
Data Structures and Algorithms

1

Search Algorithms

Search is an approach to finding desired data in the presence of a collection of other data. The question

is which subgroups of data to examine first. The purpose of sorting and other data ordering techniques

such as array indexing, sorted lists, binary search trees, hash tables, and priority queues, is to make

search more efficient.

Data Structures

dictionary: a collection of searchable records

record: information associated with a search key

key: data field of search

Types of Search

sequential: look through the data array until the search object is found

average cost = N/2 comparisons

can use any of the sorting algorithms to improve this search algorithm

binary: divide and conquer, analogous to quick-sort, assumes ordered keys

maximum cost = lnN+1 comparisons

variant is iinterpolation search, guess location of target as entry

rather than middle of dictionary.

binary search tree: build a balanced tree so that comparisons are always

lnN in efficiency

maintenance of the balanced tree structure is expensive.

This technique trades search efficiency for data sorting efficiency.

worst case is when files are in order (or reverse order)

Techniques for balancing tree search

 22-3-4 trees: have multiple keys associated with each node

which separate children into organized groups

worst case = lnN+1 nodes

red-black trees: use an extra bit to encode 2-3-4 nodes into binary nodes

extra key is “red” or “black”, black meaning “smaller than” or

“greater than” the node key and red meaning “split 3 nodes into 2”.

Generic Search

When searching an organized data structure such as a list or a tree, there are a variety of

strategic approaches, falling into three broad categories:

brute-force, iterative, and heuristic.

Data Structures and Algorithms

2

Brute force techniques depth-first

breadth-first

Iterative techniques iterative deepening

iterative broadening

Heuristic techniques hi l l -cl imbing

beam search

best-first

adversarial search

For depth-first search, the tree is descended until a leaf node is reached, then the search backs

up to the nearest node with has not been explored. The trouble with depth-first search is that

some descents may go on for a long time, while most of the rest of tree remains unexplored. One

way to manage the exploration is to collect a list of children nodes to be explored, putting the

newest ones on the top of a priority queue.

For breadth-first search, the tree is descended one level at a time. All nodes at each level are

explored before going on to the next deeper layer. The trouble with breadth-first search is that

the desired leaf nodes may be the last to be explored. One way to manage breadth-first search is

to collect a list of children nodes to be explored, putting the newest ones (for the next level) on

the bottom of a priority queue.

Iterative techniques are designed to avoid the problems with pure depth and breadth-first

searches. The idea is to elect to go to a particular depth, and then change from depth-first to

breadth-first. Similarly, a search could elect to completely explore only those nodes with a

limited fanout, or breadth, before converting to depth-first. One way to manage iterative

approaches is to collect a list of children nodes to be explored, putting the desired nodes on the

top of the priority queue, and the postponed nodes on the bottom of the queue.

Heuristic approaches depend upon an evaluation function computed for each node. Nodes to be

explored are placed on a priority queue in order of their value. For hill-climbing, the

evaluation function estimates the remaining distance to the bottom of the tree, in an attempt to

improve depth-first search. Analogously, beam search selects the best nodes at the same level,

attempting to limit breadth-first search. Best-first selects the node with the best evaluation,

regardless of depth or breadth.

Finally, adversarial search applies to situations in which search turns are taken by two

competing opponents (like in checkers and chess). The evaluation function estimates the best

strategy, taking into account opposing choices as well as positive moves. One way to think of

adversarial search is that a tree is being searched, but every other move is directed by an anti-

search, which attempts to make the search fail.

Graph Search

Techniques for dealing with graph data structures generalize those for tree data structures,

since trees are a special case of graphs.

