
Data Structures and Algorithms

1

What is an Algorithm?  Versions of Factorial

What is an algorithm?  The text offers this:  “An algorithm is a clearly specified set of

instructions the computer will follow to solve a problem.”  This is essentially the same

definition as given by one of the first books on algorithms:   Aho, Hopcroft and Ullman, Data
Structures and Algorithms (1983).  The essential ingredients of an algorithm:

1.  A sequence of steps

2.  An unambiguous specification for each step

3.  The steps can be carried out mechanically, ie by a machine.

4.  Finite and terminating.

The above definition is bias toward a procedural model of computation.  As well, it is blind to

compiler and machine code transformations.  What, for instance,  does “clearly” mean?  An

algorithm fits the illusion that the user has about the computational process?  An algorithm has

a unique sequence of machine instructions?  An algorithm is a mathematical construct divorced

from implementation details?

Why a sequence of steps?  Are parallel, distributed, and concurrent algorithms not really

algorithms?  Recall that *all* silicon processes occur in parallel.

Why unambiguous?  A proof, for example, can take many different forms, using completely

different steps and theories, but still arriving at the same result.  Are non-deterministic,

learning, chaotic, quantum, and other modern computational techniques not using algorithms?

Why mechanical?  This one is easy:  because Computer Science studies machines.

Why finite?  When you write a control loop that waits for input, it is an algorithm?

Are algorithms different than data structures?  Consider what some founders of Computer

Science (Wirth, Djkstra, Hoare) said thirty years ago:  “Decisions about structuring data

cannot be made without knowledge of the algorithms applied to the data and that, vice versa, the

structure and choice of algorithms often strongly depend on the structure of the underlying data.

In short, the subjects of program composition and data structures are inseperably

intertwined.”  (in Wirth, Algorithms + Data Structures = Programs (1976), pxii)

Why then do object-oriented, logical, functional, and mathematical text books not mention

algorithms at all?  How does algorithm analysis work if it does not include notions of data

structure or underlying engine or application context?

Algorithm analysis assumes that algorithms are mathematical procedures which have clearly

definable upper limits on resource usage.  The upper limits on algorithmic complexity provide

little useful information about processes;  algorithm analysis primarily tells us whether or not

an encoding is tractable or intractable.

Tractable algorithms do not require exponentially increasing resources as problem size

increases.  Finding out whether or not an arbitrary Boolean expression has any solutions (the

satisifability problem) is thought to be an intractable problem.  And this is the simplest of all

non-trivial mathematical questions in the simplest of all non-trivial mathematical domains.

Recall that Boolean computation is all that occurs at the silicon level of computation.  Why can

algorithm analysis not even tell us if satisfiability is tractable or intractable?



Data Structures and Algorithms

2

Examine each of these algorithms for computing the Factorial function.  Which is best?  Which

is most efficient  (this is a trick question, why?)?  Which are algorithms?

proceduralFactorial[n] :=
if ( Integer[n] and Positive[n] )

then
Block[ {iterator = n,

 result = 1  },
    While[ iterator != 1,

result := result * iterator;
iterator := iterator - 1 ];

    return result]
else  Error

sugaredProceduralFactorial[n] :=
Block[  {result = 1},
    Do[  result = result * i, {i, 1, n} ];
    result]

loopFactorial[n] :=
{ For[ i=1 to n, i++, result := i*result ];
  result }

assignmentFactorial[n] :=
{ product := 1;
  counter := 1;
  return assignmentFactorialCall[n, product, counter] }

assignmentFactorialCall[n, product, counter] :=
if[ (counter > n)

then
return product

else
{ product := (counter * product);       /error if these are
  counter := (counter + 1);           /in reverse order
  return assignmentFactorialCall[n, product, counter] } ]

guardedFactorial[n, result] :=
Precondition:  Integer[n] and Positive[n]        /also end condition
Invariant:  factorial[n] = n * factorial[n - 1]
Body: guardedFactorial[ (n - 1), (n * result) ]
PostCondition:  result = Integer[result] and Positive[result]

and (result >= n)

recursiveFactorial[n] :=
if[  n == 1, 1,  n*recursiveFactorial[n - 1] ]



Data Structures and Algorithms

3

rulebasedFactorial[1] = 1;
rulebasedFactorial[n] := n * rulebasedFactorial[n - 1]

accumulatingFactorial[n, result] :=
if[ (n = 0)

then
return result

else
return accumulatingFactorial[ (n - 1), (n * result) ]

upwardAccumulatingFactorial[product counter max] :=
if[ (counter > max)

then
return product

else
return upwardAccumulatingFactorial[ (counter * product)

(counter + 1)
max ] ]

mathematicalFactorial[n] =
Apply[ Times, Range[n] ]

generatorFactorial[n]
Times[ i, Generator[i, 1, n] ]

combinatorFactorial :=
Y f< n< COND (=0 n) 1 (* n (f (-1 n))) >>

sugaredCombinatorFactorial =
S (CP COND =0 1) (S * (B FAC -1)))

integralFactorial[n] =  Gamma[ n + 1 ]  :=
integral[ 0 to Infinity, (t^n * e^(1 - n)), dt ]

streamOfFactorials  =
    streamAttach[ 1 streamTimes[streamOfFactorials streamOfPositiveIntegers] ]
streamOfPositiveIntegers =
    streamAttach[ 1 streamBuild[ Add1 CurrentStreamValue ] ]

From Abelson and Sussman, Structure and Interpretation of Computer Porgrams

abstractMachineFactorial =  <p385>

registerMachineFactorial =  <p511>

compiledFactorial = <p596-7>


