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Abstract Data Structure:  SETS

Sets (unordered collections of unique objects) are a fundamental mathematical concept.  Pure

set operations are impossible to implement on a serial processor.  Note that the model of sets is

isomorphic with the model of propositional calculus, with the membership operator added.

A sset implementation with the functions Insert, Delete, and Member is called a dictionary.

Mathematical model:

S = {x| <statement about x>} extensional, defined by common property

S = {a,b,c,...} intensional, defined by naming the members

empty set: not (x in S) forall x

membership: x in S  =def=  x=s1 or x=s2 or x=s3 or ...

subset: if (x in S1) then (x in S2)

union: (x in S1) or (x in S2)

intersection: (x in S1) and (x in S2)

difference: (x in S1) and not(x in S2)

recursive set membership:

x in S  =def=
not[x=empty-set] and (x = get-one[S] or (x in rest[S]))

Implementation functions:

Make-empty-set
Make-set[elements]
Insert[element,set]
Delete[element,set]
Equal[set1,set2]

Cardinality[set] = count of members

Characteristic function F:

(F[x] = 1 iff x in S)  and  (F[x] = 0 iff not(x in S))

Implementation using Enumeration:  the named members of the set can be stored as any of the

following:  array, list, linked list, queue, stack, bit-array, hash table, balanced tree, binary

search tree, etc.

Implementation using Predicates:  the common property of set members can be implemented as a

characteristic function, accessor function, or regular function.
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Algebraic Specification of Sets

This algebraic specification is also a functional implementation (i.e. code) in a programming

language designed for formal verification.  The language (called ASL for Algebraic Specification

Language) is programmed by specifying the abstract domain theory for a datatype.  All

implementation decisions are made by the compiler.  The engine which operationalizes the code

is very much like Prolog, that is, it is a logic pattern-matching engine with patterns compiled

from the input specifications.

New functions and capabilities are added by extending a theory, that is, by building another

theory which uses the base theory definitions and axioms.  Application code consists of

mathematical formulas to be evaluated.

theory    TRIVIAL   is

   sorts    Elt

endtheory    TRIVIAL

module    BASICSET [ELT :: TRIVIAL]   is

   sorts    Set

   functions  
Phi, Universe : Set

{_}: Elt -> Set

_ symmetric-diff _ : Set, Set -> Set
(  assoc     comm     ident   : 0)

_ intersect _ : Set, Set -> Set
(  assoc     comm     idem       ident   : Universe)

   variables  
S,S’,S’’: Set
Elt,Elt’: Elt

   axioms   
(S sym-diff S) = Phi

{Elt} intersect {Elt’} = Phi  :-  not(Elt = Elt’)

S intersect Phi = Phi

S intersect (S’ sym-diff S’’)
= (S intersect S’) sym-diff (S intersect S’’)

endmodule    BASICSET
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module    SET [X :: TRIVIAL]   using   NAT, BASICSET[X]   is

   functions  
_ union _ : Set, Set -> Set

_ - _ : Set, Set -> Set

#_ : Set -> Nat

   predicates
_ member _ : Elt, Set

_ subset _ : Set, Set

empty : Set

_ not-member _ : Elt, Set

   variables  
X: Elt
S,S’,S’’: Set

   axioms   
S union S’ = ((S intersect S’) sym-diff S) sym-diff S’

S - S’ = S intersect (S sym-diff S’)

empty S :- S = Phi

X member S :- {X} union S = S

X not-member S :- {X} intersect S = Phi

S subset S’ :- S union S’ = S’

# Phi = 0

#({X} sym-diff S) = #(S) - 1 :- X member S

#({X} sym-diff S) = #(S) + 1 :- X not-member S

endmodule    SET
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Data Structures for Sets

The appropriate data structure to implement a mathematical object such as sets depends upon

resources, task, and context.  Things that effect the performance of set data structures include:

•  size of elements

•  complexity of elements  (i.e. nested and hierarchical forms)

•  size of the Universe of Discourse

•  typical size of sets during an application

•  maximum size of sets during an application

•  frequency of use of each type of transformation

•  available resources (processing power and memory size)

The choice of a data structures depends upon an analysis of the task it is to be used for.  To

implement a common mathematical object (such as sets, integers, strings, trees and logic), we

build a model of the task which tells us the frequency of transforms and the types of elementary

objects.  We then match these characteristics against the known performance of the several

implementation choices.  When the task is unknown or likely to change (almost always the

case), defensive programming can lower maintenance and modification costs through the use of

more generic data structures.  Naturally, data types that are built into a language have had their

implementation decisions made independent of the task.

Implementing Sets

We need a representation which may require adding and deleting members, identifying

membership, and performing basic set operations such as union and intersection.

doubly-l inked l ists
good for small sets

O(NlnN) operations

balanced trees
good for sorted lists with lots of look-up and for testing membership

O(NlnN) operations, membership in O(lnN)

hash tables
must be invertable for set enumeration

converts set to range of integers, easy for lookup

good for adding and deleting members

bit vectors
union and intersection are bit level

poor for enumerating elements

good for transforming sparse sets, bad for very large sets

O(n) operations

Hybrid representations, such as a linked segment list, can be constructed which optimize

particular performance characteristics.


