
Data Structures and Algorithms

1

Complexity Workshop

Here is a small example of how to think about and work with algorithm complexity.

Data Structure Efficiencies

The elementary unit of analysis is “memory accesses”, which may include storing an item

(constructors), locating an item (recognizers), and retrieving an item (accessors).

Arrays: A[i] given index i, go straight to A[i] O[1]

Trees: ((a b)(c d)) a series of branching decisions locates item i O[ln n]

Lists: (a b c) look through all items for i O[n]

The Memory Hierarchy (1999 technology)

Type typical access time (^10 ns) typical capacity (bytes) (^2 bits)

registers 2-5 ns 0 64-512 9-12

primary cache 4-10 ns 1 8K-256K 16-21

secondary cache 20-100 ns 2 512K-4M 22-25

main memory 50-1000 ns 3 8M-4G 26-35

disk 5-15 ms 7 500M-1T 32-41

tape 1-50 s 10 unlimited

1 ns = 10^-9 s 1 ms = 10^-3 s

Pragmatics of Nested Loops

Nested loops effectively do a brute-force search over all items. Consider searching a three

dimensional matrix, indexed by (i,j,k):

for each i do
 for each j do
 for each k do
 <process>

If every item must be processed (e.g.: a pixel-based graphics display process), then the loops

are unavoidable, and the best case is also the worst case.

Data Structures and Algorithms

2

However, if one item must be found out of n, then we can avoid some effort. The two effort

avoidance techniques are

data structure organization and smart, knowledgeable search

When is Organization better than Knowledge?

Search is an exponential process. Ignoring effort other than direct search, and assuming the

data can be structured as a binary decision process, then

Search-effort = 2^n n is number of items in search pool

How deeply can loops be nested to have the same efficiency as search? Ignoring polynomial

coefficients:

Loop-effort = n^k k is the number of nested loops

Point of equal effort:

2^n = n^k

Solving for k:

n/ln n = k

Table of n/ln n:

ln n n n/ln n

 1 2 1
 2 4 2
 3 8 2.7
 4 16 4
 5 32 6.4
 6 64 10
 7 128 18
 8 256 32
 9 512 57
10 1024 102
11 2048 186
12 4096 341

Conclusion: worst case search through even small sets is worse than many nested loops.

Pragmat ics

In fact, worst case search requires every decision to be incorrect. This is very difficult to

achieve, since it requires perfect anti-knowledge.

Data Structures and Algorithms

3

Let P be the fraction of times that a incorrect decision is made. For example, in a sorted binary

tree, the correct decision is made every time, since the structure of sorting gives the needed

contextual information. In the perfectly sorted case, with no search errors:

n decisions requires ln n steps, 2^n decisions requires n steps.

Conclusion: Sorting turns search into looping

In general, making P correct decisions:

2^(nP) = n^k

Pn/ln n = k

Here is how knowledge effects search effort:

all wrong ha l f /ha l f 1 in 10 1 in 100 wrong
P=1 P=2^-1 P=2^-3 P=2^-7

ln n n n/ln n

 1 2 1
 2 4 2 1
 3 8 2.7 1.4
 4 16 4 2
 5 32 6.4 3.2
 6 64 10 5 1.2
 7 128 18 9 2
 8 256 32 16 4
 9 512 57 29 7
10 1024 102 51 13
11 2048 186 93 23 1.5
12 4096 341 170 42 2.7

When we guess correctly half of the time, the cross-over point between search and brute-force

looping is at about 30 items for k=3. As errors decrease to 1 in 100, the number of items

increases to over 4000. Thus, partial knowledge about the location of an item greatly increases

the number of items that can be searched before a search strategy becomes less desirable than

brute-force looping.

