COURSE INFORMATION

Text:

No text, many handouts (see below)

Class structure:

Each student will prepare two reports on two formal methods topics. (Topic suggestions are below.) Each class period, a student and the instructor will jointly cover one selected topic.

Evaluation:

<i>Available</i> n c	e grades: on-completion: Inco ompletion: A A- E A: A- or B+: B: B-:	omplete, Withdraw, etc. 3+ B B- C reserved for superior performance expected grade for conscientious performance adequate work barely adequate
	Б С:	equivalent to failing

Grading Options:

- 1. Performance Quality: attendance, participation, assigned exercises
- 2. Grading Contract: specify a set of behaviors and an associated grade.
- 3. Self-determined: negotiate with instructor

Discussion:

If you prefer a clearly defined agenda, if you do well with concrete task assignments, or if you need a schedule of activities for motivation, then **Option 1** is a good idea.

If you already understand the field, if you plan to excel in a particular area, or if you need clear performance goals for motivation, then **Option 2** is a good idea.

If you are not concerned about grades, if you intend to do what you choose anyway, or if you are self-motivated, then **Option 3** is a good idea.

I will notify any student who is not on a trajectory for personal success.

Course content:

Formal methods is a body of mathematically-based techniques, often supported by reasoning tools, that offers rigorous ways to model, design, and analyze systems.

We will explore a number of specific applications of formal methods. The course will focus on implementations of tools and techniques and the use of these tools. Each class, the instructor will give a lecture on the mathematical techniques of a particular formal method. During the same class period, students will present their research and experiences with the implementation of that technology.

Although the Computer Science community limits formal methods to applications of logic and predicate calculus, this course will take a slightly broader viewpoint. Numerical and algebraic techniques such as matrix algebra, probability theory, and integer theory will be excluded, but exotic symbolic approaches such as fractals, cellular automata, and boundary mathematics will be included as possible topics. Pure programming languages (Prolog, ML, Haskell, LISP, Mathematica) are also valid topics.

Individual homework will consist of a short selected reading on each topic, personal exploration of implementations of at least two formal tools, one or two class presentations, and whatever exercises necessary for understanding.

A Quote from the Oxford Group

"There's a battle going on in computer science that will probably never be fully resolved, between those who think programs are fundamentally mathematical, and those who eschew mathy techniques as being too tedious for use with real-world programs. Despite a layperson misperception to the contrary, most programmers avoid math just as most nonprogrammers do, with the result that more than 99% of software is developed today as nonmath.

Formal methods is the name for the techniques of mathematically proving that programs do what they're supposed to. The theory is that programs aren't physical objects, they are ideas; they don't break down, and they don't wear out, the way physical objects do. A perfect program will therefore remain perfect forever. Formal methods exist to make such perfect programs, compared to which even the most well-crafted nonmath program is fundamentally a buggy slapped-together sloppy mess.

It would be nice if formal methods were more widely accepted, because as programs grow larger and larger the interspersed bugs make them more and more unreliable. But formal methods slow the pace of program development so much, and fit so poorly into the messy but productive real world, that they are used only rarely even in potentially life-threatening systems.

Some Formal Techniques

The list of topics which follows is organized by mathematical techniques, with application areas following the mathematical topic (asterisks mark recommended topics).

Propositional calculus (Boolean logic)**

circuit design, hardware verification, Boolean minimization, control theory

Predicate Calculus**

expert systems, specification languages, theorem provers, correctness and verification

Logic Extensions

non-monotonic reasoning, temporal logic, process algebra

Mathematical Induction and Recursive Function Theory** proof technique, recursive programming, programming

Relational Calculus*

relational databases, constraint solving

String Rewrite Theory*

mathematical computation, process modeling, parsers and compilers

Theory of Computation*

worst-case algorithms, time and space complexity

Fractals

computer graphics, compression, computer art

Binary Decision Diagrams

hardware modeling

Lambda Calculus and Combinators

functional programming

Group Theory and Modern Algebra coding theory, 3D motion

Finite State Automata

state space problem solving, string recognition, state transition systems

Cellular Automata

chaos modeling

Boundary Mathematics

visual languages, logic and numerical simplification, parallel processing

General Systems Theory

systems modeling, control theory

References

General:

Bavel (1982), Math Companion for Computer Science, Prentice-Hall Gilbert (1976), Modern Algebra with Applications, Wiley Grassmann and Tremblay (1996), Logic and Discrete Mathematics, Prentice-Hall Gries and Schneider (1993), A Logical Approach to Discrete Math, Springer-Verlag Grimaldi (1999), Discrete and Combinatorial Mathematics, Fourth edition, Addison-Wesley Lucas (1985), Introduction to Abstract Mathematics, Second edition, Ardsley House Wolfram (1996), The Mathematica Book, Third edition, Cambridge Press

Specific:

Aho, Sethi and Ullman (1986), Compilers, Addison-Wesley Barwise and Etchemendy (1993), The Language of First-Order Logic, Third edition, CSLI Stanford Forbus and DeKleer (1993), Building Problem Solvers, MIT Press Genesereth and Nilsson (1987), Logical Foundations of Artificial Intelligence, Kauffman Hopcroft and Ullman (1979), Introduction to Automata Theory, Languages, and Computation, Addison-Wesley

Lakatos (1976), Proofs and Refutations, Cambridge U. Press

MacLennan (1990), Functional Programming, Practice and Theory, Addison-Wesley

Manna and Waldinger (1985), The Logical Basis for Computer Programming, Addison-Wesley

Plasmeijer and vanEekelen (1993), Functional Programming and Parallel Graph Rewriting, Addison-Wesley

Wos, Overbeek, Lusk and Boyle (1992), Automated Reasoning, Second edition, McGraw-Hill

Web Pointers

- Oxford University Computing Laboratory http://www.comlab.ox.ac.uk/archive/formal-methods.html
- BYU Laboratory for Applied Logic http://lal.cs.byu.edu/
- NASA Langley Research Center Formal Methods Program http://shemesh.larc.nasa.gov/fm.html

Swedish Institute of Computer Science http://www.sics.se/fdt/research97.html

UC Davis Programming Languages and Verification Laboratory http://avalon.cs.ucdavis.edu/

Stanford U. Center for Formal Methods http://www-formal.stanford.edu/jmc/math.html

- Warsaw U. Applied Logic Group http://zls.mimuw.edu.pl/english.html
- UC Berkeley Design Technology Warehouse http://www-cad.eecs.berkeley.edu/
- A Computational Logic http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html
- Formal Methods in Software Engineering http://wwwsel.iit.nrc.ca/projects/fm/fm.html
- Formal methods around the world http://lal.cs.byu.edu/other_FM.html
- Software Development using Formal Methods Syllabus http://www.mcs.salford.ac.uk/sdformal.html
- Bibliography on software engineering and formal methods http://bavi.unice.fr/Biblio/SE/Contrib.html
- Seven Myths of Formal Methods http://www.progsoc.uts.edu.au/~geldridg/frsd/ass1/7myths.htm
- Formal Methods selected historical references http://docs.dcs.napier.ac.uk/DOCS/GET/jones92a/document.html

Books

http://www.rspa.com/spi/formal.html

Rough Syllabus

NOTE: TOPICS may change by class consensus.

Class meeting	Торіс
1)	introduction
2)	overview of formal methods
3)	complexity, proof techniques
4)	proof systems, boundary logic
5) 6)	Boolean minimization, bdds abstract domains
7) 8)	pattern-matching and unification recursive function theory
9)	lambda calculus
10)	combinators
11)	theorem provers
12)	theorem and program proving
13) 14)	Mathematica, string rewrite relational algebra
15)	finite state automata
16)	cellular automata
17) 18)	abstract algebra and group theory fractals
19)	to be determined
20)	review and summary

Modeling with Logic

The Modeling Hierarchy

Conceptualization	(imaginary, perceptual, cognitive, real world)
Mathematical Model	(formal, symbolic, abstract, mathematical)
Data Structure and Algorithms	(representation, computational, software)
Machine Implementation	(actual, structured, physical hardware)

Mathematical Structures

propositional calculus (Boolean algebra)	
propositional symbols (binary variables)	
interpretations	
predicate calculus	
truth symbols	
constant symbols	
variable symbols	
function symbols	
predicate symbols (relations)	
quantifiers	
equality and orderings	
non-negative <i>integers</i>	
data structures	
strings trees lists sets	
bags (multi-sets) tuples grap	hs

Formal Modeling

A formal system (a mathematical system) consists of

- 1. several sets of labels (for objects, functions, relations) called constants,
- 2. rules for building compound sentences (or equations or expressions),
- 3. rules for evaluating and simplifying compound expressions, and
- 4. some axioms or assumptions which assert equivalence sets.

Formal = Atoms + Forms + Transforms + Axioms

Aristotle

Aristotle classified declarative language using three polar categories single vs compound (Socrates is happy. vs Man is happy.) universal vs particular affirm vs deny The latter two categories form the Square of Opposition

	AFFIRM	DENY
UNIVERSAL	A Every _ is (Everyone is happy.)	E No _ is (No one is happy.)
PARTICULAR	I Some _ is (Someone is happy.)	O Some _ is not (Someone is not happy.)

The Syllogism

The Syllogism according to Aristotle: "discussion in which, when things are posited, other things necessarily follow."

> All men are mortal. Socrates is a man. Thus, Socrates is mortal.

This non-Aristotelian form of logic was developed into the first ever *Axiomatic System* with variables.

Crisis in the Twentieth Century

Oh No! There is *no consistency in mathematics*, there are paradoxes in every system.

Logicism (Russell) Mathematics is identical to logic. (We'll patch the holes.)

Intuitionism (Brouwer)

Mathematics presupposes concepts. Concepts rest on natural numbers. (We'll construct what is known, and not admit infinity.)

Formalism (Hilbert) Mathematics is a set of syntactic transformations. (We'll refuse to interpret it.)

Predicate Calculus

A general purpose language for describing objects, facts, and transformations for particular domains. Also called *First Order Logic*. It consists of

connective logic	{and, or, if, not, iff} inference, proof
object domains	{ <unique atoms="">}</unique>
quantification	{all x, exists x}
predicates	classes and properties
relations	True associations between objects
functions	indirect names, maps from one object to another

Proof Techniques

Mechanisms of Proof

Truth tables	exhaustive analysis of all possible cases
Natural deduction	using language and intuition to figure out truths
Resolution	a computational algorithm for deduction
Boundary logic	a new form of spatial representation and parallel deduction

Generic Applications of Proof Theory

- Database querying and management (question answering) Facts and database entries are expressed as logical assertions. Abstract relations between facts are expressed as rules with variables. To answer a query, derive the answer from the facts and the rules.
- Program analysis and verification (compiling) Program execution is expressed as logical formulas. To verify a program, derive the termination conditions from the execution formula.
- Planning (state transformation and finite state machines) States and state transformations are expressed as logical formulas. To transform the start into the goal, derive the final state from the initial state.
- 4. *Circuit design* (logic synthesis) Circuits are expressed as logical formulas. To execute a circuit, substitute the Boolean input values and evaluate the formula. To minimize a circuit, apply transformations to the logical formula.
- 5. *Decision making* (decision analysis) Decisions are expressed as Boolean choices, which are expressed as logical formulas. To make a complex network of decisions, evaluate the corresponding logical forms.

Motivation for the Hard Problem

The essential problem is that *proof is difficult*. How logic is represented and how it is transformed determine the ease of (all) computation.

- Multiplicity ought not be posited without necessity. (Occam)
- Programming = data structure + algorithm (Wirth)
- Proof = definition + axiom (Lakatos)
- A good representation for a problem permits simple transformations to a solution however

any given representation blinds us to other ways of thinking. (Winograd)

Truth Table Analysis

Examining all possibilities is exponential in number of cases: there are 2^n cases to evaluate for n variables even in the simplest case of propositional logic without functions or relations. However, lookup tables are a brute force algorithm that is easy to understand and to implement. The technique is to list all possible combinations of values for each variable, and use simple definitions of the logical connectives to evaluate compound sub-expressions.

Ex	amp	ole:		if (P and Q)	then $(R =$	(not S))	
Ρ	Q	R	S	(not S)	(P and Q)	(R = (not S))	(if P&Q then R=~S)
т	т	т	т	F	т	F	F
т	т	т	F	Т	Т	Т	Т
т	т	F	т	F	Т	Т	Т
т	т	F	F	Т	Т	F	F
т	F	т	т	F	F	F	Т
т	F	т	F	Т	F	Т	Т
т	F	F	т	F	F	Т	Т
т	F	F	F	Т	F	F	Т
F	т	т	т	F	F	F	Т
F	т	т	F	Т	F	Т	Т
F	т	F	т	F	F	Т	Т
F	т	F	F	Т	F	F	Т
F	F	т	т	F	F	F	Т
F	F	т	F	Т	F	Т	Т
F	F	F	т	F	F	Т	Т
F	F	F	F	Т	F	F	Т

The Rules of Natural Deduction

Natural deduction evolved from natural language and from human intuition, so it is relatively easy to understand. It is very difficult to find the right rules to apply at the right time (exponential in difficulty of use). Recall that humankind has had an extremely difficult time understanding logic, and logic itself is still undergoing extreme revision. The name of the primary rule of natural deduction (*modus ponens*) is still in Latin. "I=" means "logically implies" while "->" is simply a symbol referring to a specific truth table. The same subtle difference exists between "and" and "&".

Modus Ponens:	А	and	A -> B	=	В
Modus Tollens:	~B	and	A -> B	=	~A
Double negation:	A ~~A			= =	~~A A
Conjunction:	А	and	В	=	A & B
Simplification:	A & A &	B B		= =	A B
Addition:	A			=	A V B

Natural Deduction Proof Techniques

Modus Ponens:	А	and	A	-	В	=	В
Modus Tollens:	~B	and	A	-	В	=	~A
Conditional proof:	A -	В				=	A -> B
Dilemma :	(A or	CB) a	ind ind	(A (B	- C) - C)	=	С
Contradiction:	(A -	-B) a	and		~B	=	~A
Cases:	(A is (A is	s True s False	- -	- B - B) and)	=	В

Note that "I-" is a sequence of formal steps, while "I=" is assurance of logical truth.

Generalization of Deduction

The rules of inference, or natural deduction, apply at three different *levels of abstraction*: individual propositions, individual sentences, and collections of sentences. Modus Ponens serves as an example.

Atoms:	(р	and (p imp	olies q))	implies q				
Sentences:	(A	and (A im	plies B))	implies B				
Collections of	sen	tences: (({A,B} a	and ({A,B} i	mplies {C,D	.})) imp	olies {C	,D}

Deductive Steps

There are three separate concepts of *proof step* (written above as "implies") which have been shown to be equivalent: material implication, logical implication, and entailment.

Material	implica	p -> q	
р	q	(p -> q)	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Material implication is defined by the *Truth Table* of values.

Notice that the second row, "(if False then True) is True", does not make sense in language structures, it is True by definition.

Logical	Implication:	p l= q
---------	--------------	--------

"if (p is logically True) then (q is logically True)"

Logical implication is defined by *common sense* and by the rules of deduction.

Formal Proof: p l- q

"if (p is True) then a sequence of implications shows (q is True)"

Formal proof is defined by taking *logical implication steps* from p to q

Natural Deduction Example

In English:

Premise 1: Premise 2: Premise 3: Conclusion:	 If he is lying, then (if we can't find the gun, then he'll get away). If he gets away, then (if he is drunk or not careful, then we can find the gun). It is not the case that (if he has a car, then we can find the gun). It is not the case that he is both lying and drunk. 					
Encode the p	ropositions as letters:					
	L = he is lying					
	G = we can find the gun					
	A = he will get away					
	D = he is drunk					
	C = he is careful					
	H = he has a car					
Premi	se 1: If L then (if (not G) A)					
Premi	se 2: If A then (if (D or not C) then G)					
Premi	<i>se 3</i> : Not (if H then G)					

Conclusion: Not (L and D)

Encode the logical connectives:

P1: L -> ($\sim G$ -> A) P2: A -> ((D v $\sim C$) -> G) P3: $\sim (H -> G)$ C: $\sim (L \& D)$

Figure out a good proof strategy. This step is not algorithmic, and is the source of difficulty in natural deduction approaches. Here the Contradiction strategy works:

1.	(L & D)	assume the negated conclusion, plan to	show a contradiction
2.	L	simplification of 1	
3.	D	simplification of 1	
4.	~G -> A	modus ponens with 2 and P1	
5.	~(~H V G)	rewrite P3 with conditional exchange:	$X \rightarrow Y = -X v Y$

6.	~(~H V ~~G)	double negation of part of 5
7.	H & ~G	rewrite 6 with DeMorgan: ~(~x v ~Y) = x & Y
8.	~G	simplification of 8
9.	А	modus ponens with 8 and 4
10.	((D v ~C) -> G)	modus ponens with 9 and P2
11.	(D V ~C)	addition of \sim c to 3
12.	G	modus ponens with 11 and 10
13.	G & ~G	conjunction of 8 and 12
14.	~(L & D)	contradiction 1-13

Steps from 1 to 13 have created a contradiction: G & ~G = False, therefore the assumption on line 1 is false. But that assumption is the negation of the conclusion. Therefore the negation of the negation of the conclusion is True. That is, the conclusion is True.

Variable Renaming

Variables are used in algorithmic deduction as arguments to functions and relations. In this case, it is necessary to assure that each variable name is *unique*. This is in contrast with the standard (pre-computational) conventions of logic and algebra which use the same variable names in different rules. The convention existed because quantification "protected" the variable names by scoping rules, just as local variable declarations protect name clashes in programming.

Conventional:

R1. if P(x) then Q(x)R2. if R(x,y) and R(y,z) then R(x,z)R3. if P(x) and R(x,y) then P(y)

Computational: assign all variables unique names.

R1. if P(_1_) then Q(_1_)
R2. if R(_2_, _3_) and R(_3_, _4_) then R(_2_, _4_)
R3. if P(5) and R(5 , 6) then P(6)

Unification

Facts do not contain variables, functions and relations can contain variables since they are intended to be abstractions. (The lexicographic arrangement of a form is an arbitrary choice, but it must be consistent within a database for matching to succeed.) Facts are combined with functions and relations through unification, *a generalization of pattern-matching*. Pattern-matching comes in three varieties:

1. The pattern is a specific ground (a fact with no variables). A match is exact, typographical character by character. Note that no conclusions follow if a pattern is not in the database.

(john is-parent-of sue) =match= (john is-parent-of sue)

2. The pattern contains variables which match grounds in the database. In this case, more than one match is possible. The type of pattern variable can be used to control matching. Below, the bindings are $_1_ = \{john, betty\}$.

(_1_ is-parent-of sue) =match= (john is-parent-of sue) =match= (betty is-parent-of sue)

3. Both the pattern and the data being matched contain variables. This matching procedure is called *unification*. Below, the bindings are $_1_ = \{ _2_ \}$ and $_3_ = \{ sue \}$. The result is the further query: (_2_ is-ancestor-of sue)

In matching, only variables from one side of the equation can be matched. In unification, variables on either side can be matched. Examples:

Resolution

In 1965, John Robinson devised a computational approach to proof called *resolution*. The resolution principle uses the two possible cases of one variable. If the fact that a thing is True leads to one conclusion, and the fact that it is False leads to another conclusion, then in any case either the first or the second conclusion is True.

((if P then Q) and (if (not P) then R)) implies (Q or R)

As a deductive rule, resolution can be stated in increasing general forms:

Ρ and ~P or False | = False ~P or Q Ρ and | = Q ~P or Q | = Q P or Q and |= Q or R P or Q ~P or R and $(P \text{ and } U) \text{ or } Q \text{ and..}(\sim P \text{ and } V) \text{ or } R \mid = (U \text{ or } Q) \text{ or } (V \text{ or } R)$ Resolution proof uses a *clausal* data structure consisting of sets of literals in disjunction. A pair of sets, one with a positive occurrence of a variable and one with a negative occurrence, is resolved by forming the union of the two sets, and deleting the resolvent variable.

$$\{p, q\}$$
 union $\{\neg p, r\} \mid = \{q, r\}$

Facts are expressed as a singular set:

{p}

Rules are converted from implicational form to disjunctive form:

p -> q ==> ~p or q ==> {~p, q}

When the resolvent atoms have internal structure (functions and relations), the internal variables are *unified* in the course of resolving the atoms.

Resolution Example

Example: Who are Jon's parents?

F1.	(Bob	is-father-of	Jon)			=	{bFj}
F2.	(Sue :	is-mother-of	Jon)			=	{sMj}
R1.	If (_1	l_ is-father-	-of _2_	_)			
		then (_1_ is	s-parer	nt-of _2	2_)	=	{~1F2, 1P2}
R2.	If (_3	3_ is-mother-	-of _4_	_)			
		then (_3_ is	s-parer	nt-of _4	⊧_)	=	{~3M4, 3P4}
Q.	If (_5	5_ is-parent-	-of Jor	1)			
		then (answer	r-is _5	5_)		=	{~5Pj, A5}
Resolve	C1.	F1 and R1	=	{bPj}			
	C2.	F2 and R2	=	{sPj}			
	СЗ.	R1 and Q	=	{~5Fj,	A5}		
	C4.	R2 and Q	=	{~5Mj,	A5}	rename	e {~6Mj, A6}
	a F	o 1.41					
	C5.	Q and Cl	=	{dA}			
	C6.	Q and C2	=	{As}			
	С7.	F1 and C3	=	{Ab}			
	C8.	F2 and C4	=	{As}			

The algorithm completes all available resolutions, so that complete resolution over a database usually generates the same answer more than once. Database queries distinguish whether one match, or answer, is requested, or whether all matches are requested.

Quantification

Quantifiers introduce sets into logic, and serve to define the scope of variables in a logical expression.

Universal quantification: All x. P(x)

The statement All x. P(x) is True exactly when the predicate P (or the characteristic function for the set P) is True for all objects in the set U for which x is an arbitrary member.

For finite domains U, All x. P(x) iff (x1 and x2 and ... and xn) Existential quantification: Exists x. P(x)

The statement Exists x. P(x) is True exactly when the predicate P is True for at least one object in the set U for which x is an arbitrary member.

For finite domains U, Exists x. P(x) iff (x1 or x2 or ... or xn)

Relationships between Quantifiers

All true = none false:	All x. P(x) iff (not (Exists x. (not P(x))))
All false = none true:	All x. (not P(x)) iff (not (Exists x. P(x)))
Not all true = at least one false:	<pre>(not (All x. P(x))) iff Exists x. (not P(x))</pre>
Not all false = at least one true:	(not (All x. (not P(x)))) iff Exists x. P(x)

Algebraic Proof Techniques

Standard Form (Boolean systems only)

A = B iff ((A -> B) & (B -> A)) isTrue

Direct Transformation

A = B iff $A \mid -B$ or $B \mid -A$

Mutual Transformation

A = B iff $A \mid -C$ and $B \mid -C$

Case Analysis (Z: X => Y means "Y is substituted for X in expression Z")

 $A = B \qquad \text{iff} \qquad (A: E \Rightarrow True) = (B: E \Rightarrow True) \\ \text{and} \qquad (A: E \Rightarrow False) = (B: E \Rightarrow False) \end{cases}$

Complexity in Computation

Model Theory

Given an object domain and a collection of functions and relations on objects in that domain, a *model* of the domain is defined by its facts:

all atoms (atom-names) in the dom all atoms not in the domain are False	ain are True e	
<i>Example</i> : Object domain = {Mary, T	⁻ om, John}	Relation: {Likes}
all possible atoms:	all po	ssible models:
Likes[Mary, Tom] Likes[Mary, John] Likes[John, Mary] Likes[Tom, Mary] Likes[John, Tom] Likes[Tom, John]	1 6 15 20 15 6 1	empty state (no atoms true) one Likes atom isTrue two Likes atoms are True three True four True five True six True
	64	possible models in total

The set of all possible models is called the *Herbrand Universe*. In theories with integers or theories with functions, this universe is usually infinite.

The Equivalence of Deduction and Computation

From 1920 to 1970, a central issue for theoretical computer science was whether a computation maintained the meaning of a logical (deductive) process. Fortunately the answer is yes, given that the programming language follows the rules of logic. These are the essential concepts:

P - Q	Single turnstile:	Q is <i>computed</i> from P

P I= Q Double turnstile: Q is *deducible* from P

Soundness: If $P \vdash Q$, then $P \vdash Q$

A sound computation always maintains the deductive model. The computation never generates a False model, it never produces an incorrect fact.

```
Completeness: If P \models Q, then P \models Q
```

A complete computation never varies from the deductive model. The computation generates all True models. If something can be deduced, the computation will be able to deduce it.

Sound and Complete: $P \vdash Q = P \vdash Q$

The deductive model and the computation represent the same Universe. The computation produces all that can be deduced, and only what can be deduced.

Decidability

Universal:

If it can be computed formally, then it can be computed using First Order Logic (Turing equivalence).

Decidable:

The computational procedure will terminate with a Yes/No result.

Semi-decidable:

The computation might halt, but you don't know when. It may never halt if you ask the wrong kind of question. What we can't do is ask questions which depend on the **failure** to prove something:

- No: "Check to see if nothing is wrong"
- No: "Prove that this search will fail to find X"

SAT and TAUT

The *most important theoretical question* in Computer Science (with the most critical practical applications) is

Can we write an algorithm which runs in *polynomial space and time* with regard to the number of variables that shows that an arbitrary expression in Propositional Calculus has a *non-trivial variable* in it?

SAT: Is a Boolean expression SATisfiable?

That is, is there an assignment of variable values (True or False) which results in different outcomes for the entire expression (again either True or False)?

TAUT: Is a Boolean expression a TAUTology

That is, is every variable in the expression irrelevant? Is the expression always True regardless of the values assigned to the variables in it?

If TAUT or SAT is solvable within polynomial bounds, then P = NP

P =?= NP

Almost all complex but common computational problems can be mapped onto the SAT problem. If you can show propositional satisfiability within polynomial bounds, then most computational problems have an efficient solution. In particular, programs and circuits can be verified efficiently.

Polynomial complexity: O[n^some-power]
some polynomials: n^2 (n+1)(n - 1) 14n^6 + 3n^3 + n + 104
Non-deterministic polynomial complexity: O[2^n] or worse
some non-polynomials: 2^n 7^(n + 3) n! 2^(2^n)

Polynomial algorithms are called *tractable*: they all run in "reasonable" time. Non-polynomial algorithms are intractable: none of them are efficient enough to be useful for problems of arbitrary size.

Irrelevant Variables

In 1930, Huntington provided the first proof that irrelevant logical structures of arbitrary complexity can be introduced into a logical form. Today, we can easily see how variables can occur in a logical form (or in a computational control structure) without contributing to the meaning of the form.

(A or True) = True

The logical law of Addition, $A \models (A \text{ or } B)$, permits the inclusion of arbitrary forms through disjunction. In a program, the order of execution of two forms joined by OR is important, because one of the forms may render the computation of the other irrelevant. However, compilers can search for the "True" token in linear time, and simplify the code accordingly. It is no more difficult when the irrelevant forms are hidden in multiple disjunction:

(A or (B or (C or True))) = True

$$(A \text{ or } \sim A) = True$$

The Law of Excluded Middle is more difficult, since it appears that "A" might need to be evaluated at least once. However, if the pattern "A" can be located in two different places by patternmatching, it can be coalesced into one. Code compilers do this so that the subroutine "A" is evaluated only once, and the result, rather than the call, is stored in memory. If the coalesced form is in the relation of Excluded Middle, it can be eliminated altogether, without evaluation. The form of "A", however, may look different in different places, due to other logical invariants. For example:

A and B = B and A

could make Excluded Middle more complex:

((A and B) or (not (B and A)) = True

This problem is resolved by sorting the form into a standard, or canonical, ordering. Since sorting can be achieved efficiently, this type of logical embedding is not the source of complexity (although it does require more computation to avoid.

X = Y iff $(X \rightarrow Y) \& (Y \rightarrow X) = True$

In the Boolean domain, an algebraic equivalence can always be converted into a Truth statement in standard form. This permits hiding irrelevant variables in yet another way. Using the symmetry of AND as an example:

 $((A and B) \rightarrow (B and A)) \& ((B and A) \rightarrow (A and B)) = True$

This too can be addressed by sorting the form into a canonical ordering.

Boundary Techniques

Boundary Logic

Boundary logic uses a *spatial representation* of the logical connectives. Because boundaries delineate both objects and processes, boundary forms can be evaluated using either an algebraic (match and substitute) process or a functional (input converted to output) process.

Representation of logic and proof in spatial boundaries is new, and quite unfamiliar. Boundary logic is not based on language or on typographical strings, nor is it based on sequential steps. Boundary techniques are inherently *parallel and positional*. The meaning, or interpretation, of a boundary form depends on where the observer is situated. From the outside, boundaries are objects. From the inside, you cross a boundary to get to the outside; boundaries then are processes. This dramatically different approach (that is, permitting the observer to be an operator in the system) does not change the logical consequences or the deductive validity of a logical process.

Spatial representations have built-in associativity and commutativity. The base case is no representation at all, that is, *the void has meaning* in boundary logic. Logical expressions are simplified by *erasure of irrelevancies* rather than by accumulation of facts.

Boundary Logic Representation

logic	boundary	comments
False	<void></void>	no representation. Note: (()) = <void></void>
True	()	the empty boundary
A	A	objects are labeled by names
not A	(A)	
A or B	A B	Disjunction is sharing the same space
A and B	((A)(B))	
if A then B	(A) B	Implication is separating by a boundary
A iff B	(A B)((A)(B))	

In the above map from conventional logic to boundaries, the many textual forms of logical connectives condense into one boundary form. Note that the parens, (), is a linear, or one-dimensional, representation of a boundary. Circles and spheres are expressions of boundaries in higher dimensional representations.

Multiple Readings of the Same Form

A simpler notation expresses in one form the many different forms of a more complex notation. For example:

 A proof of DeMorgan's Law:

(A and B) iff (not ((not A) or (not B)))

Transcribe: ((A)(B)) = ((A)(B)) equal by identity

Boundary Logic Algebraic Process

The transformation axioms of boundary logic:

Dominion (the halting condition, when to stop)

() A = ()

Involution (double negation, how to remove excess boundaries)

((A)) = A

Pervasion (how to remove excess occurrences of variables)

A (A B) = A (B)

Each axiom suggests a definite reduction strategy: *erasing irrelevant structure* to convert the left side of the equation to the right side.

A Boundary Logic Example: Proving Modus Ponens

Modus Ponens:	(A and (A implies B)) implies B	
Transcribe:	(((A) ((A) B))) B	
Simplify (prove):		
	(((A) ((A) B))) B	
	(A)((A)B) B	involution
	(A)((A)) B	pervasion of B
	(A) A B	involution
	() A B	pervasion of A
	()	dominion

The remaining form is transcribed back into logic as True.

Truth Table Example in Boundary Logic

```
Example: if (P and Q) then (R = (not S))
```

Encode as boundaries:

The expression is True whenever Dominion applies

When P is False, it is erased: () (Q) (R (S)) ((R) S) = () dominion When Q is False: (P) () (R (S)) ((R) S) = () dominion

Note that the form (X (Y)) (Y (X)) is True when X is not the same as Y, so the expression is True when R is False and S is True. Substituting:

and when R is True and S is False

(P) (Q) (() ()) (()) = (P) (Q) () = ()

These four cases identify all the True forms of the expression.

Conversely, the expression is False only when everything vanishes, that is, when

(P is True) and (Q is True) and ((R and S are both True) or (R and S are both False))

(()) (()

Natural Deduction Example in Boundary Logic

Premise 1: If L then (if (not G) A)
Premise 2: If A then (if (D or not C) then G)
Premise 3: Not (if H then G)
Conclusion: Not (L and D)

Encode the logical connectives as boundaries, and simplify:

P1:	(L) ((G)) A	=	(L) G A	involution
P2:	(A) (D (C)) G			
P3:	((H) G)			
C:	(((L)(D)))	=	(L)(D)	involution

Join all premises and conclusions into one form, using the logical structure:

(P1 and P2 and P3) \rightarrow C

The proof structure of "conjunction of premises imply the conclusion" as boundaries:

(((P1) (P2) (P3))) C = (P1) (P2) (P3) C involution

Substituting the forms of the premises and conclusion, and reducing:

((L) G A)	((A)	(D (C))	G)	(((H) G))	(L) (D)	
((L) G A)	((A)	(D (C))	G)	(H) G	(L) (D)	involution
((L) A)	((A)	(D (C)))	(H) G	(L) (D)	pervasion of G
(A)	((A)	(D (C)))	(H) G	(L) (D)	pervasion of (L)
(A)	((D (C)))	(H) G	(L) (D)	pervasion of (A)
(A)		D (C)		(H) G	(L) (D)	involution
(A)		D (C)		(H) G	(L) ()	pervasion of D
						()	dominion

Interpret the final form: () = True

Boundary Quantification

All x. P(x)	(x) Px	x implies	Рх	isTrue
Exists x. P(x)	((x)(Px))	x and Px	isTr	ue
Quantifier relations:	Standard form			Boundary form
All x. P(x) iff (no	t (Exists x. (not	P(x))))		(x) Px = (((x)((Px))))
All x. (not P(x)) if	f (not (Exists x.	P(x)))		(x)(Px) = (((x)(Px)))
<pre>(not (All x. P(x)))</pre>	iff Exists x. (no	t P(x))		((x) Px) = ((x)((Px)))
(not (All x. (not P(x)))) iff Exists	x. P(x)		((x)(Px)) = ((x)(Px))

Proof Techniques, an Extended Example

Here is an example from relational calculus to illustrate each of the four methods of proof (case-analysis or truth tables, natural deduction, resolution, and boundary logic) The example can be viewed as a knowledge-base query. A *knowledge-base* (KB) is a collection of *facts* (which contain no variables) and *rules* (which contain variables, and are usually stated in an if...then... format). Both the fact-base and the rule-base have been greatly simplified for this example. The deductive processes are essentially the same, regardless of the complexity of the knowledge-base.

A Relational Calculus (Database Query) Example

Facts:			
	F1. F2. F3. F4.	(Geo (Rit (Rit (Har	orge is-the-father-of Harry) ta is-the-sister-of Harry) ta is-never-married) try is-a-male)
Rules:			
	R1.	If	<pre>(_1_ is-the-father-of _3_) and (_2_ is-the-sister-of _3_) then (_1_ is-the-father-of _2_)</pre>
	R2.	If	<pre>(_4_ is-the-father-of _5_) and (_5_ is-a-male) then (_5_ is-the-son-of _4_)</pre>
	R3.	If	(_6_ is-the-son-of _7_) then (_6_ has-same-last-name-as _7_)
	R4.	If	<pre>(_8_ is-the-father-of _9_) and (_9_ is-never-married) then (_9_ has-same-last-name-as _8_)</pre>
	R5.	If	(_10_ has-same-last-name-as _11_) and (_10_ has-same-last-name-as _12_) then (_11_ has-same-last-name-as _12_)
	R6.	If	(_13_ has-same-last-name _14_) then (_14_ has-same-last-name _13_)
Query:	Q.		(Harry has-same-last-name-as Rita)
Abbrev	viations:		
	George Rita	9	= g = r

Harry

(_1_ is-the-father-of _2_)

(_1_ is-the-sister-of _2_)

(_1_ has-same-last-name-as _2_) =

(_1_ is-the-son-of _2_)

h

1F2

1T2

1S2

1L2

=

=

=

=

(_1_ is-a-male)		=	1M	
(_1_ is-never-married)		=	1N	
Variables will be integers	=	{1 ,	2, 3,	••••}

Abbreviated knowledge-base:

F1. F2. F3. F4.	gFh rTh rN hM						
R1.	if	1F3	and	2т3	then	1F2	
R2.	if	4F5	and	5M	then	554	
R3.	if	6S7	then	6L7			
R4.	if	8F9	and	9N	then	9L8	
R5.	if	10L11	and	10L12	then	11L12	transitivity
R6.	if	13L14	then	14L13			commutativity
Q0.	hLr						

This particular example was designed with these objectives in mind:

- 1. Intuitive semantics, easy for a human to understand
- 2. Tractable size but enough to illustrate both natural and algorithmic processes
- 3. Simple but non-trivial proof in natural deduction
- 4. Easy forward-chaining proof in case-analysis (as a consequence of this, a complex backward chaining proof)
- 5. Surprising proof in algorithmic resolution
- 6. Illustrative proof of minimal boundary techniques, including more complex set techniques.
- 7. Difficulty general transitivity and commutativity rules
- 8. Tricky and subtle knowledge engineering issues.

Note: in pattern-matching systems, there is no substantive difference between algebraic functions (ie. functions which are not evaluated) and relations.

Natural Deduction

The natural deduction approach is to *use reason* to show that Harry and Rita have the same last name because George is their common father and Rita has never married. We show that George is the father of both Harry and Rita, then we show that George has the same last name as both Harry and Rita, then we conclude that Harry and Rita have the same last name. Although the logic is clear, the syntactic transformations to get the rules to confirm the logic require the additional skill of pattern-matching through unification.

Show	gFh	F1.	gFh		given	
Show	gFr	F2.	rTh			
		R1.	gFh and r	Th	therefore	gFr
Show	gLh	R3.	gFh and h	nΜ	therefore	hSg

Applied Formal Methods

efore hLg
efore gLh
efore rLg
efore gLr
efore hLr

Case-analysis and Chaining

Truth tables list all possible facts. In a KB, rules can be seen as sets of facts that have yet to be enumerated. The identifying characteristic of case-analysis is that no variables are included in the final form of rules or queries. One approach is to substitute all possible variable bindings into the rules in all possible combinations. Since we have three people {George, Rita, Harry} in the KB, and all variables refer to these three people, each variable has 3 cases, and each rule would have 3^n cases, where n is the number of different variables in the rule. In the example, this would generate $(3^3 + 3^2 + 3^2 + 3^2 + 3^3 + 3^2) = 90$ rule cases for the six rules.

A more efficient procedure would be to use the known facts to constrain the generation of cases. We begin with the known facts and then use the rules to (indiscriminately) generate all the other possible facts that are consistent with both the initial facts and the rules. The forward generation of facts from initial conditions and rules is called *forward-chaining*. We attempt to unify each fact with the premise of each rule; when unification is successful, the conclusion of the rule is asserted as a new fact.

The order of enumeration of facts (the *enumeration strategy*) is a significant issue. The order in which facts are applied to rules determines which new facts get enumerated first. Since new facts themselves may trigger applications of rules, a choice can be made between *depth-first* enumeration (following new facts first) or *breadth-first* enumeration (following old facts first). Often a single fact may unify with one premise of a rule which requires two or more facts to fulfill its premise. In this case, a new, shorter rule is asserted.

Below we use the following strategy: first all new facts are generated, then they are in turn used to generate more facts. Duplications has been suppressed (this is called an *occurs-check*). Using the current facts to generate more facts is called a *set-of-support* strategy, since the set of known facts support the conclusions.

F5.	F1+F2,	R1:	gFr	
F6.	F1+F4,	R2:	hSg	no other rules unify, use new facts
F7.	F5+F3,	R4:	rLh	
F8.	F6,	R3:	hLg	
F9.	F7 ,	R6:	hLr	QED

Note that this algorithmic proof is shorter than the natural deduction proof. It is still not optimal, since step F8 was unnecessary. Algorithmic proof is always committed to following a blind strategy, trading thought and efficiency for ease of implementation. There is a general computational heuristic here: almost always it is better to implement blind brute force rather than subtle computational intelligence. The corollary to this heuristic is that brute force only works with the appropriate data structure. It is almost always better to apply design intelligence to the representation of a problem than to the algorithm.

Another strategy is to use the query to generate all possible queries stemming backwards from the target query, until the existing facts terminate the search. Queries are matched with the conclusions of rules; the premises of these rules are then the new queries. This technique is called *backward-chaining*. We first generate queries which can be answered by single facts, then queries which require more than one fact, finally trying to bind queries which contain variables to the initial fact base. The example follows:

Q0.					hLr	?	
Q1.	Q0,	R3:			hSr	?	
Q2.	Q0,	R6:			rLh	?	
Q3.	Q2,	R3:			rSh	?	No other simple queries
Q4.	Q0,	R4:	rFh	and	hN	?	
Q5.	Q0,	R5:	20Lh	and	20Lr	?	Introduce new variable numbers
Q6.	Q1,	R2:	rFh	and	hM	?	=> rFh using F4
Q7.	Q2,	R5:	21Lr	and	21Lh	?	duplicate of Q5
Q8.	Q3,	R2:	hFr	and	rM	?	
Q9.	Q6,	R1:	rF22	and	hT22	?	No more bindings or ground Qs
Q10.	Q5a,	R3:			23Sh	?	Begin using variable Qs
Q11.	Q5b,	R3:			24Sr	?	
Q12.	Q10,	R2:	hF25	and	25M	?	
Q13.	Q11,	R2:	rF26	and	26M	?	
Q14.	Q5a,	R6:			hL27	?	
Q15.	Q5b,	R6:			rL28	?	
Q16.	Q14,	R3:			hS29	?	
Q17.	Q15,	R3:			rS30	?	
Q18.	Q16,	R2:	31Fh	and	hM	?	=> 31Fh using F4
Q19.	Q17,	R2:	32Fr	and	rM	?	
Q20.	Q18,	F1:			gFh	?	bind 31 to g using fact F1

At this point we have back-chained to an initial fact, gFh. Reversing the logic, this fact combined with F4 and R2 (see line Q18) answer line Q16, binding variable 29 to g. This answers Q14, binding 27 to g. Q14 answers the first part of Q5 (that is Q5a), binding 20 to g, and leaving the query sequence below as Q5b. (While we are at an interrupt, note that if the below sequence fails, the queries would pick up where they left off, at Q12 where 25 would bind to h using F4. This would create the query hFh? and so on)

Q21.	Q5b:				gLr	?	
Q22.	Q21,	R3:			gSr	?	
Q23.	Q21,	R6:			rLg	?	
Q24.	Q23,	R3:			rSg	?	No other simple queries
Q25.	Q21,	R4:	rLg	and	gN	?	
Q26.	Q21,	R5:	33Lg	and	33Lr	?	
Q27.	Q22,	R2:	rFg	and	gМ	?	
Q28.	Q23,	R4:	gFr	and	rN	?	=> gFr using F3
Q29.	Q23,	R5:	34Lr	and	34Lg	?	
Q30.	Q28,	R1:	gF35	and	rT35	?	No other grounded queries
Q31.	Q30,	F1:	gFh	and	rTh	?	Bind 35 to h using F1
Q32.	Q31,	F2:			rTh	?	=> True using F2

We have now reached a final conclusion, since all queries have been answered. Reconstructing the path in reverse order:

Applied Formal Methods

Q32:	rTh				
Q31:	Q32	and	gFh		
Q30:	Q31				
	R1			thus	gFr
Q28:	Q30	and	rN		
	R4			thus	rLg
Q23:	Q28				
	R6			thus	gLr
Q21:	Q23				
Q20:	gFh				
Q18:	Q20	and	hM		
	R2			thus	hSg
Q16 :	Q18				
	R3			thus	hLg
Q14:	Q16				
	R6			thus	gLh
Q5 :	Q14	and	Q21		
	R5			thus	hLr
Q0:	Q5			QED	

Note that this proof is similar to the natural deduction, and not as direct as the forwardchaining proof. These differences are an artifact of the particular KB, and are not general. Some KBs are particularly efficient for forward-chaining and some are particularly efficient for backward-chaining. In general, which method is best depends on the specific query, on the particular KB, and on the way in which each rule is formulated (see the **Addendum**). Usually the methods need to be mixed. The resolution technique accomplishes this mixing.

Resolution

In resolution, the KB is converted into sets of clauses. A *clause* is a set of both positive or negative atoms joined by disjunction. A KB is a set of clauses. New clauses are added by matching and deleting positive and negative atoms which unify across two clauses. For instance, the logical form (if A then B) is converted into the equivalent form ((not A) or B), which then is turned into a set of atoms {~A, B}. Resolution looks like this:

 $\{\sim C, A\}$ resolve-with $\{\sim A, B\} ==> add \{\sim C, B\}$

This can be read for logic as ((C implies A) and (A implies B) therefore (C implies B)). Since resolution is an algorithm, we proceed down the list of clauses in a linear fashion. The query is negated, and we hope to resolve it with an assertion of the positive fact to end the resolution with an empty clause. This looks like:

$$\{A\}$$
 resolve-with $\{\sim A\} ==> \{\}$

Several resolution strategies are possible, based on the structure of each clause. For instance facts (clauses with single positive atoms) could be resolved first. Or clauses with single atoms regardless of polarity could be resolved first. Another strategy might be to resolve all instance of a particular relation first. The strategy used below is to resolve all singular clauses first.

F1.	{gFh}							
F2.	{rTh}							
F3.	{rN}							
F4.	{hM}							
ο.	{~hLr}							
~								
R1.	{~1F3, ~2T3, 1F2}		if	1F3	and	2т3	then	1F2
P2	$\{-110, 210, 112\}$		 if	185	and	5M	+hon	594
D2	$\{-697, 617\}$			607	unu	511	+hon	617
КЈ. D4	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$			057	and	0.11	then	010
R4.	{~8F9, ~9N, 9L8}		11	819		9N	then	910
R5.	{~10L11, ~10L12, 11L12}		11	1011.	I and	10112	then	11112
R6.	{~13114, 14113}		lİ	13614	4		then	14L13
C1	(~20mb ~E20)	D 1	ъ1	r (00.000	waraih	log	
	{~2011, gr20}	гі, п1	RI D2	τe	enalle	varain.	tes	
CZ.	{~nM, nSg}	F1,	RZ					
C3.	{~hN, hLg}	F1,	R4					
C4.	{~21Fh, 21Fr}	F2,	R1					
С5.	{~22Fr, rL22}	F3,	R4					
C6.	{~23Fh, hS23}	F4,	R2					
C7.	{~hSr}	Q,	R3					
C8.	{~rFh, ~hN}	Q,	R4					
С9.	{~24Lh, ~24Lr}	Q,	R5					
C10.	{~rLh}	Q,	R6					
C11.	{gFr}	F1,	C4					
C12.	{hSa}	, F1,	C6					
C13X	(~5) /aFrl	, F2.	C1	dı	uplic	ate of (C11	
C14X	(9) (hSa)	г 2, г4	C2	di	uplic	ate of (C12	
CIAN	{1159}	14,	02	u	upiico		C12	
C15.	{~rFh, ~hM}	C7.	R2	be	egin 1	using ne	ew fac	cts
C16.	{~rFh}	C7.	C6		- 5			
C17.	{} {~rSh}	C10	R3					
C18	(-bFr ~rN)	C10	RJ RΛ					
C10V	1 = 1	C10,	D5	d	unlia	ato of (~ 0	
CIJA	$\{ 2511, 2511 \}$	C10,		ui di	upiico	ate of v	~~~~~~	
C20A		C10,	RU QE	u	upiico	ale of 0	query	
C21.	{~IIF1 }	C10,						
C22.	{~261r, gF26}	CII,	RI					
C23.	{~rM, rSg}	CII,	R2					
C24.	{~rN, rLg}	C11,	R4					
C25.	{rLg}	C11,	C5					
C26.	{hLg}	C12,	R3					
C27X	{~hFr}	F3,	C18	dı	uplica	ate of (C21	
C28X	{rLg}	F3,	C24	dı	uplica	ate of (C27	
C29X	{~rFh}	F4,	C15	dı	uplica	ate of (C16	
C30.	{~rF27, ~hT27}	C16,	R1	be	egin v	with new	w fact	ts again
C31.	{~hFr, ~rM}	C17,	R2					
C32.	{~hF28, ~rT28}	C21,	R1					
C33.	{~hFh}	C21,	C4					
C34.	{~rL29, gL29}	C25,	R5					
C35.	{~rL30, 30Lg}	C25,	R5					
C36.	{gLr}	C25,	R6					
C37.	{~hL31, gL31}	C26,	R5					
C38.	{~hL32, 32Lg}	C26,	R5					

C39.	{gLh}	C26, R6	
C40X	{~hFh}	F2, C32	duplicate of C33
C41.	{gLg}	C25, C34	
C42X	{gLg}	C25, C35	duplicate of C41
C43X	{gLg}	C26, C37	duplicate of C41
C44X	{gLg}	C26, C38	duplicate of C41
C45.	{~hFh, ~hTh}	C33, R1	begin with new facts again
C46.	{~gL33, rL33}	C36, R5	
C47.	{~gL34, 34Lr}	C36, R5	
C48X	{rLg}	C36, R6	duplicate of C27
C49.	{~gLh}	C36, C9	resolves with C39 to {}
C50.	{~gL35, hL35}	C39, R5	
C51.	{~gL36, 36Lh}	C39, R5	
C52X	{hLg}	C39, R6	duplicate of C25
C53.	{~gLr}	C39, C9	resolves with C36 to {}
C54.	{~gL37, gL37}	C41, R5	
C55.	{}	C54	QED.

The proof terminated with a clause which has a negative and a positive instance of the same atom. There are many observations to be made in this example. Let's begin by unwinding the logic of the proof. When the non-productive resolutions are pruned, the proof is quite straight forward and short.

C54: {~gL37, gL3	7}
R5: {~10L	11, ~10L12, 11L12}
C41: {gLg}	
C34:	{~rL29, gL29}
C25:	{rLg}
	proof below
R5:	{~10L11, ~10L12, 11L12}
C25:	{rLg}
C5:	{~22Fr, rL22}
F3:	{rN}
R4:	{~8F9, ~9N, 9L8}
C11:	{gFr}
F1:	{gFh}
C4:	{~21Fh, 21Fr}
F2:	{rTh}
R1:	{~1F3, ~2T3, 1F2}

First, the resolution proof adopted a non-intuitive strategy, arguing from absurdity that a person cannot both have the same last name as someone (variable 37 in C54) and not have the same last name as that someone. This approach does not rely on any semantic knowledge about last names, obviously the computation does not understand naming conventions. The consequence is built into the transitivity rule (R5) itself.

Note the recursive use of C25. The established fact rLg (from C25) is used with R5 to construct the smaller rule (if rL29 then gL29), if Rita has the same last name as someone, then so does George. It is then used again with that rule (C25 + C34) to show that the unknown person is George himself! Finally R5 is used again with the fact that George has his own last name to terminate the proof. Non-intuitive proofs and proof strategies are characteristic of algorithmic proof systems.

The proof would have been substantively different if R6, the commutative rule for last-names had not been included. In fact, it is not necessary for a proof. In this resolution proof, it is surprising that R2, R3, R6, and F4 were not used at all, even though from a natural deduction perspective they appear mandatory.

Note also the many convergent proofs toward the end. Had C54 not occurred, both C49 and C53 would have terminated the proof during the next cycle. Again, multiple paths with high redundancy are characteristic of algorithmic techniques.

Note also that the distinction between forward and backward chaining is largely lost, since matching positive facts and negative facts uses the same algorithm without distinction. The algorithmic proof followed all paths at the same time, taking small steps along each possible path without regard to conclusions or duplications.

Other control strategies for the resolution would have resulted in different proofs and even different proof strategies. It may have been more efficient, for example, to resolve the new facts with the shorter new rules first, before using the original rules, since the original rules R1 and R5 introduced excess variables.

In resolution, it is possible to resolve rules together, as well as just to follow facts. For example:

R2. {~4F5, ~5M, 5S4} R3. {~6S7, 6L7} ==> {~20F21, ~21M, 21L20}

This generates a new rule, which is more direct for the purposes of the question that has been asked. When to do this becomes clear in the following boundary logic approach.

Boundary Logic

Again we transcribe the rules into a new, boundary, notation:

R1:	(((1F3) (2T3))) 1F2	if	1F3	and	2Т3	then	1F2
R2:	(((4F5) (5M))) 5S4	if	4F5	and	5M	then	554
R3:	(6S7) 6L7	if	6S7			then	6L7
R4:	(((8F9) (9N))) 9L8	if	8F9	and	9N	then	9L8
R5:	(((10L11) (10L12))) 11L12	if	10L11	and	10L12	then	11L12
R6:	(13L14) 14L13	if	13L14			then	14L13

In this notation, some redundant logical structure can be seen at the level of individual rules. We simplify the rules individually using Involution:

R1: (1F3) (2T3) 1F2 R2: (4F5) (5M) 5S4 R3: (6S7) 6L7 R4: (8F9) (9N) 9L8 R5: (10L11) (10L12) 11L12 R6: (13L14) 14L13 The boundary approach is based on reducing the entire collection of rules and facts as a whole. Rather than accumulate new facts, all the facts are combined into a single "conjunction of facts and rules implies conclusion" form. The general template is:

(((fact1) ... (factn) (rule1)... (rulen))) query

which simplifies to

(fact1) ... (factn) (rule1)... (rulen) query

For the example, the template is

(F1) (F2) (F3) (F4) (R1) (R2) (R3) (R4) (R5) (R6) Q

and the specific structure is

(gFh) (rTh) (rN) (hM)	facts
((1F3)(2T3) 1F2)	R1
((4F5)(5M) 5S4)	R2
((6S7) 6L7)	R3
((8F9)(9N) 9L8)	R4
((10L11)(10L12) 11L12)	R5
((13L14) 14L13)	R6
hLr	query

The boundary approach has taken yet another step away from intuition, now rules and facts are no longer distinguished. Like resolution, there is only one primary transformation, Pervasion. The idea is use the forms on the outside to extract their matching forms from the inside. Again, the matching technique is unification. Unlike resolution, the primary boundary transformation of Pervasion is augmented with two other transformations. Involution cleans up irrelevant logical distinctions, and Dominion tells the process when to stop.

Rule simplification and compilation

It is a good idea to simplify rules first, since they are abstractions applying to all facts, and are the source of complexity.

The first observation is that transitivity (R5) and commutativity (R6) apply all the time. They are not specific enough to help with deductions, but they do help to broaden the generality of facts. Use these rules only to generate new facts, not as part of a deduction.

Since the S relation shows up only once as a premise (in R3) and once as a conclusion (in R2), it can be compiled away. There is only one way to use (that is, to instantiate) the S relation, going from the premises of R2 to the conclusion of R3. In general we do not want to lose the ability to use either R2 or R3 by themselves (for instance in the case that the query is about an S relation), so we compile the S relation dynamically, in the presence of a known query.

Compile rules R2 and R3 into R23, using resolution (A B) ((B) C) ==> (A C)

S: $6 \Rightarrow 5$, $7 \Rightarrow 4$ ((4F5)(5M) 5S4) ((6S7) 6L7) $\Rightarrow ((4F5)(5M) 5L4)$ The new knowledge base:

(gFh) (rTh) (rN) (hM) hLr ((1F3)(2T3) 1F2) ((4F5)(5M) 5L4) ((8F9)(9N) 9L8) ((10L11)(10L12) 11L12) ((13L14) 14L13)

Should a rule have more than one premise, the ability to branch using the simple rule is lost in compiling. So, for instance, it is not possible to compile the F relation, even though it shows up only once as a conclusion (in R1).

Forced bindings

Now we make all forced bindings between the facts and the remaining rules. The Pervasion transformation says that a form on the outside of a boundary must match a form on the inside of a boundary, using unification as the matching technique. When a match is found, bind the variables and extract the inner form:

xAy (1A2 1B3) ==> xAy (xB3)

In the example KB, we have the fact (rN) on the outside which matches the inner form of R4 ((6F8) (9N) 9L8), binding the variable 9 to the atom r and erasing the (9N):

(rN) ((8F9)(9N) 9L8) => (rN) ((8Fr) rL8)

There is only one (rN) form on the outside and only one in all the insides, so there is only one possible extraction of an N relation. In this example, extracting (rN) leaves the knowledge base looking like:

N: 9 => r (rN) ((8F9)(9N) 9L8) => (rN) ((8Fr) rL8)

New KB:

(gFh) (rTh) (rN) (hM) hLr ((1F3)(2T3) 1F2) ((4F5)(5M) 5L4) ((8Fr) rL8) ((10L11)(10L12) 11L12) ((13L14) 14L13)

In general, there will be more than one fact matching each inner form, and more than one binding for each variable. This is what makes query management hard. The boundary approach lets us bind all possible variables, using sets of facts rather than individual facts. The setbased boundary approach would extract all matches, binding the variable to a *set* of matches.

We continue the forced (only one choice) bindings, using the strategy of binding the least number of variables first (ie using facts to their full extent). Portions of rules can be deleted when there is no possible way of using them again.

 $M: 5 \implies h \qquad (hM) ((4F5)(5M) 5L4) \implies (hM) ((4Fh) hL4)$

New KB:

(gFh) (rTh) (rN) (hM) hLr ((1F3)(2T3) 1F2) ((4Fh) hL4) ((8Fr) rL8) ((10L11)(10L12) 11L12) ((13L14) 14L13) There are several different strategies now available, the worst of which is to use either of the general transitivity or commutativity rules. (gFh) could extract (4Fh), but this is premature since the rule portion could not be deleted in the presence of other F relations in the KB (in particular R1 may generate a need for the remaining portion of R23). Again seeking uniqueness and specificity, the best approach is to select the T relation which has only single occurrences on the outside and the inside of the KB.

T: 2 => r, 3 => h (rTh) ((1F3)(2T3) 1F2) => (rTh) ((1Fh) 1Fr)

New KB:

(gFh) (rTh) (rN) (hM) hLr ((1Fh) 1Fr) ((4Fh) hL4) ((8Fr) rL8) ((10L11)(10L12) 11L12) ((13L14) 14L13)

Now the F relation in both R1 and R23 should be extracted. Neither R1 nor R23 can be deleted. Along the way, a third possible F extract is generated and taken.

F: 1 => q(gFh) ((1Fh) 1Fr) => (gFh) (gFr)New KB: (gFh) (rTh) (rN) (hM) hLr (gFr) ((4Fh) hL4) ((8Fr) rL8) ((1Fh) 1Fr) ((10L11)(10L12) 11L12) ((13L14) 14L13) F: 4 => q(qFh) ((4Fh) hL4) => (qFh) (hLq)New KB: (qFh) (rTh) (rN) (hM) hLr (gFr) (hLg) ((8Fr) rL8) ((4Fh) hL4) ((1Fh) 1Fr) ((10L11)(10L12) 11L12) ((13L14) 14L13) F: 8 => q (gFr) ((8Fr) rL8) => (gFr) (rLg) New KB: (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) ((8Fr) rL8) ((4Fh) hL4) ((1Fh) 1Fr) ((10L11)(10L12) 11L12) ((13L14) 14L13)

There remains only one path for implication of F relations, that is the backward binding of hLr to the remains of R23. By taking this step, we are then free to erase all F rules.

We have used the "query" hLr to generate another query rFh. There are now no more forced bindings, so we must use transitivity or commutativity of L to generate new facts. Finally we must use the branching rules, but with the comfort that every step thus far was without choice. Note that we can now focus on generating only new L facts.

The pair of facts (hLg)(rLg) provide a set match for either of the transitivity premises, but there is still a minimal approach to be taken. The commutativity rule has only one match, and further the hLr form only matches one form within the commutativity rule. We make that binding:

L: 14 => h, 13 => r hLr ((13L14) 14L13) => hLr ((rLh)) => rLh

New KB:

(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh ((10L11)(10L12) 11L12) ((13L14) 14L13) rLh

Above, we used the query hLr to extract a conclusion from R6. The resulting form which is not inside a boundary is also a query; that is, we would know hLr if we could show rLh. The critical point here is that we cannot collapse the commutativity rule out of the KB because there are facts present which could use it again. R6 can be used in either direction, forward or backward. The appropriate strategy now is to go ahead and make full use of R6 in the forward direction, with the set of bindings from (hLg) and (rLg):

L: 13 => h, 14 => g (hLg) ((13L14) 14L13) => (hLg) (gLh) L: 13 => r, 14 => g (rLg) ((13L14) 14L13) => (rLg) (gLr)

New KB:

(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh ((10L11)(10L12) 11L12) (gLh) (gLr) rLh ((13L14) 14L13)

We now face many branches, but we have constrained them to only one rule, R5. There are two uses of transitivity in the backward direction, reasoning from queries, so we bind them both, without eliminating the rule.

```
L: 11 \Rightarrow h, 12 \Rightarrow r hLr ((10L11)(10L12) 11L12) \Rightarrow hLr ((10Lh)(10Lr))
     L: 11 => r, 12 => h rLh ((10L11)(10L12) 11L12) => rLh ((10Lr)(10Lh))
New KB:
            (qFh) (rTh) (rN) (hM) hLr (qFr) (hLq) (rLq) rFh
            ((10L11)(10L12) 11L12) (gLh) (gLr) rLh
            ((13L14) 14L13) ((10Lh)(10Lr)) ((10Lr)(10Lh))
     L: 10 => g
                             (gLh) ((10Lh)(10Lr)) => (gLh) ((gLr)) => gLr
New KB:
            (qFh) (rTh) (rN) (hM) hLr (qFr) (hLq) (rLq) rFh
            ((10L11)(10L12) 11L12) (gLh) (gLr) rLh
            ((13L14) 14L13) gLr ((10Lr)(10Lh))
     L:
                              gLr (gLr) => gLr ( ) => ( )
New KB:
      (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
      ((10L11)(10L12) 11L12) (gLh) ( ) rLh
      ((13L14) 14L13) gLr ((10Lr)(10Lh))
```
The boundary deduction has concluded in its characteristic manner by asserting a () into the KB. By the Dominion rule, this truth symbol erases all other forms in the problem space, leaving a mark of proof. Notice in the second to last step, the selection (gLr) was also available for binding. It would have been chosen next, should the current choice have failed. And it too would have terminated the proof process.

The signature characteristic of this boundary proof is its minimality. In contrast to resolution, very little search was conducted because the problem was structured as a global statement rather than as a collection of fragments. Thus the available strategies addressed the entire problem at all times. To reconstruct the logic of the boundary proof, we trace the binding processes of steps which are used to reach the conclusion (only the step which generated rFh was unnecessary):

((4F5)(5M) 5S4) ((6S7) 6L7)	==>	((4F5)(5M) 5L4)	R2+R3	=	R23
(rN) ((8F9)(9N) 9L8)	=>	((8Fr) rL8)	F3+R4	=	R4a
(hM) ((4F5)(5M) 5L4)	=>	((4Fh) hL4)	F4+R23	=	R23a
(rTh) ((1F3)(2T3) 1F2)	=>	((1Fh) 1Fr)	F2+R1	=	Rla
(gFh) ((lFh) lFr)	=>	(gFr)	F1+R1a	=	(gFr)
(gFh) ((4Fh) hL4)	=>	(hLg)	F1+R23a	=	(hLg)
(gFr) ((8Fr) rL8)	=>	(rLg)	(gFr)+R4a	=	(rLg)
hLr ((13L14) 14L13)	=>	((rLh)) => rLh	Q+R6	=	rLh
(hLg) ((13L14) 14L13) (rLg) ((13L14) 14L13)	=> =>	(gLh) (gLr)	(hLg)+R5 (rLg)+R5	=	(gLh) (gLr)
hLr ((10L11)(10L12) 11L12) rLh ((10L11)(10L12) 11L12)	=> =>	((10Lh)(10Lr)) ((10Lr)(10Lh))	Q+R5 rLh+R5	=	R5a R5b
(gLh) ((10Lh)(10Lr))	=>	((gLr)) => gLr	(gLh)+R5a	=	gLr
gLr (gLr)			gLr+(gLr)	=	QED

Addendum

The phraseology and structure of rules in a knowledge-base is extremely critical to the success of an inference engine. Examples:

1. To generate a sequence of numbers, it may be tempting to put in a integer generation rule such as

if $(_1_$ is-an-integer) then $((_1_$ + 1) is-an-integer)

This rule could immediately generate an infinite string of integers, which would, of course, be expressed computationally as an over-flow crash.

2. Similar recursive overflows can occur with quite common rules such as transitivity and commutativity. Both of these rules occur in the example KB above (R5 and R6 for the has-same-last-name relation). Implicit in the actual transforms is an "occurs-check" which stops rules from being called when they generate items which duplicate already existing items.

3. Some rules can be expressed in different ways. The forms of these rules strongly effect both the sequence of fact generation, and the efficiency of the deductive process. For instance, transitivity is commonly expressed as

if (1R2 and 2R3) then 1R3

In the example KB, R5 expresses transitivity as

if (1R2 and 1R3) then 2R3

This design choice was made because of the natural semantics of the has-same-last-name relation. The design choice has a strong effect on the sequence of generated facts in each example.

4. Some rules implicitly incorporate other rules, in that the other rules are strictly redundant. If we let the variable 3 be equal to "1" in the above transitivity rule, (and we omit the trivial fact that a person has their own last name), we get the commutative R6.

if (1R2 and 1R1) then 2R1 ==> if 1R2 then 2R1

Again, the choice of whether to include rules specifically, or let them be implicit in other rules has a strong and unpredictable effect on the performance of the engine.

5. Rules should take care to exclude unwanted cases, although it is often a difficult choice between simple rules with fast cycling time, or larger rules which take effort to compute. This issue also shows up in programming as choices about function decomposition, and in CPU design as RISC vs CISC architectures. In the example, we elected not to exclude the fact that a person has their own last name, but we could have expressed R1 as:

if (1F2 and $1\neq 2$ and 2T3 and $2\neq 3$) then 1F3

Alternatively, the deduction might have been able to make use of the same-last-name-asyourself rule, and we may have wanted to include it as

if (1 = 2) then 1L2 or as if 1L2 then 1L1 if 1L2 then 2L2

These decisions are quite difficult to make, and depend on the expected types of queries, the structure and frequency of facts in the KB, and the other rules in the KB.

6. Rule ordering plays a critical role in algorithmic transformations. When a decision has to be made about what rule to bind next, it is often the case that a general strategy like set-of-support or simplest-first still results in several equally likely choices. Algorithms tend to take the next rule in sequence, but this may not be best or be most efficient. When having to answer a query like "Which people are a child of a President?" it is imperative that the search engine know something about the size of the domains. It is far better to approach this by looking for Presidents first, then looking for their children, than it is to look at all the children in the country and ask each if their parent is a President. You can play with this issue yourself by querying a web search engine for pages which have some common word, such as "set", and some rarer word such as "recursion". Do your results depend on the order of the query words?

7. Finally, the reason for this addendum is that I wasted many hours (and distributed faulty code to the class) with a poorly designed R1. This design flaw was subtle, since both the original and the final form of the rule were valid. R1 originally said "if person A is your father and you are the sister of person B, then person A is the father of person B". This makes sense, but logically it needs the support of another rule, "if you are the sister of person C, then person C is the brother-or-sister of you" in order to converge with the other rules. That is, there was no way for the inference engine to turn around the idea that you are a sister, making it a sibling relation. This inversion was necessary basically due to the structure of the fact-base, in that the constant "Harry" never found its way to a position where it could be matched. The solution in this case was to change the form of R1:

if	(1F2	and	2ТЗ)	then	1F3	NO
if	(1F3	and	2T3)	then	1F2	YES

Note that this artifact is due to the very limited rule-base. A more acceptable and correct solution would be to include the entire spectrum of relationships:

if (1 is-sister-of 2) and (2 is-male) then (2 is-brother-of 1)
if (3 is-brother-of 4) and (4 is-female) then (4 is-sister-of 3)
if (5 is-father-of 6) and (6 is-sister-of 7) then (5 is-father-of 7)
if (8 is-father-of 9) and (9 is-brother-of 10) then (8 is-father-of 10)

Revised Syllabus

NOTE: TOPICS may change by class consensus.

Class meeting	Торіс	
1) 2)	introduction overview of formal methods	
3) 4)	complexity, proof techniques proof systems, unification	
5) 6)	pattern-matching, skolemization Boolean minimization	[exercise]
7) 8)	abstract domains induction	
9) 10)	program verification string and graph rewrite	
11) 12)	Mathematica, Iambda calculus, combinators	
13) 14)	abstract algebra and group theory relational algebra	
15) 16)	logic revisited, BDDs boundary techniques	
17) 18)	cellular automata fractals	
19) 20)	dilemmas review and summary	[discussion]

Class Handouts; Exploration Project

The following readings have been selected as relatively clear and concise summary articles for specific topics. There is no textbook for the class. Of course, all students are expected to access the Internet to find additional information for any topic.

There will be a lot of reading material, and some of it will be fairly technical. Students are expected to read all of the class handouts before class. Students should scan each of the articles, read and study parts which are of interest, and ask questions in class about unclear areas.

In-Depth Exploration Project

Each student will explore in depth one particular topic, and report to the class their experiences while learning about that topic. The presentation should be a chronicle of experiences while exploring the topic, including high and low points, confusions, learnings, false paths, discovered treasures, treacherous territories, and an overall evaluation of the utility of the topic.

Efforts solely to impress the instructor or to generate a pretty report should be avoided. Efforts to clarify the ideas of the topic are encouraged, however, students will not be responsible for teaching the content of a topic to the class. Students who locate particularly good or interesting articles on a topic are encouraged to add these articles (or websites) to the class reading list.

Handouts

WEEK 1:

ClassNotes 1: Course Information, Variety of Formal Methods, References, Web Pointers

- **ClassNotes 2:** Modeling with Logic, Proof Techniques, Quantification, Complexity, Boundary Techniques
- ClassNotes 3: Proof Techniques Extended Example
- Stuart Shapiro, Ed. (1987) *Encyclopedia of Artificial Intelligence*, Wiley Articles on Pattern Matching, Predicate Logic, and Theorem Proving
- John Lucas (1990) Introduction to Abstract Mathematics Second Edition Ch 2 Mathematical Proof
- David Gries (1981) *The Science of Programming*, Springer-Verlag Part 0: Why Use Logic? Why Prove Programs Correct?
- Randy Katz (1994) Contemporary Logic Design, Cummings Figures from front cover

WEEK 2:

ClassNotes 4: Syllabus

ClassNotes 5: Handouts, Exploration Project

ClassNotes 6: Evolution of Tools

ClassNotes 7: Pattern Encoding

- Jonathan Bowen (1996) Ten Commandments of Formal Methods Oxford University Computing Lab Technical Memo see <u>http://www.comlab.ox.ac.uk/oucl/people/jonathan.bowen.html</u>
- William Bricken (1987) Analyzing Errors in Elementary Mathematics, Stanford University Appendix I: The Canons of Formal Symbol Systems
- Matt Kaufmann (1987) Skolemization explained simply, Computational Logic Inc Internal Note #27

Peter Burke (1987) Naming and Knowledge, UCLA Computer Science Dept.

WEEK 3:

ClassNotes 8: Combinational Minimization Exercise

- Bertram Meyer (1985) On Formalism in Specifications, in *IEEE Software* 1/85
- Thomas L. Floyd (1998) *Digital Fundamentals Fifth Edition*, Prentice-Hall 4.11 Digital System Application, The 7-Segment Display
- Giovanni DeMicheli (1994) *Synthesis and Optimization of Digital Circuits*, McGraw-Hill Ch 8 Multiple-level Combinational Logic Optimization

John Oldfield and Richard Korf (1995) *Field-Programmable Gate Arrays*, Wiley Ch 4. Design Process Flows and Software Tools

WEEK 4:

ClassNotes 9: Domain Theories, Strings, Trees, Sets, Rational Numbers

ClassNotes 10: Induction and Recursion

Jean-Pierre Banatre and Daniel LeMetayer (1993) Programming by Multiset Transformation, in CACM V36(1), 1/93 WEEK 5:

ClassNotes 10: Program Verification

ClassNotes 11: Mathematica

Stephen Wolfram (1996) *The Mathematica Book Third Edition*, Wolfram Media A Tour of Mathematica, 2.3 Patterns, Mathematica as a Programming Language (from Second Edition)

WEEK 6:

- William Bricken (1994) Pattern-Matching and Function Theory, Oz Incorporated Technical Memo
- John Backus (1977) Turing Award Lecture: Can Programming be Liberated from the VonNeumann Style? A Functional Style and Its Algebra of Programs
- J. Barkley Rosser (1984) Highlights of the History of Lambda-Calculus, in *Annals of the History of Computing* V6(4) 10/84.
- Guy Cousineau (1990) The Categorical Abstract Machine, in Gerard Huet (Ed) *Logical Foundations of Functional Programming*, Addison-Wesley

WEEK 7:

ClassNotes 12: Relational Algebra

- Peter Gray (1984) Logic, Algebra and Databases, Ellis Horwood Ch 6 The Relational Model
- J. Hoffman (1997) Introduction to Structured Query Language http://w3.one.net/~jhoffman/sqltut.htm

WEEK 8:

William Bricken (1983) Fractal Dimensions, Atari Systems Research Internal Memo

Richard Feynman (1996) *Feynman Lectures on Computation*, Addison-Wesley 2.3, 5.4, 5.5 On Reversible Computation

WEEKS 9 and 10:

ClassNotes 13: Summary, Philosophical Dilemmas

An Evolution of Mathematical Tools

From Conceptualization to Formalization

Here's what we do when we build a *formal model* (or *do a computation*):

0. Identify a collection of objects/events in the real world. This is the *semantic mapping*, how math is linked with reality. The objects/events must have these properties:

unique, not confused with different objects/events *stable and permanent*, not in flux or changing too rapidly to identify *discrete*, not lacking well defined borders *comprehendible*, not confusing or too ambiguous *relevant*, not outside of what we consider to be the objects in question *permitted*, not in violation of tacit understandings about how things are

1. Use unique labels to identify each of the things in the semantic mapping. The *value* of a label is the thing it identifies.

2. Limit our interest in the types of things in the real world to an abstract mathematical property, such as Truth or Count or Membership.

3. Use different labels to name different *abstract* things:

labels for things	object labels
labels for an entire set of things	property labels
labels for an arbitrary thing in the set	variable labels
labels to name properties of things indirectly	function labels
labels to name combinations of things	relation labels

4. Follow the *rules of symbol transformation* in manipulating the labels as if they were the things. However, the labels do not have to share any of the real world properties of the physical things.

In summary, we convert from physical to virtual, ignore the physical aspects of reality, manipulate the virtual (or digital) aspects using the rules of virtuality, and then return to physical reality with new knowledge. The rules of virtuality are listed in the handout *The Canons of Formal Symbol Systems*.

Virtuality has become so prevalent in the current Information Age that much of what we do is never part of physical reality in the first place. Computer Science, for example, is a discipline in which the only connection to physical reality is silicon hardware. Study of the physicality of hardware is a different discipline, Electrical Engineering.

Computational hardware is engineered (constructed) to behave as if it were a mathematical system called *Timed Boolean Logic*. "Timed" simply means that some parts of the physical hardware are used more than once to do the Boolean logic task for which they were constructed.

Formal Simplicity

The simplest interesting formal domain is **Propositional Calculus**, also known as **Boolean Logic**, and also known as **Boolean Algebra**.

In Boolean algebra, the labels for real world objects are sentences in human language which can be evaluated as either True or False. These sentences are composed of atoms (propositions) and logical connectives. The atoms are labels for things which exist and are in some way actual, or real, or True. The logical connectives are those parts of language which do *not* refer to something in physical reality.

More generally, Boolean algebra includes all of *decision theory*, which phrases a problem space as a sequence of binary decisions. (Note that more complex decisions can usually be phrased as a collection of binary decisions.)

The truth of a sentence, the direction of a decision, and the voltage in a digital circuit wire are all binary properties. Every object label in a Boolean problem has the *binary property*, either 0 or 1, and that is the only property of interest. Logic is the set of rules which maintains the invariance of the value of binary properties.

Labeling Reality

Let $\{a, b, c, ...\}$ be simple Boolean variables identifying a set of decision events, each either 0 or 1.

The ways which we combine Boolean variables have been part of our language from antiquity. They are the familiar operators: {not, or, and, if, equal, if-then-else}. Combinations of Boolean operators and Boolean variables are called *sentences* or *expressions*.

Let {A, B, C, ...} be names of Boolean expressions.

Valid Boolean expressions are defined recursively,

а	simple variables are expressions
not A	negated expressions are expressions
A or B	expressions joined by disjunction are expressions

Since all other Boolean operators can be expressed in terms of **not** and **or**, they are all included in the above definition. This definition means that Boolean expressions are composable and decomposable; the recursive rules provide Constructors and Accessors.

Symbolic Complexity

The truth table (or Boolean property table) of a Boolean operator specifies how that operator combines the Boolean properties, or the values, joined by the operator. But here things start to get complex. Mainly, we can form a huge variety of expressions, and to find the Boolean value of any expression, we must examine a table with a size exponential in the number of variables

(2^n entries). So a logic circuit with 200 input variables requires an impractical 2^{200} rows in the truth table.

So all decision problems which require a large number of decisions become intractably inconvenient to examine in the whole. Boolean algebra provides *transformation rules* which hold for all expressions, regardless of which Boolean value an expression has. For example, not (not A) = A

is valid regardless of the expression A.

Axioms and Theorems

Transformation rules can be decomposed into axioms and theorems. The axioms are a minimal set of rules which preserve the Boolean property and serve as a basis for all other possible theorems. All the axioms of an axiomatic formal system can be compressed into one single, usually complex axiom. For Boolean logic, the simplest single axiom which supports all other Boolean transformations is the Kauffman/Flagg formalization:

(A or B) and (A or (not B)) = A

Similarly, the Resolution rule is a single rule which supports all Boolean transformation. The many rules of Natural Deduction provide another, more complex set of axioms. One particularly simple set of supporting axioms (Bricken's formalization of Boundary Logic) is the following:

A or True = True not (not A) = A A or (not (A or B)) = A or (not B)

This set is particularly useful for pattern-matching and automated deduction, since the patterns to be matched are relatively simple, and the right-hand-side of each equation is simpler than the left-hand-side solely through erasing something from the right-hand-side.

Proof

Boolean algebra axioms and theorems (valid transformations) provide a way to explore decision spaces without making the actual decisions. This is called *logical or algebraic proof*. However, the situation remains complex because now we must select which theorem to apply and where to apply it. Although the search space is more abstract, it is still intractable and inconvenient. Although Boolean algebra abstracts the physical properties of decisions, it is still a *real world* problem to use Boolean algebra efficiently.

Predicate Calculus

The next extension to mathematical technique is to permit more complex types of objects. Instead of being restricted to atoms with no internal complexity, predicate logic lets us form *complex objects* in two ways:

1. Quantification:

Property labels were introduced at the very beginning in order to identify a set of things we wish to talk about. Without them, we could not group any things together, we could only talk about specific particular things. (This is the difference between *Arithmetic* and *Algebra*.)

Quantification lets us address sets or collections of things directly within a logical expression. The **forall** quantifier permits transformation of property labels (entire sets) rather than only individual members of the set. The **exists** quantifier allows us to refer to the existence of at least one object in a set, a *generic object*, without saying which particular object we are talking about. The generic object is an arbitrary object; we choose one object from the set of interest, but we do not say exactly which object it is. Thus, the generic object can stand in place of any particular object in a collection.

2a. Relations:

Instead of non-decomposable atoms having a Boolean property, we permit arbitrary compositions of atoms to have that property. The arbitrary compositions, or *relations*, are specified by a table of associations. If the association is in the table, then the relation between two (or more) simple objects is True, otherwise it is False. Only simple objects or atoms can be in relationship to each other. Expressions cannot be in a relation, but a relation (such as *aRb*), is an expression and can be combined with other expressions by Boolean operators.

2b. Functions:

Technically functions are a structured subset of relations, since F(a)=b can be expressed as aFb=True. Functions let us name objects indirectly by naming other objects and the function which tells us how to get to the object in question. For instance, the function add1 moves us from one integer to the next.

The two extensions are sufficient to characterize all of standard mathematics, and therefore all of computation.

Other Formal Systems

The art of mathematical modeling is to find properties of real world objects which are both understood mathematically (i.e. formal) and useful for physical description. Predicate calculus provides the framework for formally defining arbitrary properties, but without special computational techniques, each structure becomes difficult to use for computation. Other formal systems provide specialized techniques for speeding up particular types of computation.

Induction/Recursion: This fundamental technique lets us work with a general case of a set of expressions, so long as the entire set is in some way structured by an ordering relation. We can then analyze entire classes of expressions by looking at only the base case and the general recursive case. This then provides a programming style.

Relational Calculus: The techniques of computing with only relations have been developed by the relational database community. The query language SQL exemplifies this approach.

Lambda Calculus: Likewise, the techniques of computing using only functions have been developed primarily as programming languages by the functional programming community.

Combinators: The combinator calculus is an elaboration of lambda calculus which turns functional operations into string operations. The specific abstraction technique removes all variable labels.

String Rewrite Theory: When expressions are represented by strings of tokens, the rules of transformation can be formulated as changes in the strings, using matching and substitution for effecting changes. This is the primary technique of mathematical manipulation and of theorem proving.

Graph Theory: Almost all data structures can be expressed using graphs. A graph rewrite theory supports valid graph transformations. As well, the graph data structure provides information about the problem itself, such as the shortest path (fewest number of transformations) to get from one expression to an equivalent one. This extremely general technique is underdeveloped solely because graphs are two dimensional structures, while language has developed using one dimensional strings.

Probability Theory: When the property of interest is a composite of the individual properties of a sample of objects, that property is a *probability*, and the rules for manipulating this statistical object are expressed as probability theory.

Cellular Automata: This is an exotic formal system based on a regular array of autonomous cells acting on their local neighborhoods. These models have limited but growing applicability.

Fractals: This technique is based on recursive functions usually expressed on a set of two or higher dimensional objects. Again, fractals are new since they apply to spatial rather than linear structures.

Boundary Mathematics: This is a general technique which converts all mathematical string-based operations (logic, sets, numbers, and equations) into spatial operations. The zero concept is the Void, that is, no representation at all. As a consequence, Boundary Mathematics is far more efficient in both representation and in transformation than all other mathematical formalisms. As a spatial technique, it suffers from both unfamiliarity and from the cultural bias of expressing mathematical operations in string languages.

Pattern Encoding

Encoding Algebraic Laws as Patterns

The laws of algebra can be expressed as transformation patterns. "Equal" means that one form can be freely substituted for the other whenever the patterns match.

Commutative Law

x*y = y*x
equal[prod[x,y],prod[y,x]]
P[Q[x,y],Q[y,x]]

Associative Law

```
(x*y)*z = x*(y*z)
equal[prod[prod[x,y],z],prod[x,prod[y,z]]]
P[Q[Q[x,y],z],Q[x,Q[y,z]]]
```

Distributive Law

```
x*(y+z) = (x*y) + (x*z)
equal[prod[x,plus[y,z]],plus[prod[x,y],prod[x,z]]]
P[Q[x,R[y,z]],R[Q[x,y],Q[x,z]]]
```

Proof Needs Semantics

This example illustrates why automated proof (and intelligent computation) is very unlikely. We must design programming and verification systems to be *interactive*, so that they augment human intelligence rather than attempting to emulate it. Note that conventional programming puts the interaction in a batch mode.

```
For any natural number n>=2, (n^3-n)/6 is an Integer
        <[n,2] or isInt[div[minus[power[n,3],n],6]]
        L[n,2] or P[Q[R[S[n,3],n],6]]
where the semantics is L is < less than
        P is isInt type check, to be proved
        Q is / divide
        R is - subtract
        S is ^ power</pre>
```

A person may elect to factor the expression in question, in order to understand more:

$$(n^{3}-n) = n^{*}(n^{2}-1) = n^{*}(n+1)^{*}(n-1) = (n+1)^{*}n^{*}(n-1)$$

A machine can do this, not in order to understand, but as part of a set of automated transformations to be explored.

	R[S[n,x],n] =>	T[n,R[S[n,R[x,1]],1]]
		=>	T[n,T[U[n,1],S[n,1]]]
where	T is	*	multiply
	U is	+	add

Note how very specific these patterns are. These rules could be generalized, but it is difficult to know in advance in which direction the generalization should be formulated.

Number Facts

A human might next retrieve a collection of esoteric number facts:

For any three numbers in a row, there must be at least one even number and at least one number divisible by three and these two numbers are not the same number.

```
so, the product contains divisors of 2 and 3 (i.e. 6)
```

A machine can't make this step, because there are too many esoteric number facts. Even with very sophisticated meta-knowledge to steer the selection of which number facts to explore first, finding the correct set of facts which leads to a proof is generally not possible. The problem, for example, may be only slightly different, but would then require entirely different esoteric number facts:

if n is odd, then (n^3-n)/8 is an Integer
 div[n,2]
 or
 isInt[div[minus[power[n,3],n],8]]
 Q[n,2] or P[Q[R[S[n,3],n],8]]

Induction

We simply do not know if there are automated paths, using different proof strategies, which reduce all mathematical problems to trivialities. For example, machines can do *induction*. Rather than recalling esoteric number facts to generate a natural, intelligent proof, we could have gone blindly forth in the above problem, trying an inductive proof:

For any natural m	number n>=2,	(n^3-n)/6	is an In	teger
base:	(2^3-2)/6	isInt		(the base case is not n=0)
general:	(k^3-k)/6	isInt		
show:	((k+1)^3 -	(k+1))/6	isInt	
((k+1	l)^3 - (k+1))	/6		
= (k ²	`3 +3k^2 + 3k	x +1 - k -	1)/6	
= (k ²	`3-k)/6 + 3(k	x^2+k)∕6		
if A isInt	and B isInt,	then (A -	⊦B) isIn	t
(k^3-	-k)/6 isInt	:		assume general
3(k^2	2+k)/6 isInt			to show
k(k+1	l)/2 isInt			lemma
((k+1	l)^3 - (k+1))	/6 is]	Int	QED
Lemma:	k(k+1)/2	isInt		
base:	2(2+1)/2 is]	Int	
gener	al: k(k+1)/2 is]	Int	
show:	(k+1)	(k+1+1)/2	isInt	
	(k+1)(k+2)/	2		
	$= (k^2 + 3)$	x + 2)/2		
	= k(k+1)/2	+ 2(k+1)/2	2	
k(k+1	l)/2 isInt			assume general
2 (k+1	l)/2 isInt	:		k islnt
(k+1))(k+2)/2	isInt		QED

Existence Proof

An *existence proof* demonstrates that a particular object, or solution, does exist, but the proof does not identify exactly what that object is. Automated systems cannot conduct existence proofs.

Essentially, existence proofs demonstrate *universal principles*, whereas computational proofs demonstrate a *verification* of a particular principle.

Prove there exists a function that is both odd and even.

Odd function:	F[-x] = -F[x]	e.g. sine
Even function:	F[-x] = F[x]	e.g. cosine
Find an $F[x]$ such that	t:	
E[F[R[0,x]],	, R[0,F[x]]] and	E[F[R[0,x]],F[x]]
where E is	= and Ris	-
An example of such a function	nis: F[x] = 0	

For pattern-matching, we are looking for two different matches to the second argument of E. Equivalently, we can eliminate F[-x] algebraically, so that we are looking for the single pattern:

$$F[x] = -F[x]$$

 $E[F[x], R[0,F[x]]]$

From here, the example of F[x]=0 is easy to identify, since R[0,0]=0 and E[0,0] isTrue. In general, the problem is to show:

Exists F. E[F[x],R[0,F[x]]]

One problem is that the existential quantifier is over *functions*, not variables. This requires *Second Order Logic*, for which theorem provers are not yet well developed. What is the *Domain* of all Functions? How do we enumerate, even recursively, all possible functions?

Verifying a Condition from a Search Program

Suppose that the inner loop of a search program is protected (defined) by the following *assertion* (also called a *guard*, or a *loop invariant*).

	Line
j <i< td=""><td>1</td></i<>	1
m<=p<=q<=n	2
All x,y. $(m \le x \le and j \le y \le n)$ implies $G[x] \le G[y]$	3
All x,y. m<=x<=y<=j implies G[x]<=G[y]	4
All x,y. $i \leq x \leq y \leq n$ implies $G[x] \leq G[y]$	5
<pre>implies G[p]<=G[q]</pre>	6
	<pre>j<i m<=p<=q<=n All x,y. (m<=x<i and="" g[x]<="G[y]<br" implies="" j<y<="n)">All x,y. m<=x<=y<=j implies G[x]<=G[y] All x,y. i<=x<=y<=n implies G[x]<=G[y] implies G[p]<=G[q]</i></i </pre>

The above conjunctive constraint is an assertion about the state of a program. We have six database items being searched $\{i, j, m, n, p, q\}$, and a property G.

 ${\tt M}$ and ${\tt n}$ are minimal and maximal bounds for the item ids.

I and j relative bounds between m and n.

 ${\tt P}$ and ${\tt q}$ are arbitrary entries for which we want to determine

if their g properties are ordered.

We know the following:

(line	1)	the bounding items j and i are ordered

(line 2) m,p,q,n are partially ordered

The constraints on the g property (lines 3,4 and 5) state that g is ordered in these cases:

- (line 3) all items are bounded below between m and i and above between j and n
- (line 4) ordered items are bounded below between m and j
- (line 5) ordered items are bounded above between i and n

When all of the orderings are satisfied, the g property is assured to be ordered as well.

Without the modern language capability of including assertions within the code, these constraints must be proved independently (using a logic programming and verification system). The first step in a proof is to add defining axioms for the functions and relations used by the constraints. Here we need to add the ordering axiom

x<=y xor y<x

Next we form clauses out of multiple constraints on single lines (e.g. line 2)

m<=p p<=q q<=n

Now Skolemize to eliminate quantifiers. The labels $\{i,j,m,n,p,q\}$ are Skolem constants and the labels $\{x,y\}$ are universal variables. C9 is the conclusion.

```
C1.
       x<=y xor y<x
C2.
       j<i
C3.
      m<=p
C4.
       p<=q
C5.
       q<=n
C6.
       (m<=x and x<i and j<y and y<=n) implies (G[x]<=G[y])
C7.
       (m<=x and x<=y and y<=j) implies (G[x]<=G[y])</pre>
       (i \le x \text{ and } x \le y \text{ and } y \le n) \text{ implies } (G[x] \le G[y])
C8.
C9.
       G[p] \leq G[q]
```

Here are the highlights of a backward chaining, natural deduction proof. The form of the conclusion suggests a strategy: immediately bind the universal variables to constants. We seek to find a set of ordering conditions that are subgoals of C6-C8, and that are satisfied by C1-C5.

(1)	G[p]<=G[q]	? C9
(2)	(m<=p and p <i (g[p]<="G[q])</td" and="" implies="" j<q="" q<="n)"><td>C6,(1)</td></i>	C6,(1)
(3)	m<=p and p <i and="" j<q="" q<="n</td"><td>? (2)</td></i>	? (2)
(4)	(m<=p and p<=q and q<=j) implies (G[p]<=G[q])	C7,(1)
(5)	m<=p and p<=q and q<=j	? (4)
(6)	$(i \le p \text{ and } p \le q \text{ and } q \le n) \text{ implies } (G[p] \le G[q])$	C8,(1)
(7)	i<=p and p<=q and q<=n	? (6)
(8)	p <i and="" j<q="" q<="n</td"><td>? (3),C3</td></i>	? (3),C3
(9)	p <i and="" j<q<="" td=""><td>? (8),C5</td></i>	? (8),C5
(10)	p<=q and q<=j	? (5),C3
(11)	q<=j	? (10),C4
(12)	i<=p and q<=n	? (7),C4
(13)	i<=p	? (12),C5

At this point, satisfying the equations on any one of lines (9), (11), or (13) achieves the goal. In this case, all three lines are needed for the proof, which demonstrates that the guard is not overly restrictive. The proof strategy is case analysis.

(14)	q<=j xor j <q< th=""><th>C1</th></q<>	C1
(15)	i<=p xor p <i< td=""><td>C1</td></i<>	C1
(16)	if q<=j then QED else j <q< td=""><td>11,14</td></q<>	11,14
(17)	if i<=p then QED else p <i< td=""><td>13,15</td></i<>	13,15
(18)	if not QED then (j <q and="" p<i)<="" td=""><td>16,17</td></q>	16,17
(19)	if (j <q and="" p<i)="" qed<="" td="" then=""><td>9</td></q>	9
(20)	QED in all cases	16-19

The natural logic in line (18) says: all I need is to satisfy either line (11) or line (13). If I don't succeed, it must be because both j < q and p < i hold.

Pattern-matching as Computation

Here is a simple example of using Resolution to conduct computation.

The accumulating factorial function as resolution clauses:

{Fac[0,1]}		base
{~Fac[x,r],	Fac[S[x],*[S[x],r]}	general

Supporting clauses define the successor function and multiplication:

```
{~S[0], 1}
{~S[x], +1[x]}
{~*[x,1], x}
{~*[S[x],y], +[*[x,y],y]}
```

These clauses will need to be renamed with unique variable identifiers. Note that the Successor notation is designed for nested recursive pattern-matching. The numeral 3 is a shorthand notation for s[s[s[0]]].

The *query* form, what is the Factorial of 3?

{~Fac[S[S[S[0]]], ANS]}

The resolution computation begins by matching the query to the general recursive part of the function definition:

match	Fac	[s[s[s[0]]],	to	Fac[S[x],				
binding		х	to	s[s[0]]				
and bindir	ng	ANS	to	*[S[x],r],	which is	*[S[S[S]	[0]]]	,r]]

generating the new renamed clause:

{~Fac[S[S[0]],ANS1]} ANS = *[S[S[S[0]]],ANS1]]

Using the general clause of the definition two more times yields these new clauses:

match binding and binding	Fac[S[S[0]], x ANS1	to to to	Fac[S[x], S[0] *[S[x],r] which is *[S[S[0]],r]				
new renamed clause:							
{~Fa	ac[S[0],ANS2]}		ANS1 = $*[S[S[0]], ANS2]$				
match binding and binding	Fac[S[0], x ANS2	to to to	Fac[S[x], 0 *[S[x],r], which is *[S[0],r]				
new renamed clause:							
{~Fa	ac[0,ANS3]}		ANS2 = $*[S[0], ANS3]$				

This last clause matches the base rule:

match ANS3 to 1

new renamed clause (the termination of the computation):

{}

The result itself is embedded in the ANS variables, which require backwards substitution and arithmetic evaluation:

```
ANS3 = 1

ANS2 = *[S[0],ANS3] = *[S[0],1] = *[1,1] = 1

ANS1 = *[S[S[0]],ANS2] = *[S[S[0]],*[S[0],1]] = *[2,1] = 2

ANS = *[S[S[S[0]]],ANS1]] = *[S[S[S[0]]],*[S[S[0]],*[S[0],1]]]]

= *[3,2] = 6
```

Representing a Procedural Program Fragment as a Resolution Pattern

Consider the following pseudo-code fragment for in-place sorting of the elements of an array A. The code moves elements indexed i+1 to j one position earlier in the array. The question is to verify that the subscripts of A never go outside the bounds of 0 to n as the DO loop executes.

```
INTEGER A[n]
INTEGER k
...
k := i+1
DO WHILE (k <= j)
    A[k-1] := A[k]
    k := k+1
END DO
...</pre>
```

We assume that i and j are iteration variables that are ordered and bounded by the array size:

```
0<=i<=n
0<=j<=n
i<j
```

State (Simulating Memory)

The *binding list* (also called the *environment*) represents all variables in memory and their current value. We model it using a recursive nested notation which works well for patternmatching. The arguments to the *state* function (technically *state* is not a function, it is just a labeled pattern) are the current variable name, its value, and another *state* pattern which contains the rest of the program variables and their bindings.

```
State[<variable>,<value>,State[<next-variable,<next-value>,State[...]]]
```

The symbolic state of the example program may look like this:

State[i,4,State[k,?,State[j,n,nil]]]

The question mark is used to mean "not-initialized", i.e. the value of k is not known. The variable i is bound to the numerical value 4, the variable j is bound to the symbolic value n.

Arrays

Arrays are slightly more complex that simple binding lists, since *array indexing* must be used for access. Lets assume that the environment is stored symbolically as an *array*. For patternmatching, it is convenient to represent an array as a recursive nested form, with three arguments (index, value, and rest):

Array[<index>, <value>, Array[<next-index>,...]]

The pattern representation of an example array A follows:

variabl	е	n	k	i	j	х		
index		0	1	2	3	4		
value		4	?	4	n	0		
	A[0,4	,A[1,?	,A[2,4	,A[3	3,n,A[4,0,nil]]]]

Array has the same pattern structure as State; they are both representations of memory. The index of an array serves the same purpose as the memory address used by the CPU, both are pointers to the symbolic name and its value. However, in simulation, the array is treated like a list; the time-savings of indexed access is a physical implementation detail rather than a symbolic quality.

To represent arrays as a State pattern, the array is simply treated like a compound variable:

```
State[<array-name>,<array>,State[...]]
```

In the example, the name of the array is A:

State[A, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]], State[k...]]

Execution (Simulating Process)

We need a representation of *execution*, the action upon the program statement currently being executed in the current binding environment that produces a computational step. In the resolution simulation, all actions are substitutions (unifications), essentially the same action that CPU registers use at the physical level. The simulation executes *symbolic* substitution, the CPU executes *physical* substitution.

```
Execute[<statement>,<environment>]
```

The initial Execute process, when we enter into the example program, would look like this:

```
Execute[assign1,
        State[A, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]],
        State[n,4,
        State[k,?,
        State[i,2,
        State[j,n,
        State[x,0,nil]]]]]]]
```

Program Statements

We now provide a general pattern, or clause, for each type of program statement. Each statement type will have the abstract form:

<Statement-type>[<statement-name>,<action>,<next-statement>]

This pattern identifies the statement *type* by the outer label, and the specific instance of that type by the first argument. Action is the unique transformation which defines the statement type. Next-statement achieves sequential actions, it is equivalent to the sequence operator ";" in procedural languages such as C, and specifies the next program statement in sequence.

The evaluation strategy for program statements in general has the form:

If the computation is at statement P1 and at state S1 then execute statement P2 with resulting new state S2.

Environment s2 is the result of processing statement P1 in the context of environment s1. s2 is s1 with changes introduced by P1. An abstract example of process would look like this:

Variable Declarations

Rather than a conditional execution statement, the initializations included in variable and array declarations are treated directly as equality assertions for match-and-substitute.

```
INTEGER k INIT:0
Equal[k,0]
INTEGER A[n]
Equal[HighBound[A],n]
```

HighBound is the maximal array size of array A.

Assignment

The procedural form of assignment translates into a declarative, resolution-based template for the assignment computation. The form of assignment is

NEW := OLD
Assign[<statement>,<new>,<old>,<next-statement>]

Example:	k	:=	i+1	assign1

```
Assign[assign1,k,+[i,1],dowhile1]
```

The *meaning* of the Assign pattern is provided through its execution/evaluation template

This says that if the current program statement P1 is an Assign, then move forward to the next program statement P2, by asserting that P1 has been processed and the result of that processing has changed the current state s1 into the next state s2.

The new patterns, save and Eval, manage memory storage and ground evaluation respectively, implementing the match-and-substitute process. Eval binds any variables in <old> to their current values stored in s1. save substitutes the result of Eval into the value field of the variable <new> in s1, constructing s2 in the process.

Expressed as a resolution clause, the Assign execution template looks like:

```
{ ~Execute[P1,S1],
 ~Assign[P1,new,old,P2],
 Execute[P2, Save[new,Eval[old,S1],S1]] }
```

In the example, we are entering the fragment with the program statement assign1, binding the new k to the old i+1, and preparing for the following program statement dowhile1.

```
{ Assign[assign1,k,+[i,1],dowhile1] }
```

Resolving, bind

P1	to	assign1	
new	to	k	
old	to	+[i,1]	
Р2	to	dowhile1	

New clause:

{ ~Execute[fragment-entry,S1], Execute[dowhile1, Save[k,Eval[+[i,1],S1],S1]] }

Eval[+[i,1],S1] finds i in S1 and binds it to its value (which is 4 in the example). Then +[4,1] is evaluated to 5.

Save[k, 5, S1] stores 5 as the value of variable k in S1, constructing S2 in the process.

Note that both Eval and save achieve their functionality also through pattern-matching and substitution, using resolution. Details have been omitted.

DoWhile

The DoWhile program statement evaluates a test in the context of a binding environment, branching to P2 or P3 depending on the outcome of the test.

```
DO WHILE <test> <body> END
DoWhile[P1, <test>, P2, P3]
END DO
DoEnd[P1,P2]
Example:
             DO WHILE (k <= j)
                                             dowhile1
               A[k-1] := A[k]
                                             assign2
               k := k+1
                                             assign3
            END DO
                                             doend1
                                             fragment-exit
             . . .
      DoWhile[dowhile1,<=[k,j],assign2,doend1]</pre>
      DoEnd[doend1,fragment-exit]
```

When the test succeeds, the next program statement *inside* the DO body, P2, is queued for execution. When the test fails, the next program statement *outside* the DO body, P3, is queued. The execution template for DOWHILE:

If Execute[P1,S1] and DoWhile[P1,test,P2,P3]
 then Execute[If[Eval[test,S1],P2,P3],S1]

The semantics of DOWHILE is to Eval test, and branch using if-then-else to either P2 or P3. The DoEnd statement terminates the DOWHILE by moving Execute to the next program statement.

```
If Execute[P1,S1] and DoEnd[P1,P2]
     then Execute[P2,S1]
```

Finally, the looping process of DOWHILE, when the exit test fails, is achieved simply by encoding the <next-statement> field of the last statement inside the DO body to be the start of the DOWHILE loop:

```
Assign[assign3,k,+[k,1],dowhile1]
```

Errors

In order to answer questions about array out-of-bounds, we need to treat errors as legitimate program statements. (This need is also reflected in the evolution from C to Java, in that Java incorporates errors as first-class program entities.)

In procedural programming languages which do not support error checking through assertions, the checks must be written directly into the program:

```
INTEGER A[n]
INTEGER k
...
k := i+1
DO WHILE (k <= j)
IF (k-1 > HighBound[A]) ERROR
IF (1 > k-1) ERROR
IF (k > HighBound[A]) ERROR
IF (1 > k) ERROR
A[k-1] := A[k]
k := k+1
END DO
...
```

This approach is an obsoleted programming style, in that the ERROR halts the program flow. A more modern approach would be use If-Then-Else to incorporate the error branch directly into the program flow:

```
If[<test>,<throw-to-error-handler>,<next-statement>]
```

The IfError statement has the following form:

IF <test> ERROR
IfError[P1,<test>,P2]
Example: IF (1 > k-1) ERROR iferr2
IfError[iferr2,>[1,-[k,1]],iferr3]

The execution template for IfError is identical to that of If-Then-Else:

if Execute[P1,S1] and IfError[P1,test,P2]
 then Execute[If[Eval[test,S1],Error,P2],S1]

The Transcribed Program Fragment

Finally, all the program statement patterns can be assembled into a resolution database. The program statement templates come first, followed by the program itself. Finally the initial Execute clause triggers the computational process; the end result is stored in the State clause which remains after all executions have been resolved.

Note that all variables in the statement templates have been given unique names. However, what we call program variables $\{k, i, j, A\}$ are symbolic constant labels here (Skolem constants), since they identify an arbitrary but not specific value. Statement names are also constants. Statement constants are carried without change throughout the set of clauses representing the program.

```
{ ~Execute[P1,S1],
  ~Assign[P1,new,old,P2],
  Execute[P2, Save[new,Eval[old,S1],S1]] }
{ ~Execute[P3,S2],
 ~DoWhile[P3,test,P4,P5],
 Execute[If[Eval[test,S2],P4,P5],S2] }
{ ~Execute[P6,S3],
 ~DoEnd[P6,P7],
 Execute[P7,S3] }
{ ~Execute[P8,S4],
 ~IfError[P8,errtest,P9],
 Execute[If[Eval[errtest,S4],Error,P9],S4] }
{ Equal[ HighBound[A],n] }
{ Equal[arrayA, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]] }
{ Assign[assign1,k,+[i,1],dowhile1] }
{ DoWhile[dowhile1,<=[k,j],iferr1,fragment-exit] }</pre>
{ IfError[iferr1,>[-[k,1],HighBound[A]],iferr2] }
{ IfError[iferr2,>[1,-[k,1]],iferr3] }
{ IfError[iferr3,>[k,HighBound[A]],iferr4] }
{ IfError[iferr4,>[1,k],assign2] }
{ Assign[assign2,A[i1,-[k,1]],A[i2,k],assign3] }
{ Assign[assign3,k,+[k,1],dowhile1] }
{ DoEnd[doend1, fragment-exit] }
{ Execute[assign1,
          State[A, arrayA,
           State[n,4,
            State[k,?,
             State[i,2,
              State[j,n,
               State[x,0,nil]]]]] }
```

Combinational Circuit Minimization

Section 4-11 of Floyd's *Digital Fundamentals* (handout) introduces a small practical example of the use of Boolean algebra in digital circuit design.

The segments of a familiar seven-segment display (labelled **a** through **g**) are activated to readout as integers (0-9) by a network of logic gates actualized in silicon. The integers to be displayed are input into the logic circuit encoded as four binary bits (0000 to 1001, with 1010 through 1111 not used), in a code named BCD for binary-coded-decimal.

Thus the *BCD-to-7segment*. parsing problem is to convert four binary input signals into seven binary output signals in a given configuration. The parser/decoder itself is built onto a silicon chip.

There are many different configurations of logic gates which achieve bcd-to-7segment decoding. And there are many different criteria that a circuit manufacturer might wish to optimize when designing the decoder logic circuit. To get the best price at a particular silicon foundry, or for a particular substrate material, the logic network might need fewer wires but more gates, or it may need to consume very little power, or perhaps it might have fit a regular array of particular types of gates.

The parse logic can be represented as a set of seven equations in Boolean algebra, with four inputs (the four BCD bits) and seven outputs (the on-off bits for each segment). Fortunately, fundamental features of the mathematical representation map well onto important design features of the silicon circuit.

For example, here is one particular solution in which each parenthesis boundary is a logical NOR gate:

a = ((D B ((C)(A)) (C A))) b = ((D (C) (B A) ((B)(A)))) c = ((D C (B) A)) d = (((C A) (C (B)) ((B) A) ((C) B (A)))) e = (A ((C) B)) f = ((D (B A) ((C) A) ((C) B)))g = ((D ((B) A) ((C) B) (C (B))))

Inputs: The number of occurences of input labels (A-D) is the fanout of the input, which relates to wiring and to power consumption. It is customary to use literals (either positive or negative occurences of an input, as in A or (A)) as circuit inputs, since both signal and negated signal are usually available. This version has a low number of input references, 42, but 24 is a minimum.

Chip Area: The number of parentheses represents the number of NOR gates, which maps well to the surface area of silicon that the circuit will take. Again in counting gates, the (A) form is an input literal, and does not count in the gate count. This version uses 28 gates.

Wiring: Wiring is becoming the dominant design issue for sub-micron silicon layout technology. The number of wires in a circuit is indicated by the number of subterms of each above expression, viewing the parentheses as a representation of a tree structure. The above solution has few wires, 70 (equal to the number of gates plus the number of inputs), but it is easy to reduce this number.

Timing: Perhaps the most important design criteria for a combinational circuit is its *critical path*, the longest path from any input to an output. This determines the delay time of the circuit and thus the rate of the driving clock. Critical path is modeled by the deepest nesting of parentheses, since each parenthesis is a gate. This solution is well balanced for timing, several equations have the maximum depth of 3 gates.

Noise: The noise in a circuit refers to the

Power Consumption: When a signal passes through a logic gate

Finally, we must recognize that silicon layout introduces new geometrical issues which require the simple Boolean equation model to be extended. The primary example is *structure sharing*, when the output of a subtree is used more than once. This converts the Boolean tree model into a Boolean graph model. In the above example, the subcircuit "((C) B)" occurs in equations e, f, and g. These can be implemented as one circuit with three outputs, resulting in a savings of two gates and four literals. (The example is not well suited for structure sharing.) To indicate structure sharing, construct an new variable name for the shared structure:

n = ((C) B) e = ((A n)) f = ((D (B A) ((C) A) n)) g = ((D ((B) A) n (C (B))))

EXERCISE

Find the (close to) minimal configurations of the BCD-to-7segment decoder for

number of simple NOR logic gates number of wires between gates length of critical path number of literals

Early in the assignment, read the section from DeMicheli's *Synthesis and Optimization of Digital Circuits*. Try your understanding of optimization techniques on example 8.2.2.

The Function Eval

Evaluation is an implicit action of the ALU. By claiming evaluation is automatic, we are committed to wiring the ALU in a specific way. However handling memory can be made flexible by *defining* **Eval** *in the programming language itself*. This process is called *meta-circular evaluation*, cause it uses a language itself to define how that language should behave. All we have to do is to define the evaluation function by telling the system what to do when an expression is typed in. The function **Eval** takes two arguments, the expression to be evaluated and the *binding environment*, that is, an address of the memory array which contains all of the primitive functions and atoms (and any other symbols which we may have added) in the language. The binding environment contains the definitions of all user defined functions, and the values of each of the variables (function arguments).

Since the binding environment does not change in this example, (i.e. we have not designed the language to establish separate environments for each function call), we will treat the token **Eval** to mean "Eval-in-environment". (Some of the syntax has been changed to make **Eval** more readable.)

The definition of **Eval** which follows recognizes only seven reserved words as primitive functions. In addition, **Eval** uses three built-in tests to determine the types of objects.

First	Rest	Cons	
IfThenElse	Equal	Quote	Let
ls-empty	lsa-atom	lsa-expression	

[Notes and supporting functions are on this page to save space. Eval itself is on the next page.]

Notes, * process Atom in First: This defines a syntax for parsing. Every expression begins with an atom or is an atom. If an expression begins with an atom, the processor assumes that that atom is an operator, and thus a processing instruction. The operator **Quote** is the no-op.

Notes, ** Cons Eval of Rest: This is again a syntax constraint. Once we have removed the beginning operator of an expression, what follows is either an atom, or another expression which itself begins with an atom operator.

```
EvalLogic exp =def=
                                                               ; if First is TRUE
      If Equal (Eval (First exp)) (Quote True)
                                                               ;Eval second argument
       Then
         Eval (Rest exp)
                                                               ;Eval third argument
       Else
         Eval (Rest (Rest exp)))
EvalExp exp
               =def=
      If Is-empty exp
                                                                ; if at the end
                                                               ; return ground
       Then
         nil
                                                               ; Eval the parts
       Else
                                                               ; and put them together
        Cons (Eval (First exp)) (Eval (Rest exp))
```

```
Eval exp =def=
If Isa-atom exp
 Then
                                                                ; process atom
   If Is-empty (First exp)
                                                                return the SYMBOL
    Then
      Rest exp
                                                                ; or its VALUE
    Else
      First exp
 Else
                                                                ; process expression
   If Isa-atom (First exp)
                                                                ; process Atom in First*
    Then
                                                                ; naming the atom
      Let token (First exp)
         If Equal token (Quote Quote)
                                                                ; return what follows
         Then
            Rest exp
                                                                   ; other operators
         Else
            If Equal token (Quote IfThenElse)
                                                                ; process logic operator
             Then
               EvalLogic (Rest exp)
                                                                   ; other operators
             Else
               If Equal token (Quote First)
                                                                : First of Eval of Rest
                Then
                  First (Eval (Rest exp))
                                                                  ; other operators
                Else
                  If Equal token (Quote Rest)
                                                                ;Rest of Eval of Rest
                    Then
                      Rest (Eval (Rest exp))
                                                                  ; other operators
                    Else
                      If Equal token (Quote Isa-atom)
                                                                ; Isa-atom Eval of Rest
                       Then
                         Isa-atom (Eval (Rest exp))
                                                                   ; other operators
                       Else
                         If Isa-expression token
                                                                ; process expression
                          Then
                            EvalExp (Rest exp)
                                                                  ; other operators
                          Else
                            If Equal token (Quote Cons)
                                                                ;Cons Eval of Rest**
                              Then
                                Cons (Eval (Rest exp))
                                       (Eval (Rest (Rest exp)))
                                                                   ; other operators
                              Else
                                If Equal token (Quote Equal)
                                                                ;Equal Eval of args
                                 Then
                                   Equal (Eval (Rest exp))
                                           (Eval (Rest (Rest exp)))
                                                                ; replace the token
                                 Else
                                                                ; with its value
                                   Eval
                                       Cons (First token) (Rest exp)
    Else ERROR))
```

2

The Structure of Domain Theories

A **domain theory** (or abstract knowledge structure) consists of a domain of objects, and axioms and rules which define the symbolic interaction between the symbolic form of these objects. In particular, a domain theory consists of:

1. A collection of *symbols*, including

constants variables naming arbitrary forms functions relations

- 2. *Generation axioms* These define the typing hierarchy of forms
- 3. Uniqueness axioms

These define how forms stay the same when they are manipulated, and how forms are composed of atomic units.

4. Special axioms

These define the characteristics of special types.

5. An Induction Principle

This rule template is the mechanism which allows construction and deconstruction of arbitrary forms, and provides an algebraic (abstract) approach to domain forms.

For proof and for programming, several **composition** tools are then proved/provided for construction and deconstruction.

6. Decomposition

Permission to take apart an arbitrary form into atomic components and functions to do the construction/deconstruction.

7. Equality under Decomposition

Equal forms don't change if you do equivalent things to them. Generally, forms are **mappable**, you can map a function across the atomic parts.

8. Special functions as theorems

With the above basis (1-7), we now begin to build specialized functions (macros) which make it easier to take large steps while manipulating forms. A recursive definition axiom says what we mean by the new function in terms of the basis functions. Then other theorems relate all the other mechanisms to the new function. Generally each new function has analogous axioms for each item above.

Abstract Domain Theory: STRINGS

Here is the **Theory of Strings** as an example. Note that the **Theory of Sequences** and the **Theory of Non-Embedded Lists** are almost identical.

Constants: the Empty string {E} Variables (typed): {u,v,...} characters strings $\{x, y, z, ...\}$ Functions: {., head, tail, *, rev, rev-accum, butlast, last} is prefix, attach a character to the front of a string * is concatenate, attach a string to the front of another string [the rest are defined below as special functions] Relations: {isString, isChar, isEmpty, =} test for the empty string isEmpty[x] test for valid character isChar[x] test for valid string isString[x] GeneratorFacts: isString[E] isString[u] isString[u·x] Uniqueness: $not(u \cdot x = E)$ if $(u \cdot x = v \cdot y)$ then u = v and x = ySpecial char axiom: $u \cdot E = u$ $E \cdot u = u$ Decomposition: if not(x=E) then (x = $u \cdot y$) $head[u \cdot x] = u$ $tail[u \cdot x] = x$ if not(x=E) then (x = head[x]·tail[x]) Decompose equality: if (u=v) then $(u \cdot x = v \cdot x)$ if (x=y) then $(u \cdot x = u \cdot y)$ Mapping: $F[u \cdot x] = F[u] \cdot F[x]$

The String Induction Principle:

```
if F[E] and
    forall x: if not[x=E],
    then if F[tail[x]] then F[x]
then forall x: F[x]
```

Recursion, mapping:

F[E]	base
$F[u \cdot x] = F[u] \cdot F[x]$	general1
$F[x] = F[head[x]] \cdot F[tail[x]]$	general2

Pseudo-code for testing *string equality*, using the Induction and Recursion templates for binary relations

```
if =[E,E] and
forall x,y:
    if (not[x=E] and not[y=E]),
        then if (=[head[x],head[y]] and =[tail[x],tail[y]])
            then =[x,y]
    then forall x,y: =[x,y]
=[E,E] base
=[x,y] = =[head[x],head[y]] and =[tail[x],tail[y]] general1
=[a,b] =def=
        (a=E and b=E)
        or (=[head[a],head[b]] and =[tail[a],tail[b])
```

Some axioms and theorems for specialized functions

Concatenate, *, for joining strings together:

$E^*x = x$, $x^*E = x$	base definition
$(u \cdot x) * y = u \cdot (x * y)$	recursive definition
isString[x*y]	type
u x = u x	character special
$x^{*}(y^{*}z) = (x^{*}y)^{*}z$	associativity
if $x*y = E$, then $x=E$ and $y=E$	empty string
if not(x=E) then head[x*y] = head[x]	head
<pre>if not(x=E) then tail[x*y] = tail[x]*y</pre>	tail

Reverse, rev, for turning strings around:

rev[E] = E	base definition
<pre>rev[u·x] = rev[x]*u</pre>	recursive definition
isString[rev[x]]	type
rev[u] = u	character special
<pre>rev[x*y] = rev[y]*rev[x]</pre>	concatenation
<pre>rev[rev[x]] = x</pre>	double reverse
<pre>rev[x*u] = u·rev[x]</pre>	suffix

Reverse-accumulate, reverse the tail and prefix the head onto the accumulator:

<pre>rev-acc[x,E] = rev[x]</pre>	identicality
<pre>rev-acc[E,x] = x</pre>	base definition
<pre>rev-acc[u·x,y] = rev-acc[x,u·y]</pre>	recursive definition

Last and *Butlast*, for symmetrical processing of the end of a string:

but	last[x*u]] = x		definition
las	t[x*u] =	u		definition
if	not(x=E)	then	isString[butlast[x]]	type
if	not(x=E)	then	char[last[x]]	type
if	not(x=E)	then	<pre>x = butlast[x]*last[x]</pre>	decomposition
if	not(x=E)	then	<pre>butlast[x] = rev[tail[rev</pre>	v[x]]] tail reverse
if	not(x=E)	then	<pre>last[x] = head[rev[x]]</pre>	head reverse

Here is a function which mixes two domains, Strings and Integers:

Length, for counting the number of characters in a string

```
length[E] = 0
length[u·x] = length[x] + 1
length[x*y] = length[x] + length[y]
```

A symbolic proof by induction

To prove:	<pre>rev[rev[x]] = x</pre>	x is of type STRING
Base case:		Rule applied:
rev[rev[E]] =?= E	1. problem
rev[E] =?= E	2. rev[E] = E
E =?= E		3. rev[E] = E
	QED	4. identity
Inductive cas	se:	
rev[rev[x]] =?= x	1. problem
rev[rev[u·x]] = u·x	2. assume by induction rule
rev[rev[x]*u] = u·x	3. rev[a∙b] = rev[b]*a
rev[u]*rev[rev[x]] = u·x	4. rev[a*b] = rev[b]*rev[a]
u*re	v[rev[x]] = u·x	5. rev[a] = a a is a char
u∙re	v[rev[x]] = u·x	6. lemma a*b=a∙b a is a char
rev[rev[x]] = x	7. $a \bullet b = a \bullet c$ iff $b = c$
	QED	

Lemma:

u*x =?= u·x	1. problem
$(u \cdot x) * y = u \cdot (x * y)$	2. prefix/concatenate distribution
$(u \cdot E) * y = u \cdot (E * y)$	3. let x=E
u*y = u·(E*y)	4. a∙E = a
u*y = u·y	5. E*a = a
QED	

Predicates	atom[x tree[x	<] []		
Constructor	+[x,y]			
Uniqueness	not[at if (+[com[+[x,y]]] x1,x2] = +[y1,y2]) then (x1=y1 and x2=y2)		
<i>Left and Right</i> left[+ right[-[x,y]] = x +[x,y]] = y		
Decompositior	n if not	[atom[x]] then x = +[left[x],right[x]]		
Induction	if F[a (if then F	atom] and [F[x1] and F[x2] then F[+[x1,x2]]) [[x]		
Some recursive tree functions				
<pre>size[x] =de:</pre>	f=	<pre>size[atom[x]] = 1; size[+[x,y]] = size[x] + size[y] + 1</pre>		
<pre>leaves[x] =</pre>	def=	<pre>leaves[atom[x]] = 1; leaves[+[x,y]] = leaves[x] + leaves[y]</pre>		
depth[x] =de	ef=	<pre>depth[atom[x]] = 1; depth[+[x,y]] = max[depth[x],depth[y]] + 1</pre>		
(pseudocode for leaves)				

Abstract Domain Theory: TREES

```
else if atom[x] then 1
else leaves[left[x]] + leaves[right[x]]
(pseudocode for leaves-accumulate)
    leaves-acc[x,res] =def=
        if empty[x] then res
        else if atom[x] then leaves-acc[(), res + 1]
```

leaves[x] =def= if empty[x] then 0

else leaves-acc[right[x], res + leaves-acc[left[x]]]
Abstract Domain Theory: SETS

An set implementation with the functions Insert, Delete, and Member is called a *dictionary*.

Mathematical model:

 $s = \{x \mid <statement about x>\}$ extensional, collection defined by common property $s = \{a, b, c, ...\}$ intensional, collection defined by naming the members

empty set:not (x in S)forall xmembership:x in S =def= x=s1 or x=s2 or x=s3 or ...subset:if (x in S1) then (x in S2)union:(x in S1) or (x in S2)intersection:(x in S1) and (x in S2)difference:(x in S1) and not(x in S2)

recursive set membership:

```
x in S =def=
    not[x=empty-set]
    and
    x = get-one[S] or (x in rest[S])
```

Implementation functions:

```
Make-empty-set
Make-set[elements]
Insert[element,set]
Delete[element,set]
Equal[set1,set2]
```

Cardinality[set] = count of members

Characteristic function F:

(F[x] = 1 iff x in S) and (F[x] = 0 iff not(x in S))

Algebraic Specification of Sets:

This algebraic specification is also a functional implementation (ie code) in a programming language designed for formal verification.

theory TRIVIAL is <u>sorts</u> Elt endtheory TRIVIAL module BASICSET [ELT :: TRIVIAL] is Set <u>sorts</u> functions Phi, Universe : Set Elt -> Set { }: (<u>assoc comm ident</u>: 0) _ intersect _ : Set, Set -> Set (assoc comm idem ident: Universe) <u>variables</u> S,S',S'': Set Elt,Elt': Elt axioms (S sym-diff S) = Phi {Elt} intersect {Elt'} = Phi :- not(Elt = Elt') S intersect Phi = Phi S intersect (S' sym-diff S'') = (S intersect S') sym-diff (S intersect S'') endmodule BASICSET module SET [X :: TRIVIAL] using NAT, BASICSET[X] is functions _ union _ : Set, Set -> Set _ - _ : Set, Set -> Set _ - _ : #_ : Set -> Nat predicates _ member _: Elt, Set _ subset _: Set, Set empty : Set _ not-member _ : Elt, Set

variables
X: Elt
S,S',S'': Set
axioms
S union S' = ((S intersect S') sym-diff S) sym-diff S'
A - S' = S intersect (S sym-diff S')
empty(S) :- S = Phi
X member S :- {X} union S = S
X not-member S :- {X} intersect S = Phi
S subset S' :- S union S' = S'
Phi = 0
#({X} sym-diff S) = #(S) - 1 :- X member S
#({X} sym-diff S) = #(S) + 1 :- X not-member S

```
endmodule SET
```

Abstract Domain Theory: RATIONAL NUMBERS

base	0
recognizer	is-number[n]
constructor	+1[n]
accessor	-1[n]
some invariants	<pre>is-number[n] or not[is-number[n]] is-number[+1[n]] is-number[0] +1[n] =/= 0 (is-number[n] and n =/= 0) implies (+1[-1[n]] = n) is-number[n] implies (-1[+1[n]] = n)</pre>
induction	if F[0] and (F[n] implies F[-1[n]]) then F[n]

module BASICRAT using INT is

<u>sorts</u>	Rat
<u>subsorts</u>	Int =< Rat
functions	
_ / _ :	Int, NzInt -> Rat
_ * _ :	Rat, Rat -> Rat (<u>assoc</u> <u>commut</u> <u>ident</u> : 1)
_ + _ :	Rat, Rat -> Rat (<u>assoc comm ident</u> : 0)
<u>variables</u>	
N, X, Z:	Int
Y,W:	NzInt
A:	NzNat

Applied Formal Methods

```
axioms
nzint(Y*W)
N/1 = N
0/Y = 0
N/(-A) = (-N)/A
X/Y = (X/gcd(X,Y))/(Y/gcd(X,Y)) :- not(gcd(X,Y)=1)
(X/Y)+(Z/W) = ((X*W)+(Z*Y))/(Y*W)
N+(X/Y) = ((N*Y)+X)/Y
(X/Y)*(Z/W) = (X*Z)/(Y*W)
N*(X/Y) = (N*X)/Y
```

endmodule BASICRAT

Induction and Recursion

Induction is a mathematical proof technique. When this technique is used in programming, it is called **recursion**. Induction/recursion is the fundamental mechanism for

- extending logical proof techniques into object domains and data structures,
- defining and building mathematical and programming objects,
- · decomposing objects so that functions can be applied to the elementary units, and
- robust programming style and program verification.

Many practical computational problems are most succinctly expressed in a recursive form (for instance, tree and graph traversal, spatial decomposition, divide-and-conquer algorithms, sorting, searching, and large classes of mathematical functions). As well, recursive function theory defines what can and cannot be computed.

Inductive Definition

An *inductive definition* consists of

- 1) a base case
- 2) a general generating case
- 3) an ordering principle which moves from one general case to the next

Base case: the value of the most elementary case

Examples:

the additive identity
the multiplicative identity
the empty set
the empty list, the empty tree
the logical ground

Generating rule: the transform which defines the next case, given an arbitrary case.

Examples:

power-of-2[n]	=	2*power-of-2[n-1]
summation[n]	=	summation[n-1] + n
prefix[str]	=	first-char · rest[str]
last[list]	=	rest[list] = nil
length[list]	=	length[rest[list]] + 1
<pre>member[x,S]</pre>	=	<pre>x=select[S] or member[x,rest[S]]</pre>
power-set[S]	=	power-set[S-{ele}]*S
node[btree]	=	left[btree] + right[btree]
logic-form[lf]	=	ante[lf] implies conseq[lf]
parenthesis[pf]	=	"("in[pf]")" or left[pf] + right[pf]

Recursive Programming

Inductive definitions build up from the base case to any degree of complexity. Recursive programs reduce any degree of complexity one step at a time until the base case is reached. A recursion must be **well-founded**, that is the steps must eventually terminate at the base. In most cases, the step increment is monotonically decreasing.

Recursive programs can be expressed in two forms, mathematical and accumulating. The mathematical form accumulates unevaluated operators on the outside and evaluates them after the base is reached. The accumulating form evaluates operators as they accumulate; when the base is reached, the result is returned.

Mathematical: if (base-case isTrue) then base-value else F[recursive-step]

Accumulating: if (base-case isTrue) then accum else F[recursive-step, accum+step]

Primitive Recursion Templates

These templates refer to arbitrary functions F on types of data structures. P is an arbitrary Boolean function, G and H are arbitrary domain functions

General:	F[x]	= j	if	<pre>P[x] then G[x] else H[F[x]]</pre>
Unstructured:	F[x]	= i	if	<pre>P[x] then G[x] else F[H[x]]</pre>
Integers:	F[n]	= j	if	n=0 then G[0] else H[n-1,F[n-1]]
Lists:	F[u]	= j	if	<pre>null[u] then G[nil] else H[head[u],tail[u],F[tail[u]]]</pre>
Trees:	F[v]	= j	if	<pre>leaf[v] then G[v] else H[left[v],right[v],F[left[v]],F[right[v]]]</pre>
Graphs:	F[V]	= j	if	<pre>null[v] then G[nil] else H[adjacent[v],F[not-visited[adjacent[v]]]]</pre>

Some Programming Examples

Here are a variety of programming styles for the function Factorial. Note that as the style moves more toward mathematical and away from procedural, the code becomes more succinct. It also becomes easier to debug and to verify. In general, the evolution of programming languages is away from CPU specifics and toward mathematical generalizations. This evolution simply means that more and more of the low-level mechanical details are moved out of the programming language and into the compiler.

```
proceduralFactorial[n_Integer?Positive] :=
      Block[{iterator = n, result = 1},
            While[iterator != 1,
                  result = result * iterator;
                  iterator = iterator - 1];
            result
sugaredProceduralFactorial[n_] :=
      Block[{result = 1},
            Do[result = result*i,{i,1,n}];
            result]
recursiveFactorial[n_] :=
      If[n == 1,1,n*recursiveFactorial[n-1]]
rulebasedFactorial[1] = 1;
rulebasedFactorial[n_] := n*rulebasedFactorial[n-1]
mathematicalFactorial[n_] :=
      Apply[Times,Range[n]]
```

Program Verification, Induction Exercises

Here is a collection of relatively simple program transformations for practice of inductive proof and recursive implementation. Domain definitions and facts are provided. Use simple numerical and algebraic facts in the case of integers.

There are several approaches you might take to this exercise (in order of difficulty):

- 1. Use the domain theories and the induction principle to write recursive code.
- 2. Use the domain axioms to prove the assertions algebraically by hand.

3. Submit a subset of the axioms and rules to an algorithmic theorem prover (such as Mathematica, Maple, Reduce, Otter, or any of the tools available on the web).

Induction in the Integer Domain:

{i,j,k,n} are positive integers. Note that all integer functions can be defined inductively.

Definitions

i+j =def=	i + 0 = i i + next[j] = (i + j) + 1
i * j =def=	i * 0 = 0 i * next[j] = (i * j) + i
i^j =def=	i ^ 0 = 1 i ^ next[j] = (i ^ j) * i
<pre>sum[n] =def=</pre>	<pre>sum[0] = 0 sum[i+1] = sum[i] + (i + 1)</pre>
fac[n] =def=	fac[0] = 1 fac[i+1] = fac[i] * (i + 1)
fib[n] =def=	fib[1] = fib[2] = 1 fib[i+2] = fib[i+1] + fib[n]

Prove

•	(i * i) = (i ^ 2)
•	(i * j) + (i * k) = i * (j + k)
•	(2 * sum[n]) = n * (n + 1)
•	$(n ^ 2) = (2 * sum[n-1]) + n$
•	$(3 * sum[n^2]) = (2*n + 1) * sum[n]$
•	$fib[n^2] = fib[n+1] * fib[n]$
	$sum[n^3] = (sum[n]^2)$

Recursive Programming

• Write recursive programs for the following functions:

Domain

equal[a,b]	All domains -> Boolean
difference[i,j]	Natural numbers -> Integer
fibonacci[i]	Natural numbers -> Natnum
accumulating-fibonacci[i]	Natural numbers -> Natnum
greater-than[i,j]	Integers -> Boolean
remainder[i,j]	Integers -> Natnum
substitute[x,y,z]	Lists -> List
ordered-insert[item,x]	List -> List
same-length[x,y]	Strings -> Boolean (do not use Integers)
remove-substring[x,y]	Strings -> String
explode[x]	String -> List
fill[item,a]	Array
ordered[a]	Array -> Boolean
is-path[list,x]	Trees -> Boolean
depth[x]	Trees -> Integer
flatten[x]	Trees -> List
search[x, property]	Trees -> node
best-leaf[x]	Trees -> atom
occurrences[value,x]	Trees -> Integer
balanced-branches[x]	Trees -> Boolean
union[x,y]	Sets -> Set
intersection[x,y]	Sets -> Set
connected[n1,n2,g]	Graphs -> Boolean
delete-vertex[v,g]	Graphs -> graph
complement[g]	Graph -> Graph
reachable[v1,v2,g]	Graph -> Boolean
partition[x]	List -> Lists (harder)
tautology[lf]	Boolean -> Boolean (harder)

- Now *prove* that each program is correct.
- Do these recursive programs terminate?

```
Oscillate, for one integer (hint: try n=27):
    osc[n] =def=
        if n=1 then 1
            else if even[n] then osc[n/2]
                 else osc[3n+1]
```

Ackerman, for two integers m and n:

ack[m,n] =def=
 if m=0 then n+1
 else if n=0 then ack[m-1,n]
 else ack[m-1, ack[m, n-1]]

Ackerman, for two strings:

Takeuchi for three integers:

How would you prove the correctness of this do-loop?

(2 ^ i) = (res := 1; for n from 1 to i do (res := res * 2))

Induction in the String Domain:

{u,v} are characters, {x,y} are strings

- Prove that the length of two strings concatenated together is the sum of the lengths of each.
- Prove that the length of the reverse of a string is the same as the length of the string.
- Develop a theory of **substrings** of a string. Here are the axioms you'll need:

The definition of a substring:

x sub y =def= z1*x*z2 = y

The empty string is a substring of every string

E sub y

No string is a substring of the empty string

not(y sub E)

Prefixing a character to a string maintains the substring relation

if (x sub y) then (x sub $u \cdot y$)

The following three properties of the substring relation establish that *substring is an ordering relation.*

transitivity	if s1 is a substring of s2, and s2 is a substring of s3, then s1 is a substring of s3
antisymmetry	if two strings are substrings of each other, they are equal
reflexivity	a string is a substring of itself

- Prove or define the above relations. Then prove:
 - A string is a substring of itself when a character is prefixed.
 - A string is a substring of the empty string when it is the empty string.
 - Substring implies all the characters in the substring are in the string.
 - The length of a substring is equal to or less than the length of the string.
- Extend the results:

The definition of a **proper** substring:

- x proper-sub y =def= not(z1=E and z2=E) and z1*x*z2 = y
- Prove the properties of proper substrings (transitivity, irreflexivity, asymmetry)
- Use the results:

The definition of a palindrome:

palin[x] =def= (x = rev[x])

• Write a provable implementation of a palindrome tester/generator

palin[x] = (x = y*rev[y]) or (x = y*u*rev[y])

Finally, here's an example of how a larger provable program might be built to construct long palindrome sentences, using a dictionary and a grammar checker:

- 1. select an arbitrary word from the dictionary
- 2. find the words which begin with the reverse of that word.
- 3. identify the end substring of the new word which is not covered by the first word
- 4. reverse the uncovered substring and find words ending with that substring
- 5. recur to step 2 until failure to match
- 6. use the grammar parser to screen the result for proper sentence structure
- 7. recur to step 1 to try again

Mathematica

Numeric or Symbolic Processing

Mma computes symbolically unless either
1. no efficient symbolic technique is known, or
2. processing efficiency is far more important than coding efficiency.
Otherwise, it uses optimized numeric techniques.

SYMBOLIC MODEL

meaning --written as--> symbol structures --reduced by--> symbolic transformation rules --into--> simpler symbolic structures --interpreted for--> meaning

NUMERIC MODEL

meaning --exemplified by--> selected instances --substituted into--> symbolic structures --reduced by--> numeric evaluation rules --into--> approximate results --read for--> meaning

The Mathematica Program

A general purpose computational engine for numerical calculations (arithmetic) symbolic transformations (algebra) graphic display (geometry)

A modern programming language with multiple styles procedural functional logical object-oriented rule-based mathematical

An integrated tool C, TeX, UNIX, Postscript. MathLink

The Philosophy

The programmer's time is more valuable than the processor's time.

Thus, the architecture is interpreted (interactive) real-time goal-oriented

"Programs you write in Mathematica may nevertheless end up being faster than those you write in compiled languages" p.506

- Processing speed depends on the exact implementation algorithm
- Mathematica algorithms are both sophisticated and optimized
- The internal data form is optimized and compiled for efficiency

The Limits

- Out-of-memory can crash the program
- Some algorithms require large searches and exponential processing time

"The internal code of Mathematica uses polynomial time algorithms whenever they are known." p.63

• In a second, you can do

arithmetic with thousand digit numbers factoring a hundred term polynomial apply a recursive rule a few thousand times find the numerical inverse of a 50x50 matrix format a few pages of output draw a few thousand lines

Everything is an Expression

x + y	Plus[x,y]
120	Integer[120]
2ab	Times[2,a,b]
{a,b,c}	List[a,b,c]
i = 3	Set[i,3]
x^2+2x+1	<pre>Plus[Power[x,2], Times[2,x], 1]</pre>

An undefined symbol is *itself*, providing functional transparency and WYSIWYG debugging.

The Meaning of Expressions

F[x,y]	F is the <i>head</i> . x,y are the <i>contents</i> .
	Apply <i>function</i> \mathbf{F} to arguments \mathbf{x} and \mathbf{y} .
	Do <i>action</i> F to objects x and y .
	The <i>label</i> \mathbf{F} points to elements \mathbf{x} and \mathbf{y} .
	The <i>object-type</i> \mathbf{F} has parts \mathbf{x} and \mathbf{y} .

The head can both act on its contents (as a function) and maintain the structure of its contents (as an object), depending on context (the location of the expression, the presence of a definition).

Lists

The boundary labeled List maintains its internal structure as a database. Lists are used for all collections:

data record	{John, 555-1234, j@mma.com}
vector	{x, y, z}
matrix	{ {11,12},{21,22} }
set	Union[{a,b},{a,c}] ==> {a,b,c}
graphics spec	Line[{{0,1}, {1,1}, {1,0}}]
stream	{1,2,3,}
structure template	$\{_, \{_,_\}, \{\{_,_\}, \dots\}\}$

The Fundamental Principle of Computation

Take any expression and apply transformation rules until the result no longer changes.

1.	Reduce head	
2.	Reduce each element	base case arithmetic
3.	Standardize	
4.	Apply user defined rules	inductive case algebra
5.	Apply built-in rules.	
6.	Reduce the result.	recursion

The Internal Mechanism

All expressions are stored in an *augmented binary transform table* (?)

we see	internal	table entry
x=3	11001	11
a[1]=x	1000[1]	10110
f[n_]=n^2	1011[#]	10110[#1110]

• The input expression is matched (using a linear-time algorithm) to the internal table:

E = 00110[0100011]001010[11101]

- Each match generates a substitution.
- No match causes no change.
- The structure of the expression is not a string but a network.

Patterns

A *pattern* is a class of expressions with the same structure.

_	"blank", underline means any expression
x_	any expression locally named x
x	any sequence of expressions
x	any sequence, including none
x_h	any expression with head $=$ h.

Examples:

f[n_]	the function f with a parameter named n
2^n_	2 raised to any power
a_ + b_	the sum of two arbitrary expressions
{a}}	a list with at least one element

Data Types

"At a fundamental level, there are no data types in Mathematica. Every object you use is an expression, and every function can take any expression as an argument." p.496

The head of an expression can be interpreted as a *type constraint*.

Integer[3] means Type[3] = Integer

Unity of Programming Paradigms

Mathematica accepts code in all of the modern programming paradigms.

"All the approaches are in a sense ultimately equivalent, but one of them may be vastly more efficient for a particular problem, or may simply fit better with your way of thinking about the problem." p.487

"As a matter of principle, it is not difficult to prove that *any* Mathematica program can in fact be implemented using transformation rules alone." p.503

Object-oriented Organization

square/:	<pre>perimeter[square[n_]]</pre>	:= 4*n
square/:	area[square[n_]]	:= n^2
circle/:	area[circle[r]]	:= Pi*r^2

The outer "function" transforms the inner "argument". The inner "object" contains a private outer "message handler". The outer "matrix" is indexed by the inner "accessors".

Relational Algebra

A *relation* is a set of tuples. In CS, this is called a database or file. The items of the relation can be seen as **attribute value pairs**, with the values being atomic ground forms (ie not composite terms and not pointers). Other terms:

Domain:	the set of possible values for a relation
Relation:	a subset of the cartesian product of domains
Attribute:	column of a relation
ltem:	row of a relation, a tuple
Key:	a minimal set of attributes which identify a unique tuple

Since a relational database contains the same information as a relation table, the database must:

- 1. have no duplicates
- 2. have values from the same domain
- 3. have simple attribute structures (not composite)
- 4. an attribute must be accessed by a single key

It is always possible to express multiple argument relations using only binary relations. E.g.:

PERSON[name, age, sex] = PERSON[name, age] and PERSON[name, sex]

Operators in a Relational Algebra:

Selection:	Reduce the number of rows in a table (horizontal cut)
Projection:	Reduce the number of columns (vertical cut), and remove duplicates.
Restriction:	Make a relation consisting of all rows which meet a functional test
Union:	Combine rows of two tables (same attributes). Same as file-merge. aka: Or, Append
Difference:	The rows of relation 1 with duplicates in relation2 removed aka: -, remove, minus
Join:	Make a table with the items common to both relations. aka: intersection
Generalized Jo	<i>bin</i> : For relations with unequal number of attributes, carry along the extra attributes in the new table. If the relations have no common attributes, form the cartesian product.

Hierarchy is formed in two ways:

- 1. generalization of subtypes (standard oo inheritance)
- 2. *aggregation* of components, making new relations of existing fields

Relational Knowledge-base Example

Vocabulary:

(father X Y) (mother X Y) (male Y) (female Y) (parent X Y) (sibling X Y) (brother X Y) (sister X Y) (uncle X Y) (gather X Y) (gmother X Y) (ancestor X Y) (cousin X Y)

Knowledge Base:

(if (father A B) (parent A B)) (if (mother A B) (parent A B)) (if (and (parent A C) (parent A B) (not (= B C))) (sibling B C)) (if (and (sibling A B) (male A)) (brother A B)) (if (and (sibling A B) (female A)) (sister A B)) (if (and (parent B C) (brother A B)) (uncle A C)) (if (and (parent B C) (sister A B)) (aunt A C)) (if (and (parent B C) (father A B)) (gfather A C)) (if (and (parent B C) (mother A B)) (gmother A C)) (if (and (parent B C) (mother A B)) (gmother A C)) (if (parent A B) (ancestor A B)) (if (and (parent A B) (ancestor B C)) (ancestor A C)) (if (and (parent A C) (parent B D) (sibling A B)) (cousin C D)) (if (father A B) (male A))

(if (mother A B) (female A))

Facts:

(father arthur bertram) (father arthur bailey) (father bertram cornish) (father bertram carey) (mother beatrice cornish) (mother beatrice carey) (father bailey carleton) (father bailey cassandra) (mother bessie carleton) (mother bessie cassandra) (male cornish) (male carleton) (female cassandra)

Example questions: (gfather arthur ?) (cousin ? cassandra)

Themes and Dilemmas

Ever since Descartes (c1640), we have conceptualized our world in terms of discrete **Objects** embedded within a context of **Space and Time**. Since Einstein (c1920), embedding has been in **Spacetime**, a single four-dimensional manifold.

Mathematics is the study of unique, discrete objects embedded in and interacting within the context of a dimensional manifold. The dual interpretation of objects as interaction (emphasized by quantum mechanics) is to see the interactions themselves as primary and the objects as patterns of interaction.

Computation is the study of discrete binary objects interacting within the constraints of a **timed boolean algebra**.

Field	Object concept	Space-time concept
geometry	points	space
physics (classical)	masses	3space and directional time
physics (modern)	wave/particle	entanglement, observation
physics (relativistic)	events	spacetime
mathematics	structures	axiomatic bases, proof steps
computation	sets	processes
computation (serial)	bit-streams	boolean networks
boundary math	distinction	void
Formal Systems	invariance	variance
propositional logic	truth	proof
quantification	property	existence
predicate logic	domain	recursion
relational theory	domain pairs	domain intersection
function theory	abstraction	application
pattern-matching	pattern	pattern variables
proof systems	assumptions	logic
category theory	math systems	morphism
cellular automata	cell	neighborhood
fractals	generator	recursion
finite state machines	bit-stream	state transition graph
program verification	specification	program

The Meta-theme of Formal Systems

Note that the meta-theme has been with us since ancient Greek philosophy, and is peculiar to the mathematical/scientific way of viewing the world. In particular, the object/spacetime decomposition is not appropriate -- does not work -- for biological systems (cells, viruses, organisms, plants, humans, institutions, societies, cultures, minds, religions).

Philosophical Dilemma I: Cyber-addiction

From Communications of the ACM, 3/98, p11:

"Almost a fifth of college students spend more than 20 hours a week on the Internet...this amount of time qualifies as addition....a New York University study (that) correlates high student Internet use with doubled rates of academic dismissals. As a way of dealing with this problem, schools in Michigan, Maryland, Texas, and Washington have imposed limits on student Internet use. Dominant areas of user involvement: email, Web surfing, MUD interactive role-playing, and home page production."

ibid. p.128 (by Peter Neumann):

"...activities that can lend themselves to addictive or compulsive behavior include...even programming itself -- which seems to inspire compulsive behavior in certain individuals....computers intensify and depersonalize whatever activity is being done, enabling it to be done remotely, more expeditiously, less expensively, and perhaps without identification, accountability, or answerability.

The effects of compulsive computer-related behavior can involve many risks to individuals and to society, including diminution of social and intellectual skills, loss of motivation for more constructive activities, loss of jobs and livelihood, and so on. A reasonable sense of physical reality can be lost through immersion in virtual reality. Similarly, a sense of time reality can be lost through computer access that is totally encompassing and uninterrupted by external events."

Biological systems are incomprehensibly complex. Computational systems are incomprehensibly simple. Since the world we live in is beyond our comprehension, we construct projections (virtual worlds with detail removed) to support the illusion that we understand and are in control. The manufactured flat surfaces which surround us everywhere are an example of the removal of natural complexity to enhance our illusion of tractability. Computational environments are another example of this **abstraction neurosis**.

People fall into cyberspace because it is unnaturally simple and therefore supports the illusion of competence. Of course, cyberspace is not simple, it too is an artifact of biological activity. It is the illusion of potential simplicity which makes computational systems attractive.

Why have you chosen a profession which requires you to stare at a computer screen all day long? Was your mother correct when she asked you not to sit too closely in front of the television screen? How do you think physical reality will respond to the competition of virtual reality for the attention of humanity? Is the modern mind committed /addicted to representations of reality (reading-writing-arithmetic, books, films, computers, etc.) rather than to reality itself?

Philosophical Dilemma II: Triviality

Quotes from Gian-Carlo Rota, Indiscrete Thoughts:

"The philosophy of mathematics carries out its work by focusing on the correlation between mathematical things and mathematicians." Robert Sokolowski, p.xiii

That is, between the object-concept of mathematical items (which may or may not exist in a Platonic world independent of our minds) and the process-concept of mathematical minds.

"Of all escapes from reality, mathematics is the most successful ever. It is a fantasy that becomes all the more addictive because it works back to improve the same reality we are trying to evade. All other escapse -- sex, drugs, hobbies, whatever -- are ephemeral by comparison." p.70

"Not only is every mathematical problem solved, but eventually every mathematical problem is proved trivial. The quest for ultimate triviality is characteristic of the mathematical enterprise." p.93

Computer Science deals with a trivial subset of mathematical trivality by excluding the sacred concept of Infinity and the mysterious concept of Void, and by avoiding even "intractable" (ie non-polynomial, search-based, mathematically interesting) complexity. Computer Science (at least Artificial Intelligence and Cognitive Science) pretends that the mind is like a computer, so that the issues of complexity of mind and of humanity can be conveniently ignored or forgotten.

Computer Science engages in an extreme of abstraction neurosis, let's say **abstraction psychosis**, by constructing the narrowest of worlds (binary bit-streams which interact only over timed boolean networks), and then by suggesting that this extreme reduction is somehow whole. In fact, computation addresses only **trivial trivialities**.

How can humanity become so enamored with a technology that it forgets the reality within which it is embedded? Why are we so ready and able to limit our experiences to a small screen of phosphers and a tableaux of a few dozen labelled keys? How can our minds so easily confuse a pixel array with fully visceral experience? Confuse an email exchange with fully interactive human dialog? Confuse digital information processing with bodily experience?