rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrorag

STREAMS with DELAYED EVALUATION

Ideas from Pavel Curtis, Richard Waters, Guy Steele and
the Common LISP community. Most of the code by
George Lugar and William Stubblefield.

14
14
14
14
14
H
; DELAY and FORCE permit fine grain program control of when

; a function or subprogram is executed. Instead of flow of

; control being managed by glue logic, loops, and function

; nesting, evaluation is either delayed or called when needed
; by the dynamic context of the program.

14

14

14

14

14

14

14

14

Conceptually, a STREAM is a dynamically available data
structure, implemented by a GENERATOR function:

{first-data-item <generator-function-for-next-data-item>}

When the first item is used by a process, the generator is
called to construct the next data-item.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrorag

(defmacro delay (exp) ~(function (lambda () ,exp)))
(defun force (function-closure) (funcall function-closure))

;7:add a new first element to a stream
(defmacro cons-stream (new stream)
“(cons ,new (delay ,stream)))

;7:9et the first element
(defun first-stream (stream)
(car stream))

;;:the rest of the stream is a generator function
(defun rest-stream (stream)
(force (rest stream)))

;11test for empty stream
(defun empty-streamp (stream)
(null stream))

;;;make an empty stream
(defun make-empty-stream ()
nil)

;7 ;append two streams
(defun combine-streams (sl s2)
(append sl s2))



(defun filter (1lst test)
(cond ((null 1st) nil)
((funcall test (first 1lst))
(cons (first 1lst) (filter (rest 1lst) test)))
(T (filter (rest 1lst) test))))

7 P Prig
for STREAM

Friiiiriiiiiqg
GENERIC-FILTER

0 ~e

~e ~o
~e ~o
~e ~o

(defun filter-stream (stream test)
(cond ((empty-streamp stream) (make-empty-stream))
((funcall test (first-stream stream))
(cons-stream (first-stream stream)
(filter-stream (rest-stream stream) test)))
(T (filter-stream (rest-stream stream) test))))

AR AR NN A AN AN A R A AR A R AN

;3 ;FIBONACCI STREAM FILTER

- consider generating the first N odd Fibonacci numbers
i using the minimum of computational effort

AR AR NN R AN AN A R A A R R A R AN

oo e . . e e e 00 0 00
rrir I I rrrrrririr

7
efinition of Fibonacci numbers

Q. ~e

I 7 7
mathematical

+h

-

o
=]
|

= fib[n-1] + fib[n-2]
efun fib (n)
(cond ((=n 1) 0)
((=n 2) 1)
(T (+ (fib (- n 1)) (fib (- n 2))))))

Q. ~e ~e e ~e o~

(defun collect-fibs (n)
(let ((result nil))
(dotimes (i n (reverse result)) ;iterator i starts at 0, so we must
(push (fib (+ i 1)) result)))) ;add 1 to start fib counter at 1

.
I

~e

e o o e e e 0 0 00 e e e 00000 e e o o . e e o o
rrr rrrriririr rrrrrrririr rrrrrrrrririr

;;an efficient doloop implementation which collects prior results
defun memo-fibs (n)
(let ((memo '(1 0)))
(dotimes (i (- n 2))
(push (+ (first memo) (second memo)) memo))
(reverse memo)))

~e ~o

(

;7:;a memoized doloop with an arbitrary filter
(defun filter-fibs (n filter-test-fn termination-test-fn)
(do ((acc '(1 0))
(test-acc nil))
((funcall termination-test-fn test-acc n)
(reverse test-acc))
(let ((new (+ (first acc) (second acc))))



(push new acc)
(when (funcall filter-test-fn new)
(push new test-acc)))))

;; code fitted with lots of debug options,
; to illustrate inline debug tools
defun filter-fibs (n filter-test-fn termination-test-fn)
(do ((acc '(1 0))
(test-acc nil))
((funcall termination-test-fn test-acc n)
; (print (list ‘VALUES-PRIOR-TO-DO-EXIT acc test-acc n))
; (break “At exit: count ~A fibs ~A filtered-fibs ~A” acc test-acc n)
(reverse test-acc))
(let ((new (+ (first acc) (second acc))))
; (break “new fib value: ~A” new)
(push new acc)
; (print (list ‘new-stack acc))
(when (funcall filter-test-fn new)
(push new test-acc)))))

.
I
.
I

| #

(defun have-sufficient (1lst n)
(= (length 1lst) n))

(defun three-fives (n)
(at-least-digits n 3 5))

;77 given a number N, find at least THIS-MANY of a given digit DIGIT
(defun at-least-digits (n this-many digit)
(let ((digit-string (format nil "~D" n)) ;convert symbol to string
(test-char (digit-char digit))) ;convert symbol to character
(count-digits-test digit-string this-many test-char)))

(defun count-digits-test (string num char)
(>= (count char string) num))

Frrriiiiiiiiiiirriiriiriii i
an implementation based on streams
cleaner, more maintainable, and as efficient as FILTER-FIBS
better than FILTER-FIBS when the termination test is complex
efun fibonacci-stream ()
(fib-stream-aux 0 1))

.
I
.
I
.
14
.
14

o e
rr
o e
rr
o e
rr
o e
rr
(d

(defun fib-stream-aux (fibl fib2)
(cons-stream (+ fibl fib2)
(fib-stream-aux fib2 (+ fibl fib2))))

(defun accumulate (n stream)
(cond ((zerop n) nil)
(T (cons (first-stream stream)
(accumulate (- n 1) (rest-stream stream))))))



(defun filter-stream-fibs (n test-fn)
(accumulate n (filter-stream (fibonacci-stream) test-fn)))

;3 ;most abstract
(defun accumulate-filtered-stream (number-items generator-fn filter-fn)
(accumulate number-items
(filter-stream (funcall generator-fn) filter-£fn)))

#|
;i11filter examples
(filter '(1 3 -9 5 -2 -7 6) #'plusp)

;3==> (1 3 5 6)

(filter '(1 2 3 456 7 8 9) #'evenp)

7:==> (2 4 6 8)

(filter '(1 a b 3 ¢ 4 7 d) #'numberp)

;==> (1 3 4 7)

;7 :try these

(filter (collect-fibs 20) #'oddp) ;yields only 13 odd fibs, so guess
(filter (collect-fibs 30) #'oddp) ;to get 20 odd fibs

(time (filter (collect-fibs 30) #'oddp))
;;3don't try (filter (collect-fibs <some-guess>) #'three-fives)

;7 :try these

(filter-fibs 20 #'oddp #'have-sufficient)

(filter-fibs 8 #'three-fives #'have-sufficient)

(time (dotimes (i 10) (filter-fibs 8 #'three-fives #'have-sufficient)))

;7 :try these

(filter-stream-fibs 20 #'oddp)

(filter-stream-fibs 8 #'three-fives)

(time (dotimes (i 10) (filter-stream-fibs 8 #'three-fives)))

;;:try this
(accumulate-filtered-stream 8 #'fibonacci-stream #'three-fives)
| #



