
Data Structures and Algorithms

1

Data Abstraction

The elementary data structures in conventional processors are memory cells and addresses of
memory cells. Compound data structures can be constructed using collections of memory cells.

It is almost always a poor idea to conceptualize data at the level of hardware architecture. DData

abstraction allows us to think about data forms conceptually, using representations which

map closely onto the problem being addressed and the intuitive way we think about that problem.

The dominant error in data structure design is to confuse levels of modeling, to design for

hardware or software when the problem is in the real world. A similar error is to think that

hardware and software data structures model a real problem. Rather than asking: what data

structure models the problem?, we should ask: what data structure should I construct to

implement the mathematical model of the problem?

Data structures should be designed abstractly. This means that the data structure is

conceptually independent of the implementation strategy. This is achieved by aabstraction

barriers, functions which isolate the implementation details from the data abstraction. When

the storage format, or the implementation approach, or the internal representation, or the

algorithm changes, the data abstraction itself does not.

Abstract data structures often closely model mathematical data structures. A mmathematical

structure consists of

• a rrepresentation of the elementary unit or constants, the base of the structure

• rrecognizer predicates which identify the type of the structure

• a cconstructor function which builds compound structures from simple units

• an aaccessor function which gets parts of a compound structure

• a collection of iinvariants, or equations, which define the structure's behavior

• possibly, a collection of ffunctions which compute properties of specific structures

• an iinduction principle which specifies how a form is constructed and decomposed

An implemented data structure should have each of the above functionalities, and no others.

Most modern languages permit construction of these functionalities, however very few provide

the actual tools which would make implementation easy. Accessors, constructors, and

recognizers are best expressed in a pattern-matching language; invariants are best

implemented in a declarative language; and induction requires special features which are

usually included only in theorem provers.

Several examples of data types expressed as abstract data structures follow. The example of

Natural Numbers illustrates a simple ADS. The example of Trees is more complete, including

the mathematical axioms and some recursive function definitions, The example of Strings
illustrates an aabstract domain theory, and includes specialized functions, an induction

principle, and an example of symbolic proof by induction.

Data Structures and Algorithms

2

Abstract Data Structure: NATURAL NUMBERS

Base 0
Recognizer numberp[n]
Constructor +1[n]
Accessor -1[n]

Some invariants numberp[n] or not[numberp[n]]
numberp[+1[n]]
numberp[0]
not[+1[n] = 0]

(numberp[n] and not[n=0]) implies (+1[-1[n]] = n)
numberp[n] implies (-1[+1[n]] = n)

Induction if F[0] and (F[n] implies F[+1[n]]) then F[n]

Abstract Data Structure: BINARY TREES

Predicates atom[x]
tree[x]

Constructor +[x,y]

Uniqueness not[atom[+[x,y]]]
if (+[x1,x2] = +[y1,y2]) then (x1=y1 and x2=y2)

Left and Right left[+[x,y]] = x
right[+[x,y]] = y

Decomposition if not[atom[x]] then x = +[left[x],right[x]]

Induction if F[atom] and
 (if F[x1] and F[x2] then F[+[x1,x2]])
then F[x]

Some recursive binary tree functions

size[x] =def= size[atom[x]] = 1;
size[+[x,y]] = size[x] + size[y] + 1

leaves[x] =def= leaves[atom[x]] = 1;
leaves[+[x,y]] = leaves[x] + leaves[y]

depth[x] =def= depth[atom[x]] = 1;
depth[+[x,y]] = max[depth[x],depth[y]] + 1

Data Structures and Algorithms

3

Pseudocode:

leaves[x] =def= if empty[x] then 0
 else if atom[x] then 1

 else leaves[left[x]] + leaves[right[x]]

leaves-acc[x,res] =def=
if empty[x] then res
 else if atom[x] then leaves-acc[(), res + 1]
 else leaves-acc[right[x], res + leaves-acc[left[x]]]

Abstract Domain Theory: STRINGS

Here is the TTheory of Strings as a complete example. Note that the TTheory of Sequences

and the Theory of Non-Embedded Lists are almost identical.

Constants: {E} the Empty string

Variables (typed): {u,v,...} characters

{x,y,z,...} strings

Functions: {•, head, tail, *, rev, rev-acc, butlast, last}

• is prefix, attach a character to the front of a string

* is concatenate, attach a string to the front of another string

[the rest are defined below as special functions]

Relations: {isString, isChar, isEmpty, =}

isEmpty[x] test for the empty string

isChar[x] test for valid character

isString[x] test for valid string

Generator Facts: isString[E]
isString[u]
isString[u•x]

Uniqueness: not(u•x = E)
if (u•x = v•y) then u=v and x=y

Special char axiom: u•E = u
E•u = u

Decomposition: if not(x=E) then (x = u•y)
head[u•x] = u
tail[u•x] = x
if not(x=E) then (x = head[x]•tail[x])

Data Structures and Algorithms

4

Decompose equality: if (u=v) then (u•x = v•x)
if (x=y) then (u•x = u•y)

Mapping: F[u•x] = F[u]•F[x]

The String IInduction Principle:

if F[E] and
forall x: if not[x=E],

then if F[tail[x]] then F[x]
then forall x: F[x]

Recursion, mapping:

F[E] base

F[u•x] = F[u]•F[x] general1

F[x] = F[head[x]]•F[tail[x]] general2

Pseudo-code for testing string equality, using the Induction and Recursion templates for binary

relations

if =[E,E] and
 forall x,y:

if (not[x=E] and not[y=E]),
 then if (=[head[x],head[y]] and =[tail[x],tail[y]])

 then =[x,y]
 then forall x,y: =[x,y]

=[E,E] base

=[x,y] = =[head[x],head[y]] and =[tail[x],tail[y]] general1

=[a,b] =def=
(a=E and b=E)

 or (=[head[a],head[b]] and =[tail[a],tail[b])

Some axioms and theorems for specialized functions

Concatenate, *, for joining strings together:

E*x = x, x*E = x base definition

(u•x)*y = u•(x*y) recursive definition

isString[x*y] type

u*x = u•x character special

x*(y*z) = (x*y)*z associativity

if x*y = E, then x=E and y=E empty string

Data Structures and Algorithms

5

if not(x=E) then head[x*y] = head[x] head

if not(x=E) then tail[x*y] = tail[x]*y tail

Reverse, rev, for turning strings around:

rev[E] = E base definition

rev[u•x] = rev[x]*u recursive definition

isString[rev[x]] type

rev[u] = u character special

rev[x*y] = rev[y]*rev[x] concatenation

rev[rev[x]] = x double reverse

rev[x*u] = u•rev[x] suffix

Reverse-accumulate, reverse the tail and prefix the head onto the accumulator:

rev-acc[x,E] = rev[x] identicality

rev-acc[E,x] = x base definition

rev-acc[u•x,y] = rev-acc[x,u•y] recursive definition

Last and Butlast, for symmetrical processing of the end of a string:

butlast[x*u] = x definition

last[x*u] = u definition

if not(x=E) then isString[butlast[x]] type

if not(x=E) then char[last[x]] type

if not(x=E) then x = butlast[x]*last[x] decomposition

if not(x=E) then butlast[x] = rev[tail[rev[x]]] tail reverse

if not(x=E) then last[x] = head[rev[x]] head reverse

Data Structures and Algorithms

6

Here is a function which mixes two domains, Strings and Integers:

Length, for counting the number of characters in a string

length[E] = 0

length[u•x] = length[x] + 1

length[x*y] = length[x] + length[y]

A symbolic proof by induction

To prove: rev[rev[x]] = x x is of type STRING

Base case: Rule applied:

rev[rev[E]] =?= E 1. problem

rev[E] =?= E 2. rev[E] = E

E =?= E 3. rev[E] = E, identity QED

Inductive case:

rev[rev[x]] =?= x 1. problem

rev[rev[u•x]] = u•x 2. assume by induction rule

rev[rev[x]*u] = u•x 3. rev[a•b] = rev[b]*a

rev[u]*rev[rev[x]] = u•x 4. rev[a*b] = rev[b]*rev[a]

u*rev[rev[x]] = u•x 5. rev[a] = a a is a char

u•rev[rev[x]] = u•x 6. lemma a*b=a•b a is a char

rev[rev[x]] = x 7. a•b = a•c iff b=c QED

Lemma:

u*x =?= u•x 1. problem

(u•x)*y = u•(x*y) 2. prefix/concatenate distribution

(u•E)*y = u•(E*y) 3. let x=E

u*y = u•(E*y) 4. a•E = a

u*y = u•y 5. E*a = a QED

