
Data Structures and Algorithms

1

Context and Hierarchy

Essential Concepts of the Course:

Complementarity:

the intimate relationship between data structure, algorithm and computational architecture.

Abstraction hierarchies:

from conceptualization through mathematics to implementation.

Programming paradigms:

the languages of design, modeling and implementation

Implementation hierarchies:

 trading off between design and implementation efficiencies

Abstraction Hierarchy

conceptualization (real world specific)

mathematical model (symbolic)

implementation model (software specific)

process model (hardware specific)

Implementation Hierarchy

conceptualization/design (quasi)-language

very-high-level (task specific) programming tool

high-level programming language

low-level programming language

opcodes and machine language

high-level synthesis

low-level synthesis

Naming Domains

data types

constants/grounds

operators (functions, predicates)

program execution types (memory location, signal transitions)

resources (memory, operator circuits, i/o devices)

constraints (equations)

Data Structures

bit array (eg byte, word)

string queue

stream linked list

struct object

Data Structures and Algorithms

2

Programming Paradigms

procedural C, Pascal, COBOL

functional LISP, ML

recursive LISP, Prolog

logical/declarative Prolog

constraint-based Prolog III

object-oriented Smalltalk, Java, C++

rule-based OPS5

mathematical Mathematica

Models of Computation

table lookup

register manipulation

predicate calculus

lambda calculus, combinators

recursive function theory

term-rewriting

graph-rewriting

matrix algebra

relational database

cellular automata

Mathematical Structures

propositional calculus (boolean algebra)

truth symbols

propositional symbols (binary variables)

connectives (and, or, not)

interpretations

predicate calculus

truth symbols

constant symbols

variable symbols

function symbols

predicate symbols (relations)

quantifiers

equality and orderings

non-negative integers

sets, bags (multi-sets)

strings, trees, lists

tuples (structs)

graphs

Data Structures and Algorithms

3

Mathematical Abstractions

Re lat ions

base

atom

compound

structure

reflexive all x | (x,x) inR

symmetric if (x,y) inR, then (y,x) inR

transitive if (x,y) inR and (y,z) inR, then (x,z) inR

antisymmetric if (x,y) inR and (y,x) inR, then x = y

trichotomy (x,y) inR xor (y,x) inR xor x=y

irreflexive not reflexive

asymmetric not symmetric

Funct ions (binary relations with existence and uniqueness)

base

compound

structure

identity Id op A = A op Id = A

inverse A op iA = iA op A = Id

associative (A op B) op C = A op (B op C)

commutative A op B = B op A

distributive A op1 (B op2 C) = (A op1 B) op2 (A op1 C)

idempotent A op A = A

Equations (equivalence relations)

theorems (proved)

axioms (assumed)

generate

base, atom, compound

unique

base, compound

