal

was portability.  Since I/O devices were nowhere close to standization, ALGOL depended upon

external libraries for device drivers.  That is, ALGOL had no read or print statements.

The language definition is 15 pages long, exemplifying brevity and clarity through the use of

BNF descriptions.  ALGOL-60 introduced several central programming tools, in particular

Hierarchical structure evolved into structured programming:

Typed procedures (functions)

Stack as central runtime data structure
managed by block structuring;  dynamic array sizing

Compound statements (regularity)

any valid operation can be written wherever variables can be written

block structure and nested scoping

implicit inheritance of accessible (within scope)  variables

No magic values
name lengths and array size and dimension are not restricted

Strong typing
all forms are typed without ambiguity

Generalized control structures
while, until, for, recursion

Free Format
layout of the program is not specified by  the language; reserved words are sacred

Implications of Block Structuring

Nested blocks introduced the issue of variable scoping.

Blocks enhance modularity and maintenance of large programs.

Blocks permit efficient storage management of stacks.

Symbol tables can be factored into smaller units for each block.

Symbol tables are accessible to the user, which compromises portability.

Blocks need to be bracketed to delineate start and end points.  Begin and end are

introduced as generic brackets.  In ALGOL, begin-end brackets both group

statements and delimit blocks.  This undermines orthogonality.



Programming Methods

2

Dynamic and Static Scoping

Static scoping:  procedure definitions are called in the defining context at compile-

time.  Variable bindings can always be determined by reading the source code.

Dynamic scoping:  procedure definitions are called in the calling environment at run-

time.  Variable bindings depend on dynamic context.  Example:

begin integer m; ;outer block
  procedure P;
    m := 1;
    begin integer m;
      m := 2;
      P ;first call to P
    end;
  P ;second call to P
end

In static scoping, the assignment m:=1 refers to the variable m in the outer block.  Static means

that no matter when a particular procedure is called, the binding context of its variables does

not change.  Thus both calls to procedure P use m=1.

In dynamic scoping, the assignment to m depends upon the calling context.  The first call to P is

in the context of m=2, thus it uses that value.  The second call to P is in the outer context where

m=1.  [Note that the value m=2 is changed to m=1 immediately upon entering P.]

Parameter Passing

Pass by value:  the actual value of the variable being passed to a procedure is copied

into the formal parameter of the procedure.  Secure, but inefficient for arrays.  For input

variables only.

Pass by name:  the name of the variable being passed to a procedure is copied into the

formal parameter of the procedure.  Powerful, but dangerous and expensive.

Each type of parameter passing differs in when it looks at the value of the variable being passed

(the actual) into the procedure (the formal parameter):

Pass by value:  When a procedure is called, the formal is bound to the value of the actual

as a snapshot.  Later changes in the actual will not be seen by the procedure. Early inspection

time.

Pass by reference:  When a procedure is called, the formal is bound to a reference to the

actual.  The reference cannot change (i.e. the location of the actual can not be changed), but the

value it refers to can change.

Pass by name:  When a procedure is called, the formal is bound to special address-

returning function (a thunk).  Although the thunk does not change, the address it  returns and

the value in the address location can vary.  Very late inspection time.


