
Data Structures and Algorithms

1

Mathematica

The Philosophy

The programmer’s time is more valuable than the processor’s time. Thus, the

architecture is interpreted (interactive), real-time, and goal-oriented.

“Programs you write in Mathematica may nevertheless end up being faster than those you write

in compiled languages” p.506

“The internal code of Mathematica uses polynomial time algorithms whenever they are known.”

p.63

Mathematica accepts code in all of the modern programming paradigms.

“All the approaches are in a sense ultimately equivalent, but one of them may be vastly more

efficient for a particular problem, or may simply fit better with your way of thinking about the

problem.” p.487

“As a matter of principle, it is not difficult to prove that any Mathematica program can in fact

be implemented using transformation rules alone.” p.503

The Mathematica Program

a general purpose computational engine for

numerical calculations (arithmetic)

symbolic transformations (algebra)

graphic display (geometry)

a modern programming language with multiple styles

procedural

functional

logical

object-oriented

rule-based

an integrated tool

C, TeX, UNIX, Postscript

Data Structures and Algorithms

2

Everything is an Expression

“At a fundamental level, there are no data types in Mathematica. Every object you use is an

expression, and every function can take any expression as an argument.” p.496

x+y Plus[x,y]
120 Integer[120]
2ab Times[2,a,b]
{a,b,c} List[a,b,c]
i = 3 Set[i,3]
x^2+2x+1 Plus[Power[x,2],Times[2,x],1]

An undefined symbol is itself, providing functional transparency and WYSIWYG debugging

The Meaning of Expressions

F[x,y] F is the head. x,y are the contents.

Apply function F to arguments x and y.

Do action F to objects x and y.

The label F points to elements x and y.

The object-type F has parts x and y.

The arguments x,y are of data type F

The head can both act on its contents (as a function) and maintain the structure of its contents

(as an object), depending on context.

L i s t s

The List container is used for all collections and all database entries:

data record {John, 555-1234, j@mma.com}
matrix {{11,12},{21,22}}
set Union[{a,b},{a,c}] ==> {a,b,c}
graphics spec Line[{{0,1},{1,1},{1,0}}]
stream {1,2,3,...}
structure template {_,{_,_},{{_,_},...}}

Data Structures and Algorithms

3

The Fundamental Principle of Computation

Take any expression and apply transformation rules until the result no longer changes.

1. Reduce head

2. Reduce each element base case arithmetic

3. Standardize

4. Apply user defined rules inductive case algebra

5. Apply built-in rules.

6. Reduce the result. recursion

Patterns

A pattern is a class of expressions with the same structure.

_ “underbar” means any expression

x_ any expression locally named x
x__ any sequence of expressions (double underbar)

x___ any sequence, including none (triple underbar)

x_h any expression with head = h.

Examples:

f[n_] the function f with a parameter named n
2^n_ 2 raised to any power

a_ + b_ the sum of two arbitrary expressions

{a__} a list with at least one element

Object-oriented Organization

square/: perimeter[square[n_]] := 4*n
square/: area[square[n_]] := n^2
circle/: area[circle[r_]] := Pi*r^2

The outer “function” transforms the inner “argument”.

The inner “object” contains a private outer “message handler”.

The outer “matrix” is indexed by the inner “accessors”.

