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STREAMS with DELAYED EVALUATION

Ideas from Pavel Curtis, Richard Waters, Guy Steele and
the Common LISP community. Most of the code by
George Lugar and William Stubblefield.
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; DELAY and FORCE permit fine grain program control of when

; a function or subprogram is executed. Instead of flow of

; control being managed by glue logic, loops, and function

; nesting, evaluation is either delayed or called when needed
; by the dynamic context of the program.
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Conceptually, a STREAM is a dynamically available data
structure, implemented by a GENERATOR function:

{first-data-item <generator-function-for-next-data-item>}

When the first item is used by a process, the generator is
called to construct the next data-item.
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(defmacro delay (exp) ~(function (lambda () ,exp)))
(defun force (function-closure) (funcall function-closure))

;7:add a new first element to a stream
(defmacro cons-stream (new stream)
“(cons ,new (delay ,stream)))

;7:9et the first element
(defun first-stream (stream)
(car stream))

;;:the rest of the stream is a generator function
(defun rest-stream (stream)
(force (rest stream)))

;11test for empty stream
(defun empty-streamp (stream)
(null stream))

;;;make an empty stream
(defun make-empty-stream ()
nil)

;7 ;append two streams
(defun combine-streams (sl s2)
(append sl s2))



(defun filter (1lst test)
(cond ((null 1st) nil)
((funcall test (first 1lst))
(cons (first 1lst) (filter (rest 1lst) test)))
(T (filter (rest 1lst) test))))

7 P Prig
for STREAM

Friiiiriiiiiqg
GENERIC-FILTER

0 ~e

~e ~o
~e ~o
~e ~o

(defun filter-stream (stream test)
(cond ((empty-streamp stream) (make-empty-stream))
((funcall test (first-stream stream))
(cons-stream (first-stream stream)
(filter-stream (rest-stream stream) test)))
(T (filter-stream (rest-stream stream) test))))

AR AR NN A AN AN A R A AR A R AN

;3 ;FIBONACCI STREAM FILTER

- consider generating the first N odd Fibonacci numbers
i using the minimum of computational effort
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7
efinition of Fibonacci numbers
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= fib[n-1] + fib[n-2]
efun fib (n)
(cond ((=n 1) 0)
((=n 2) 1)
(T (+ (fib (- n 1)) (fib (- n 2))))))

Q. ~e ~e e ~e o~

(defun collect-fibs (n)
(let ((result nil))
(dotimes (i n (reverse result)) ;iterator i starts at 0, so we must
(push (fib (+ i 1)) result)))) ;add 1 to start fib counter at 1

.
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;;an efficient doloop implementation which collects prior results
defun memo-fibs (n)
(let ((memo '(1 0)))
(dotimes (i (- n 2))
(push (+ (first memo) (second memo)) memo))
(reverse memo)))

~e ~o

(

;7:;a memoized doloop with an arbitrary filter
(defun filter-fibs (n filter-test-fn termination-test-fn)
(do ((acc '(1 0))
(test-acc nil))
((funcall termination-test-fn test-acc n)
(reverse test-acc))
(let ((new (+ (first acc) (second acc))))



(push new acc)
(when (funcall filter-test-fn new)
(push new test-acc)))))

;; code fitted with lots of debug options,
; to illustrate inline debug tools
defun filter-fibs (n filter-test-fn termination-test-fn)
(do ((acc '(1 0))
(test-acc nil))
((funcall termination-test-fn test-acc n)
; (print (list ‘VALUES-PRIOR-TO-DO-EXIT acc test-acc n))
; (break “At exit: count ~A fibs ~A filtered-fibs ~A” acc test-acc n)
(reverse test-acc))
(let ((new (+ (first acc) (second acc))))
; (break “new fib value: ~A” new)
(push new acc)
; (print (list ‘new-stack acc))
(when (funcall filter-test-fn new)
(push new test-acc)))))
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(defun have-sufficient (1lst n)
(= (length 1lst) n))

(defun three-fives (n)
(at-least-digits n 3 5))

;77 given a number N, find at least THIS-MANY of a given digit DIGIT
(defun at-least-digits (n this-many digit)
(let ((digit-string (format nil "~D" n)) ;convert symbol to string
(test-char (digit-char digit))) ;convert symbol to character
(count-digits-test digit-string this-many test-char)))

(defun count-digits-test (string num char)
(>= (count char string) num))

Frrriiiiiiiiiiirriiriiriii i
an implementation based on streams
cleaner, more maintainable, and as efficient as FILTER-FIBS
better than FILTER-FIBS when the termination test is complex
efun fibonacci-stream ()
(fib-stream-aux 0 1))
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(defun fib-stream-aux (fibl fib2)
(cons-stream (+ fibl fib2)
(fib-stream-aux fib2 (+ fibl fib2))))

(defun accumulate (n stream)
(cond ((zerop n) nil)
(T (cons (first-stream stream)
(accumulate (- n 1) (rest-stream stream))))))



(defun filter-stream-fibs (n test-fn)
(accumulate n (filter-stream (fibonacci-stream) test-fn)))

;3 ;most abstract
(defun accumulate-filtered-stream (number-items generator-fn filter-fn)
(accumulate number-items
(filter-stream (funcall generator-fn) filter-£fn)))

#|
;i11filter examples
(filter '(1 3 -9 5 -2 -7 6) #'plusp)

;3==> (1 3 5 6)

(filter '(1 2 3 456 7 8 9) #'evenp)

7:==> (2 4 6 8)

(filter '(1 a b 3 ¢ 4 7 d) #'numberp)

;==> (1 3 4 7)

;7 :try these

(filter (collect-fibs 20) #'oddp) ;yields only 13 odd fibs, so guess
(filter (collect-fibs 30) #'oddp) ;to get 20 odd fibs

(time (filter (collect-fibs 30) #'oddp))
;;3don't try (filter (collect-fibs <some-guess>) #'three-fives)

;7 :try these

(filter-fibs 20 #'oddp #'have-sufficient)

(filter-fibs 8 #'three-fives #'have-sufficient)

(time (dotimes (i 10) (filter-fibs 8 #'three-fives #'have-sufficient)))

;7 :try these

(filter-stream-fibs 20 #'oddp)

(filter-stream-fibs 8 #'three-fives)

(time (dotimes (i 10) (filter-stream-fibs 8 #'three-fives)))

;;:try this
(accumulate-filtered-stream 8 #'fibonacci-stream #'three-fives)
| #



