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Versions of Factorial

Focal concepts:

Each of these encodings of the factorial function is functionally equivalent.  How they

achieve the functionality differs.

Almost all are legitmate Mathematica code.  Since the core process in Mma is the same

for each encoding, we have a demonstration that all are statically equivalent.  Dynamically, ie

how the code runs, all are different.

The style of encoding should match as closely as possible the form of the natural

problem.  Second, the style should match the coder’s natural way of thinking about the problem.

Types of dynamic differences include:

•  Syntactic sugar:  the same dynamic behavior (ie the same language).  Macros

expand the sugared notation at read-time into standard notation.  Eg:

(a + b)  ==>  +[a,b]

declare a=5;  (a + b)

•  Functional syntactic sugar:  shorter and specialized versions of functions.  The

compiler usually standardizes these variants.  Eg, all of the various loop constructs are the

same.

for i=1 to n do Process[i]

i:=0; (do Process[i]; i:=i+1 until i=n)

dotimes[n, Process[#]]

StreamProcess[IntegerStream[1, n]]

•  Functional model difference:  different processes for achieving the same

functional objective.  Most of these compile into different machine instructions, but a good

optimizing compiler might standardize some of them.  Eg:  iteration vs recursion vs mapping

do[i from 1 to n, acc from nil, Process[i, acc]]

(if i=n, acc, Process[i-1, F[acc, i]])

(if i=n, 0, F[i, Process[i-1]])

map[Process, {1,i,n}]
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•  Operational difference:  different engines achieve the same objective but use

different operational characteristics.  Eg:

F[1]=1; F[n]= G[n, F[n-1]]

(if test[n] then (res:=F[i], ++i) else res)

(send F, n)

•  Mathematical difference:  different mathematical computations achieve the same

objective but use different models.  Eg:

F[n] = G[n] eg Fac[n]=Gamma[n+1]

Decode[Process[Encode[F,n]]]

When (F[Guess[n1] - F[Guess[n2]] = <small>), F[n1]

•  Level of Implementation difference:  different processes occur at different

levels of abstraction.  Eg:

2 + 5 = 7

010 + 101 = 111

r1=Load[i0]; r2=Fetch[j0]; r3=Add[r1,r2]; Store[r3]

b0 = xor[i0,j0]; b[1] = xor[i1,j1]

VERSIONS

1.  proceduralFactorial[n] :=
if ( Integer[n] and Positive[n] )

then
Block[ {iterator = n,

 result = 1  },
    While[ iterator != 1,

result := result * iterator;
iterator := iterator - 1 ];

    return result]
else  Error

2.  sugaredProceduralFactorial[n] :=
Block[  {result = 1},
    Do[  result = result * i, {i, 1, n} ];
    result]
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3.  loopFactorial[n] :=
{ For[ i=1 to n, i++, result := i*result ];
  result }

4.  guardedFactorial[n, result] :=
Precondition:  Integer[n] and Positive[n]        /also end condition
Invariant:  factorial[n] = n * factorial[n - 1]
Body: guardedFactorial[ (n - 1), (n * result) ]
PostCondition:  result = Integer[result] and Positive[result]

and (result >= n)

5.  assignmentFactorial[n] :=
{ product := 1;
  counter := 1;
  return assignmentFactorialCall[n, product, counter] }

6.  assignmentFactorialCall[n, product, counter] :=
if[ (counter > n)

then
return product

else
{ product := (counter * product);       /error if these are
  counter := (counter + 1);           /in reverse order
  return assignmentFactorialCall[n, product, counter] } ]

7.  recursiveFactorial[n] :=
if[  n == 1, 1,  n*recursiveFactorial[n - 1] ]

8.  rulebasedFactorial[1] = 1;
    rulebasedFactorial[n] := n * rulebasedFactorial[n - 1]

9.  accumulatingFactorial[n, result] :=
if[ (n = 0)

then
return result

else
return accumulatingFactorial[ (n - 1), (n * result) ]

10. upwardAccumulatingFactorial[product counter max] :=
if[ (counter > max)

then
return product

else
return upwardAccumulatingFactorial[ (counter * product)

(counter + 1)
max ] ]
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11. mathematicalFactorial[n] =
Apply[ Times, Range[n] ]

12. generatorFactorial[n]
Times[ i, Generator[i, 1, n] ]

13. combinatorFactorial :=
Y f< n< COND (=0 n) 1 (* n (f (-1 n))) >>

14. sugaredCombinatorFactorial =
S (CP COND =0 1) (S * (B FAC -1)))

15. integralFactorial[n] =  Gamma[ n + 1 ]  :=
integral[ 0 to Infinity, (t^n * e^(1 - n)), dt ]

16. streamOfFactorials  =
    streamAttach[ 1 streamTimes[streamOfFactorials streamOfPositiveIntegers] ]
streamOfPositiveIntegers =
    streamAttach[ 1 streamBuild[ Add1 CurrentStreamValue ] ]

17. JamesCalculusFactorial[n] =
Decode[Standardize[Do[Stack[Encode[i], acc] {i,1,n}]]]

Stack[jf, acc] =
Subst[jf UnitToken acc]

From Abelson and Sussman, Structure and Interpretation of Computer Programs

18. abstractMachineFactorial =  <p385>

19. registerMachineFactorial =  <p511>

20. compiledFactorial = <p596-7>


