
 Data Structures and Algorithms

1

ADS for Rational Numbers

An application program which uses rational numbers needs to perform operations on these

numbers without any mention of how they are implemented. Here is a set of functions which

implement rational numbers. Note that the Constructors and Accessors provide the abstraction

barrier. Recognizers, Functions and Invariants define the structure.

REPRESENTATION

Let rational numbers be represented by the set of labels {r,r1,r2,...}.

A rational number is defined by the division of two integers. For any rational number ri,

let the numerator be represented as ni and the denominator be di.

We will assume that the class integer is defined.

RECOGNIZERS

is-ratnum[x] = True iff x is a rational number

is-denom[x] = True iff x is an integer number

is-numer[x] = True iff x is an integer number

is-zero[r] = True iff get-numer[r] = 0
is-one[r] = True iff get-numer[r] = get-denom[r]
is-illegal[r] = True iff get-denom[r] = 0

Note that is-denom and is-numer are typing predicates. They return True for any integer x.

We arbitrarily elect to restrict numerators and denominators to positive integers, associating

the sign of a rational number with the rational number itself. To express these facts:

is-denom[x] = True iff
(is-integer[x] and not[is-negative[x]] and not[x=0])

is-numer[x] = True iff (is-integer[x] and not[is-negative[x]])

Specific denominators and numerators can be recognized by the following relations:

is-denom-of[x,r] = True iff x is the denominator of rational number r

is-numer-of[x,r] = True iff x is the numerator of rational number r

Example:
is-ratnum[r] =def=
 let n = get-numer[r]

d = get-denom[r]
 if (is-denom[d] and is-numer[n])
 then return True
 else return False

 Data Structures and Algorithms

2

CONSTRUCTORS

make-ratnum[sign,numer,denom] returns the rational number r = numer/denom
destroy-ratnum[r] frees memory associated with ratnum r

These functions transfer between the abstraction and the implementation choices. See the

implementation section.

ACCESSORS

get-numer[r] returns the numerator of r
get-denom[r] returns the denominator of r
get-sign[r] returns the sign of the ratnum r

These functions also transfer between abstraction and implementation.

FUNCTIONS

equal-ratnum[r1,r2] = True iff r1 = r2
add-ratnum[r1,r2] returns r3 = r1+r2
sub-ratnum[r1,r2] returns r3 = r1-r2
mult-ratnum[r1,r2] returns r3 = r1*r2
div-ratnum[r1,r2] returns r3 = r1/r2
reduce-ratnum[r] returns a reduced ratnum

print-ratnum[r] returns <the graphical representation of a ratnum>

ratnum-to-decimal[r] returns the decimal value of r

The code for these functions does not rely on the implementation of ratnums. Some pseudocode

examples:

equal-ratnum[r1,r2] =def=
 let n1 = get-numer[r1]
 n2 = get-numer[r2]
 d1 = get-denom[r1]
 d2 = get-denom[r2]
 res = ((n1*d2) = (n2*d1)) ;here * is integer multiply

 return res ;res is a Boolean equality test

The following code assumes that the two ratnums are positive, it would be a little more complex

if signed ratnums were being added.

add-ratnum[r1,r2] =def=
 let n1 = get-numer[r1]
 n2 = get-numer[r2]
 d1 = get-denom[r1]
 d2 = get-denom[r2]
 n3 = ((n1*d2) + (n2*d1))
 d3 = (d1*d2)
 return make-ratnum[n3,d3]

 Data Structures and Algorithms

3

INVARIANTS

Invariants provide pre and post tests for ratnum computations. The appropriate invariants

should be asserted as error checks before and after programs which use any rational numbers.

is-ratnum[r] or not[is-ratnum[r]] = True

is-integer[get-denom[r]] = True
is-integer[get-numer[r]] = True
not[equal[get-denom[r],0]] = True
<many other possible invariant equations>

Example of an embedded pre-test:

greater-than-one-ratnum[r] =def=
 if is-ratnum[r]
 let n = get-numer[r]
 d = get-denom[r]
 comp = (n>d)
 return comp
 else return error-signal[r,"not-ratnum"]

AXIOMS

Axioms are another kind of invariant, defining the numerical behavior of ratnums. An infinite

number of theorems can be derived from a set of axioms. Only a very few will be of utility.

Finding essential and important theorems is part of the task of domain modeling.

r1+r2 = r2+r1 commutativity of addition

r1+(r2+r3) = (r1+r2)+r3 associativity of addition

r1+0 = r1 additive identity

r1*r2 = r2*r1 commutativity of multiplication

r1*(r2*r3) = (r1*r2)*r3 associativity of multiplication

r1*1 = r1 multiplicative identity

if d=1 then r=n 1 denominator

if n=0 then r=0 0 numerator

x+(n/d) = ((x*d)+n)/d adding an integer

(n1/d1)+(n2/d2) = ((n1*d2)+(n2*d1))/(d1*d2) adding two ratnums

x*(n/d) = (x*n)/d multiplying by an integer

(n1/d1)*(n2/d2) = (n1*n2)/(d1*d2) multiplying two ratnums

 Data Structures and Algorithms

4

IMPLEMENTATION

Let's implement ratnums as 3-tuples, that is as triples consisting of a sign bit and two integers.

We first elect to implement 3-tuples as a list of three integers, encoding the sign as 0=- and

1=+:

make-ratnum[s,n,d] =def=
 return List[s,n,d]

get-sign[r] =def=
 return First[r]

get-numer[r] =def=
 return Second[r]

get-denom[r] =def=
 return Third[r]

In the above, get-sign[r] is in error, since it will return 0 or 1, not the “sign” of the

ratnum. An apparent fix is:

get-sign[r] =def=
 if First[r] = 0
 then return “+”
 else if First[r] = 1
 then return “-“
 else return Error

The problem now is that the return of a function name (+ or -) requires either a string

encoding, thus changing the intended type of the sign data structure, or it requires language

support for returning functions. Further, getting the sign of a ratnum is not intended to apply
the unary function that the sign represents. The basic issue is that signed integers are very

often implemented as part of a language definition; thus the programmer will not necessarily

know how the operating system is treating the signs for integers. Of course, the application

problem may also never require negative rationals. At a sufficiently low level of data

description, abstraction is not possible due to language and operating system implementation

decisions.

The make-function should include all type checking invariants. In the example below, we force

an explicit identification of sign (no default permitted), and check that the numerator and

denominator are positive integers.

make-ratnum[s,n,d] =def=
 if not[member[s,{+, -}]
 then return error-signal[s,"improper-ratnum-sign"]
 else if (not[is-integer[n]] or is-negative[n])
 then return error-signal[n,"improper-ratnum-numerator"]
 else if (not[is-integer[d]] or is-negative[d] or d=0)
 then return error-signal[d,"improper-ratnum-denominator"]
 else return List[s,n,d]

 Data Structures and Algorithms

5

Should we later elect to change the implementation of ratnums, the above four functions are all

that need to be changed. Say we decide to use 3 element arrays:

make-ratnum[s,n,d] =def=
 let a = Make-array[3] of integers
 a[0] := s
 a[1] := n
 a[2] := d
 return a

get-sign[r] =def=
 return r[0]

get-numer[r] =def=
 return r[1]

get-denom[r] =def=
 return r[2]

Should we later decide to include the sign of the rational number as a signed numerator, we still

would change only these functions.

make-ratnum[n,d] =def=
 let a = Make-array[2] of integers
 a[0] := n
 a[1] := d
 return a

get-sign[r] =def=
 return sign-of[r[0]]

get-numer[r] =def=
 return r[0]

get-denom[r] =def=
 return r[1]

Finally, in languages which provide first-class functions, we can define the generic get-

functions for an ADS. An example:

get-numer =def=
 function[parameters[r], body[r[0]]]

Challenge problem: The above model assumes that an integer can be of any precision. We

know, however, that computational integers have an associated bit-length (e.g. 32bit, 64bit).

Modify the above conceptualization and implementation to include specific implementation

constraints such as binary precision, storage and bandwidth precision, and binary encoding.

