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COURSE INFORMATION

Text:

No text, many handouts (see below)

Class structure:

Each student will prepare two reports on two formal methods topics.  (Topic suggestions

are below.)  Each class period, a student and the instructor will jointly cover one

selected topic.

Eva luat ion :

Available grades:

non-completion:  Incomplete, Withdraw, etc.

completion:   A  A-  B+  B  B- C

A: reserved for superior performance

A- or B+: expected grade for conscientious performance

B: adequate work

B - : barely adequate

C: equivalent to failing

Grading Options:

1.  Performance Quality:  attendance, participation,  assigned exercises

2.  Grading Contract:  specify a set of behaviors and an associated grade.

3.  Self-determined:  negotiate with instructor

Discussion:

If you prefer a clearly defined agenda, if you do well with concrete task assignments, or

if you need a schedule of activities for motivation, then OOption 1 is a good idea.

If you already understand the field, if you plan to excel in a particular area, or if you

need clear performance goals for motivation, then OOption 2 is a good idea.

If you are not concerned about grades, if you intend to do what you choose anyway, or if

you are self-motivated, then OOption 3 is a good idea.

I will notify any student who is not on a trajectory for personal success.
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Course content:

Formal methods is a body of mathematically-based techniques, often supported by reasoning

tools, that offers rigorous ways to model, design, and analyze systems.

We will explore a number of specific applications of formal methods.  The course will focus on

implementations of tools and techniques and the use of these tools.  Each class, the instructor

will give a lecture on the mathematical techniques of a particular formal method.  During the

same class period, students will present their research and experiences with the

implementation of that technology.

Although the Computer Science community limits formal methods to applications of logic and

predicate calculus, this course will take a slightly broader viewpoint.  Numerical and algebraic

techniques such as matrix algebra, probability theory, and integer theory will be excluded, but

exotic symbolic approaches such as fractals, cellular automata, and boundary mathematics will

be included as possible topics.  Pure programming languages (Prolog, ML, Haskell, LISP,

Mathematica) are also valid topics.

Individual homework will consist of a short selected reading on each topic, personal exploration

of implementations of at least two formal tools, one or two class presentations, and whatever

exercises necessary for understanding.

A Quote from the Oxford Group

"There's a battle going on in computer science that will probably never be fully resolved,

between those who think programs are fundamentally mathematical, and those who eschew

mathy techniques as being too tedious for use with real-world programs. Despite a layperson

misperception to the contrary, most programmers avoid math just as most nonprogrammers do,

with the result that more than 99% of software is developed today as nonmath.

Formal methods is the name for the techniques of mathematically proving that programs do what

they're supposed to.  The theory is that programs aren't physical objects, they are ideas; they

don't break down, and they don't wear out, the way physical objects do. A perfect program will

therefore remain perfect forever.  Formal methods exist to make such perfect programs,

compared to which even the most well-crafted nonmath program is fundamentally a buggy

slapped-together sloppy mess.

It would be nice if formal methods were more widely accepted, because as programs grow larger

and larger the interspersed bugs make them more and more unreliable.  But formal methods

slow the pace of program development so much, and fit so poorly into the messy but productive

real world, that they are used only rarely  even in potentially life-threatening systems.
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Some Formal Techniques

The list of topics which follows is organized by mathematical techniques, with  application areas

following the mathematical topic  (asterisks mark recommended topics).

Propositional calculus (Boolean logic)* *

circuit design,  hardware verification, Boolean minimization, control theory

Predicate Calculus* *

expert systems, specification languages, theorem provers, correctness and verification

Logic Extensions

non-monotonic reasoning, temporal logic, process algebra

Mathematical Induction and Recursive Function Theory* *

proof technique, recursive programming, programming

Relational Calculus*

relational databases, constraint solving

String Rewrite Theory*

mathematical computation, process modeling, parsers and compilers

Theory of Computation*

worst-case algorithms, time and space complexity

F rac ta l s

computer graphics, compression, computer art

Binary Decision Diagrams

hardware modeling

Lambda Calculus and Combinators

        functional programming

Group Theory and Modern Algebra

        coding theory, 3D motion

Finite State Automata

        state space problem solving, string recognition, state transition systems

Cellular Automata

        chaos modeling

Boundary Mathematics

        visual languages, logic and numerical simplification, parallel processing

General Systems Theory

systems modeling, control theory
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Refe rences

Genera l :

Bavel (1982), Math Companion for Computer Science, Prentice-Hall

Gilbert (1976), Modern Algebra with Applications, Wiley

Grassmann and Tremblay (1996), Logic and Discrete Mathematics, Prentice-Hall

Gries and Schneider (1993), A Logical Approach to Discrete Math, Springer-Verlag

Grimaldi (1999), Discrete and Combinatorial Mathematics, Fourth edition, Addison-Wesley

Lucas (1985), Introduction to Abstract Mathematics, Second edition, Ardsley House

Wolfram (1996), The Mathematica Book, Third edition, Cambridge Press

Spec i f i c :

Aho, Sethi and Ullman (1986), Compilers, Addison-Wesley

Barwise and Etchemendy (1993), The Language of First-Order Logic, Third edition, CSLI Stanford

Forbus and DeKleer (1993), Building Problem Solvers,  MIT Press

Genesereth and Nilsson (1987), Logical Foundations of Artificial Intelligence, Kauffman

Hopcroft and Ullman (1979), Introduction to Automata Theory, Languages, and Computation, 

Addison-Wesley

Lakatos (1976), Proofs and Refutations, Cambridge U. Press

MacLennan (1990), Functional Programming, Practice and Theory, Addison-Wesley

Manna and Waldinger (1985), The Logical Basis for Computer Programming, Addison-Wesley

Plasmeijer and vanEekelen (1993), Functional Programming and Parallel Graph Rewriting, 

Addison-Wesley

Wos, Overbeek, Lusk and Boyle (1992), Automated Reasoning, Second edition, McGraw-Hill

Web Pointers

Oxford University Computing Laboratory

http://www.comlab.ox.ac.uk/archive/formal-methods.html

BYU Laboratory for Applied Logic

http://lal.cs.byu.edu/

NASA Langley Research Center Formal Methods Program

http://shemesh.larc.nasa.gov/fm.html

Swedish Institute of Computer Science

http://www.sics.se/fdt/research97.html

UC Davis Programming Languages and Verification Laboratory

http://avalon.cs.ucdavis.edu/

Stanford U. Center for Formal Methods

http://www-formal.stanford.edu/jmc/math.html
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Warsaw U. Applied Logic Group

http://zls.mimuw.edu.pl/english.html

UC Berkeley Design Technology Warehouse

http://www-cad.eecs.berkeley.edu/

A Computational Logic

http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html

Formal Methods in Software Engineering

http://wwwsel.iit.nrc.ca/projects/fm/fm.html

Formal methods around the world

http://lal.cs.byu.edu/other_FM.html

Software Development using Formal Methods Syllabus

http://www.mcs.salford.ac.uk/sdformal.html

Bibliography on software engineering and formal methods

http://bavi.unice.fr/Biblio/SE/Contrib.html

Seven Myths of Formal Methods

http://www.progsoc.uts.edu.au/~geldridg/frsd/ass1/7myths.htm

Formal Methods - selected historical references

http://docs.dcs.napier.ac.uk/DOCS/GET/jones92a/document.html

Books

http://www.rspa.com/spi/formal.html
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Rough Syllabus

NOTE: TOPICS may change by class consensus.

Class meeting   Topic

1 ) introduction

2 ) overview of formal methods

3 ) complexity, proof techniques

4 ) proof systems, boundary logic

5 ) Boolean minimization, bdds

6 ) abstract domains

7 ) pattern-matching and unification

8 ) recursive function theory

9 ) lambda calculus

10) combinators

11) theorem provers

12) theorem and program proving

13) Mathematica, string rewrite

14) relational algebra

15) finite state automata

16) cellular automata

17) abstract algebra and group theory

18) fractals

19) to be determined

20) review and summary
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Modeling with Logic

The Modeling Hierarchy

Conceptualization (imaginary, perceptual, cognitive, real world)

Mathematical Model (formal, symbolic, abstract, mathematical)

Data Structure and Algorithms (representation, computational, software)

Machine Implementation (actual, structured, physical hardware)

Mathematical  Structures

propositional calculus  (Boolean algebra)

truth symbols

propositional symbols (binary variables)

connectives  (and, or, not)

interpretations

predicate calculus
truth symbols

constant symbols

variable symbols

function symbols

predicate symbols (relations)

quantifiers

equality and orderings

non-negative integers
data structures

strings trees lists sets

bags  (multi-sets) tuples graphs

Formal Modeling

A  formal system (a mathematical system) consists of

1.  several sets of labels (for objects, functions, relations) called constants,

2.  rules for building compound sentences (or equations or expressions),

3.  rules for evaluating and simplifying compound expressions, and

4.  some axioms or assumptions which assert equivalence sets.

Formal = Atoms + Forms + Transforms + Axioms

Ar istot le

Aristotle classified declarative language using three polar categories

single vs compound (Socrates is happy.  vs   Man is happy.)

universal vs particular

affirm vs deny
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The latter two categories form the  Square of Opposition

A F F I R M DENY

UNIVERSAL A    Every  _  is  _ . EE    No  _  is  _ .

(Everyone is happy.) (No one is happy.)

PARTICULAR I    Some  _  is  _ . OO    Some  _  is not  _ .

(Someone is happy.) (Someone is not happy.)

The Syllogism

The Syllogism according to Aristotle:

"discussion in which, when things are posited, other things necessarily follow."

All men are mortal.

Socrates is a man.

Thus, Socrates is mortal.

This non-Aristotelian form of logic was developed into

the first ever Axiomatic System with variables.

Crisis in the Twentieth Century

Oh No!  There is no consistency in mathematics, there are paradoxes in every system.

Logicism  (Russell)

Mathematics is identical to logic.  (We'll patch the holes.)

Intuitionism  (Brouwer)

Mathematics presupposes concepts.  Concepts rest on natural numbers.

(We'll construct what is known, and not admit infinity.)

Formal ism  (Hilbert)

Mathematics is a set of syntactic transformations.  (We'll refuse to interpret it.)

Predicate Calculus

A ggeneral purpose language for describing objects, facts, and transformations for 

particular domains.  Also called First Order Logic.  It consists of

connective logic {and, or, if, not, iff}  inference, proof

object domains {<unique atoms>}

quantification {all x, exists x}

predicates classes and properties

relations True associations between objects

functions indirect names, maps from one object to another
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Proof Techniques

Mechanisms of Proof

Truth tables exhaustive analysis of all possible cases

Natural deduction using language and intuition to figure out truths

Resolution a computational algorithm for deduction

Boundary logic a new form of spatial representation and parallel deduction

Generic Applications of Proof Theory

    1.  Database querying and management  (question answering)

Facts and database entries are expressed as logical assertions.

Abstract relations between facts are expressed as rules with variables.

To answer a query,  derive the answer from the facts and the rules.

    2.  Program analysis and verification  (compiling)

Program execution is expressed as logical formulas.

To verify a program, derive the termination conditions from the execution formula.

    3.  PPlanning  (state transformation and finite state machines)

States and state transformations are expressed as logical formulas.

To transform the start into the goal, derive the final state from the initial state.

    4.  Circuit design  (logic synthesis)

Circuits are expressed as logical formulas.

To execute a circuit, substitute the Boolean input values and evaluate the formula.

To minimize a circuit,  apply transformations to the logical formula.

    5.  DDecision making  (decision analysis)

Decisions are expressed as Boolean choices, which are expressed as logical formulas.

To make a complex network of decisions, evaluate the corresponding logical forms.

Motivation for the Hard Problem

The essential problem is that proof is difficult.  How logic is represented and how it is

transformed determine the ease of (all) computation.

•  Multiplicity ought not be posited without necessity. (Occam)

•  Programming =  data structure  +  algorithm (Wirth)

•  Proof =  definition  +  axiom (Lakatos)

•  A good representation for a problem permits simple transformations to a solution

however

any given representation blinds us to other ways of thinking. (Winograd)
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Truth Table Analysis

Examining all possibilities is exponential in number of cases:  there are 2^n cases to evaluate

for n variables even in the simplest case of propositional logic without functions or relations.

However, lookup tables are a brute force algorithm that is easy to understand and to implement.

The technique is to list all possible combinations of values for each variable, and use simple

definitions of the logical connectives to evaluate compound sub-expressions.

Example: if (P and Q) then (R = (not S))

P  Q  R  S   (not S) (P and Q) (R = (not S)) (if P&Q then R=~S)

T  T  T  T F T F F
T  T  T  F T T T T
T  T  F  T F T T T
T  T  F  F T T F F
T  F  T  T F F F T
T  F  T  F T F T T
T  F  F  T F F T T
T  F  F  F T F F T
F  T  T  T F F F T
F  T  T  F T F T T
F  T  F  T F F T T
F  T  F  F T F F T
F  F  T  T F F F T
F  F  T  F T F T T
F  F  F  T F F T T
F  F  F  F T F F T

The Rules of Natural Deduction

Natural deduction evolved from natural language and from human intuition, so it is relatively easy to

understand.  It is very difficult to find the right rules to apply at the right time (exponential in

difficulty of use).  Recall that humankind has had an extremely difficult time understanding logic,

and logic itself is still undergoing extreme revision.  The name of the primary rule of natural

deduction (modus ponens) is still in Latin.  "||=" means "logically implies" while "-->" is simply a

symbol referring to a specific truth table.  The same subtle difference exists between "aand" and "&&".

Modus Ponens: A and A -> B |= B

Modus Tollens: ~B and A -> B |= ~A

Double negation: A |= ~~A
~~A |= A

Conjunction: A and B |= A & B

S imp l i f i cat ion: A  &  B |= A
A  &  B |= B

Addition: A |= A  v  B
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Natural Deduction Proof Techniques

Modus Ponens: A and A |- B |= B

Modus Tollens: ~B and A |- B |= ~A

Conditional proof: A |- B |= A -> B

Di lemma: (A or B)  and (A |- C)
       and (B |- C) |= C

Contradiction: (A |- B)  and   ~B |= ~A

Cases: (A is True  |- B) and
(A is False |- B) |= B

Note that "||-" is a sequence of formal steps, while "||=" is assurance of logical truth.

Generalization of Deduction

The rules of inference, or natural deduction, apply at three different levels of abstraction:

individual propositions,  individual sentences, and collections of sentences.

Modus Ponens serves as an example.

Atoms: (p  and (p implies q))  implies q

Sentences: (A  and (A implies B))  implies B

Collections of sentences:    ({A,B...} and ({A,B...} implies {C,D...}))  implies {C,D...}

Deductive Steps

There are three separate concepts of proof step (written above as "implies") which have been

shown to be equivalent:  material implication, logical implication, and entailment.

Material impl ication: p -> q

p q  (p -> q)
0 0      1
0 1      1
1 0      0
1 1      1

Material implication is defined by the Truth Table of values.

Notice that the second row, "(if False then True) is True",  does not make sense in

language structures, it is True by definition.
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Logical Implication: p  |=  q

"if (p is logically True) then (q is logically True)"

Logical implication is defined by common sense and by the rules of deduction.

Formal Proof: p  |-  q

"if (p is True) then a sequence of implications shows (q is True)"

Formal proof is defined by taking logical implication steps from p to q

Natural Deduction Example

In English:

Premise 1: If he is lying, then (if we can't find the gun, then he'll get away).

Premise 2: If he gets away, then (if he is drunk or not careful, then we can find the gun).

Premise 3: It is not the case that (if he has a car, then we can find the gun).

Conclusion: It is not the case that he is both lying and drunk.

Encode the propositions as letters:

L = he is lying

G = we can find the gun

A = he will get away

D = he is drunk

C = he is careful

H = he has a car

Premise 1: If L then (if (not G) A)
Premise 2: If A then (if (D or not C) then G)
Premise 3: Not (if H then G)
Conclusion: Not (L and D)

Encode the logical connectives:

P1: L -> (~G -> A)
P2: A -> ((D v ~C) -> G)
P3: ~(H -> G)
C: ~(L & D)

Figure out a good proof strategy.  This step is not algorithmic, and is the source of difficulty in

natural deduction approaches.  Here the Contradiction strategy works:

1. (L & D) assume the negated conclusion, plan to show a contradiction

2. L simplification of 1

3. D simplification of 1

4. ~G -> A modus ponens with 2 and  P1

5. ~(~H v G) rewrite P3 with conditional exchange:  X -> Y = ~X v Y
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6. ~(~H v ~~G) double negation of part of 5

7. H & ~G rewrite 6 with DeMorgan:  ~(~X v ~Y) = X & Y
8. ~G simplification of 8

9. A modus ponens with 8 and 4

10. ((D v ~C) -> G) modus ponens with 9 and P2

11. (D v ~C) addition of ~C to 3

12. G modus ponens with 11 and 10

13. G & ~G conjunction of 8 and 12

14. ~(L & D) contradiction 1-13

Steps from 1 to 13 have created a contradiction:   G & ~G = False, therefore the assumption

on line 1 is false.  But that assumption is the negation of the conclusion.  Therefore the negation

of the negation of the conclusion is True.  That is, the conclusion is True.

Variable Renaming

Variables are used in algorithmic deduction as arguments to functions and relations.  In this

case, it is necessary to assure that each variable name is unique.  This is in contrast with the

standard (pre-computational) conventions of logic and algebra which use the same variable

names in different rules.  The convention existed because quantification "protected" the variable

names by scoping rules, just as local variable declarations protect name clashes in

programming.

Conventional:

R1. if P(x) then Q(x)
R2. if R(x,y) and R(y,z) then R(x,z)
R3. if P(x) and R(x,y) then P(y)

Computational:  assign all variables unique names.

R1. if P(_1_) then Q(_1_)
R2. if R(_2_, _3_) and R(_3_, _4_) then R(_2_, _4_)
R3. if P(_5_) and R(_5_, _6_) then P(_6_)

Un i f i ca t ion

Facts do not contain variables, functions and relations can contain variables since they are

intended to be abstractions.  (The lexicographic arrangement of a form is an arbitrary choice,

but it must be consistent within a database for matching to succeed.)  Facts are combined with

functions and relations through unification, a generalization of pattern-matching.

Pattern-matching comes in three varieties:

1.  The pattern is a specific ground (a fact with no variables).  A match is exact, typographical

character by character.  Note that no conclusions follow if a pattern is not in the database.

(john is-parent-of sue)  =match=  (john is-parent-of sue)
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2.  The pattern contains variables which match grounds in the database.  In this case,

more than one match is possible.  The type of pattern variable can be used to control matching.

Below, the bindings are _1_ = {john, betty}.

(_1_ is-parent-of sue)  =match=  (john is-parent-of sue)
      =match=  (betty is-parent-of sue)

3.  Both the pattern and the data being matched contain variables.  This matching procedure is

called unification.  Below, the bindings are _1_ = {_2_} and _3_ = {sue}.  The result is the

further query:  (_2_ is-ancestor-of sue)

(_1_ is-parent-of sue)  =unify=
 if (_2_ is-parent-of _3_) then (_2_ is-ancestor-of _3_)

In matching, only variables from one side of the equation can be matched.  In unification,

variables on either side can be matched.  Examples:

  (parents-of _1_ are (father-of tom) (mother-of sue) )  =unify=
(parents-of sue are (father-of _2_) _3_)

bindings:  _1_ = { sue },  _2_ = { tom },  _3_ = { Mother(sue) }

  (_1_ likes _2_) and (sue likes tom)  =unify=
(tom likes sue) and (not (_3_ likes _4_))

bindings:  fail.    The word "not" does not match.

  F( G(a, _1_), H(_2_, J(_2_, _1_)) ) =unify= F(_3_, H( K(_3_), J(K(_3_), d)))

bindings:  _1_ = {d},  _2_ = { K( G(a, d) ) },  _3_ = { G(a, d) }

Reso lut ion

In 1965, John Robinson devised a computational approach to proof called resolution.  The

resolution principle uses the two possible cases of one variable.  If the fact that a thing is True

leads to one conclusion, and the fact that it is False leads to another conclusion, then in any case

either the first or the second conclusion is True.

((if P then Q) and (if (not P) then R))  implies (Q or R)

As a deductive rule, resolution can be stated in increasing general forms:

   P  and   ~P or False |=   False

   P  and     ~P or Q |=     Q

P or Q  and     ~P or Q |=     Q

P or Q  and     ~P or R |=   Q or R

   (P and U) or Q  and..(~P and V) or R   |=  (U or Q) or (V or R)
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Resolution proof uses a clausal data structure consisting of sets of literals in disjunction.  A

pair of sets, one with a positive occurrence of a variable and one with a negative occurrence, is

resolved by forming the union of the two sets, and deleting the resolvent variable.

{p, q} union {~p, r}   |=  {q, r}

Facts are expressed as a singular set:

{p}

Rules are converted from implicational form to disjunctive form:

p -> q  ==>  ~p or q   ==>   {~p, q}

When the resolvent atoms have  internal structure (functions and relations), the internal

variables are unified in the course of resolving the atoms.

Resolution Example

Example:  Who are Jon's parents?

F1. (Bob is-father-of Jon) = {bFj}
F2. (Sue is-mother-of Jon) = {sMj}
R1. If (_1_ is-father-of _2_)

then (_1_ is-parent-of _2_) = {~1F2, 1P2}
R2. If (_3_ is-mother-of _4_)

then (_3_ is-parent-of _4_) = {~3M4, 3P4}
Q. If (_5_ is-parent-of Jon)

then (answer-is _5_) = {~5Pj, A5}

Resolve C1. F1 and R1 = {bPj}
C2. F2 and R2 = {sPj}
C3. R1 and Q = {~5Fj, A5}
C4. R2 and Q = {~5Mj, A5} rename  {~6Mj, A6}

C5. Q and C1 = {Ab}
C6. Q and C2 = {As}
C7. F1 and C3 = {Ab}
C8. F2 and C4 = {As}

The algorithm completes all available resolutions, so that complete resolution over a database

usually generates the same answer more than once.   Database queries distinguish whether one

match, or answer, is requested, or whether all matches are requested.
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Quantif icat ion

Quantifiers introduce sets into logic, and serve to define the scope of variables in a logical

expression.

Universal quantification:  All x.  P(x)

The statement  All x. P(x) is True exactly when the predicate P (or the characteristic

function for the set P) is True for all objects in the set U for which x is an arbitrary member.

For finite domains U,  All x. P(x)  iff  (x1 and x2 and ... and xn)

Existential quantification: Exists x. P(x)

The  statement  Exists x. P(x)  is True exactly when the predicate P is True for at least one

object in the set U for which x is an arbitrary member.

For finite domains U,  Exists x. P(x)  iff  (x1 or x2 or ... or xn)

Relationships between Quantifiers

    All true = none false: All x. P(x)  iff  (not (Exists x. (not P(x))))

    All false = none true: All x. (not P(x))  iff  (not (Exists x. P(x)))

    Not all true = at least one false: (not (All x. P(x)))  iff  Exists x. (not P(x))

    Not all false = at least one true: (not (All x. (not P(x))))  iff  Exists x. P(x)

Algebraic Proof Techniques

Standard Form  (Boolean systems only)

A = B iff ((A -> B) & (B -> A))  isTrue

Direct Transformation  

A = B iff  A |- B  or  B |- A

Mutual Transformation

A = B iff  A |- C  and  B |- C

Case Analysis (Z: X => Y means "Y is substituted for X in expression Z")

A = B iff   (A:  E =>  True) = (B: E =>  True)
and   (A:  E => False) = (B: E => False)
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Complexity in Computation

Model Theory

Given an object domain and a collection of functions and relations on objects in that domain,

a model of the domain is defined by its facts:

all atoms (atom-names) in the domain are True

all atoms not in the domain are False

Example:  Object domain = {Mary, Tom, John} Relation: {Likes}

all possible atoms: all possible models:

Likes[Mary, Tom]   1 empty state (no atoms true)

Likes[Mary, John]   6 one Likes atom isTrue

Likes[John, Mary] 15 two Likes atoms  are True

Likes[Tom, Mary] 20 three True

Likes[John, Tom] 15 four True

Likes[Tom, John]   6 five True

  1  six True

64    possible models in total

The set of all possible models is called the Herbrand Universe.  In theories with integers or

theories with functions, this universe is usually infinite.

The Equivalence of Deduction and Computation

From 1920 to 1970, a central issue for theoretical computer science was whether a

computation maintained the meaning of a logical (deductive) process.  Fortunately the answer is

yes, given that the programming language follows the rules of logic.  These are the essential

concepts:

P |- Q Single turnstile:  Q is ccomputed from P

P |= Q Double turnstile:  Q is deducible from P

Soundness: IIf  P |- Q,  then  P |= Q

A sound computation always maintains the deductive model.  The computation

never generates a False model, it never produces an incorrect fact.

Completeness: IIf  P |= Q,  then  P |- Q

A complete computation never varies from the deductive model.  The computation

generates all True models.  If something can be deduced, the computation will be

able to deduce it.
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Sound and Complete: PP |- Q  =  P |= Q

The deductive model and the computation represent the same Universe.  The

computation produces all that can be deduced, and only what can be deduced.

Dec idab i l i t y

Un i ve r sa l :

If it can be computed formally, then it can be computed using First Order Logic

(Turing equivalence).

Decidable:

The computational procedure will terminate with a Yes/No result.

Semi-dec idab le :

The computation might halt, but you don't know when.  It may never halt if you

ask the wrong kind of question.  What we can't do is ask questions which depend on

the ffailure to prove something:

No: "Check to see if nothing is wrong"

No: "Prove that this search will fail to find X"

SAT and TAUT

The most important theoretical question in Computer Science (with the most critical

practical applications)  is

Can we write an algorithm which runs

in polynomial space and time with regard to the number of variables

that shows that an arbitrary expression in Propositional Calculus

has a non-trivial variable in it?

SAT:  Is a Boolean expression SATisfiable?

That is,  is there an assignment of variable values (True or False) which results

in different outcomes for the entire expression (again either True or False)?

TAUT:  Is a Boolean expression a TAUTology

That is, is every variable in the expression irrelevant?  Is the expression

always True regardless of the values assigned to the variables in it?

If TAUT or SAT is solvable within polynomial bounds, then  PP = NP
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P =?= NP

Almost all complex but common computational problems can be mapped onto the SAT problem.  If

you can show propositional satisfiability within polynomial bounds, then most computational

problems have an efficient solution.  In particular, programs and circuits can be verified

efficiently.

Polynomial complexity:  O[n^some-power]

some polynomials:    n^2      (n+1)(n - 1)      14n^6 + 3n^3 + n + 104

Non-deterministic polynomial complexity:  O[2^n] or worse

some non-polynomials:    2^n      7^(n + 3)      n!      2^(2^n)

Polynomial algorithms are called tractable:   they all run in "reasonable" time.  Non-

polynomial algorithms are intractable:  none of them are efficient enough to be useful for

problems of arbitrary size.

Irrelevant Variables

In 1930, Huntington provided the first proof that irrelevant logical structures of arbitrary

complexity can be introduced into a logical form.  Today, we can easily see how variables can

occur in a logical form (or in a computational control structure) without contributing to the

meaning of the form.

(A or True) = True

The logical law of Addition,  A |= (A or B), permits the  inclusion of arbitrary forms through

disjunction.  In a program, the order of execution of two forms joined by OR is important,

because one of the forms may render the computation of the other irrelevant.  However,

compilers can search for the "True" token in linear time, and simplify the code accordingly.  It

is no more difficult when the irrelevant forms are hidden in multiple disjunction:

(A  or (B or (C or True)))  =  True

(A or ~A) = True

The Law of Excluded Middle is more difficult, since it appears that "A" might need to be evaluated

at least once.  However, if the pattern "A" can be located in two different places by pattern-

matching, it can be coalesced into one.  Code compilers do this so that the subroutine "A" is

evaluated only once, and the result, rather than the call, is stored in memory.   If the coalesced

form is in the relation of Excluded Middle, it can be eliminated altogether, without evaluation.

The form of "A", however, may look different in different places, due to other logical invariants.

For example:

A and B  =  B and A

could make Excluded Middle more complex:
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((A and B) or (not (B and A))  =  True

This problem is resolved by sorting the form into a standard, or canonical, ordering.  Since

sorting can be achieved efficiently, this type of logical embedding is not the source of complexity

(although it does require more computation to avoid.

X = Y    iff    (X -> Y) & (Y -> X) = True

In the Boolean domain, an algebraic equivalence can always be converted into a Truth statement

in standard form.  This permits hiding irrelevant variables in yet another way.  Using the

symmetry of AND as an example:

((A and B) -> (B and A)) & ((B and A) -> (A and B))  =  True

This too can be addressed by sorting the form into a canonical ordering.
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Boundary Techniques

Boundary Logic

Boundary logic uses a spatial representation of the logical connectives.  Because boundaries

delineate both objects and processes, boundary forms can be evaluated using either an algebraic

(match and substitute) process or a functional (input converted to output) process.

Representation of logic and proof in spatial boundaries is new, and quite unfamiliar.  Boundary

logic is not based on language or on typographical strings, nor is it based on sequential steps.

Boundary techniques are inherently parallel and positional.  The meaning, or

interpretation,  of a boundary form depends on where the observer is situated.  From the

outside, boundaries are objects.  From the inside, you cross a boundary to get to the outside;

boundaries then are processes.  This dramatically different approach (that is, permitting the

observer to be an operator in the system) does not change the logical consequences or the

deductive validity of a logical process.

Spatial representations have built-in associativity and commutativity.  The base case is no

representation at all, that is, the void has meaning in boundary logic.  Logical expressions

are simplified by  erasure of irrelevancies rather than by accumulation of facts.

Boundary Logic Representation

log i c boundary comments

False <void> no representation.  Note:  (()) = <void>
True (  ) the empty boundary

A   A objects are labeled by names
not A  (A)
A or B   A  B Disjunction is sharing the same space
A and B ((A)(B))
if A then B  (A) B Implication is separating by a boundary
A iff B (A B)((A)(B))

In the above map from conventional logic to boundaries, the many textual forms of logical

connectives condense into one boundary form.  Note that the parens, ( ), is a linear, or one-

dimensional, representation of a boundary.  Circles and spheres are expressions of boundaries

in higher dimensional representations.

Multiple Readings of the Same Form

A simpler notation expresses in one form the many different forms of a more complex notation.

For example:
( (A) (B) ) A and B

(not ((not A) or (not B)))
(not (A implies (not B)))
((not A) or (not B)) implies False
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A proof of DeMorgan’s Law:

(A and B)  iff  (not ((not A) or (not B)))

Transcribe:   ((A)(B)) = ((A)(B)) equal by identity

Boundary Logic Algebraic Process

The transformation axioms of boundary logic:

Dominion  (the halting condition, when to stop)

( ) A  =  ( )

Involution  (double negation, how to remove excess boundaries)

((A))  =  A

Pervasion  (how to remove excess occurrences of variables)

A (A B)  =  A (B)

Each axiom suggests a definite reduction strategy:  eerasing irrelevant structure to convert

the left side of the equation to the right side.

A Boundary Logic Example:  Proving Modus Ponens

Modus Ponens: (A and (A implies B)) implies B

Transcribe: ( ((A) ((A) B)) )  B

Simplify (prove):

(  ( ( A ) ( (A) B ))  )  B

           ( A ) ( (A) B )      B    involution
           ( A ) ( (A)   )      B    pervasion of B
           ( A )    A           B    involution
           (   )    A           B    pervasion of A
           (   )                        dominion

The remaining form is transcribed back into logic as True.
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Truth Table Example in Boundary Logic

Example: if (P and Q) then (R = (not S))

Encode as boundaries:

(P  and  Q) ((P) (Q))
(R = (not S)) (R (S)) ((R)((S)))  =  (R (S)) ((R) S)

if...then... (((P) (Q))) (R (S)) ((R) S) = (P) (Q) (R (S)) ((R) S)

The expression is True whenever Dominion applies

When P is False, it is erased:    ( ) (Q) (R (S)) ((R) S)  =  ( ) dominion
When Q is False:    (P) ( ) (R (S)) ((R) S)  =  ( ) dominion

Note that the form (X (Y)) (Y (X)) is True when  X is not the same as Y,  so the expression is

True when R is False and S is True.  Substituting:

(P) (Q) ( (( ))) (( ) ( ))  =  (P) (Q)  ( )        =  ( )

and when R is True and S is False

(P) (Q) (( ) ( )) ( (( )))  =  (P) (Q)        ( )  =  ( )

These four cases identify all the True forms of the expression.

Conversely, the expression is False only when everything vanishes, that is, when

(P is True)  and  (Q is True)  and ((R and S are both True) or (R and S are both False))

  (( ))          (( ))    ( ( ) (( ))) ((( )) ( ))      (( )) (( ))

Natural Deduction Example in Boundary Logic

Premise 1: If  L  then  (if  (not  G)  A)
Premise 2: If  A  then  (if  (D  or  not  C) then G)
Premise 3: Not (if  H  then  G)
Conclusion: Not (L and D)

Encode the logical connectives as boundaries, and simplify:

P1: (L) ((G)) A    =  (L) G A involution
P2: (A) (D (C)) G
P3: ((H) G)
C: (((L)(D)))     =  (L)(D) involution
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Join all premises and conclusions into one form, using the logical structure:

(P1 and P2 and P3) -> C

The proof structure of "conjunction of premises imply the conclusion" as boundaries:

( ((P1) (P2) (P3)) ) C  =  (P1) (P2) (P3) C       involution

Substituting the forms of the premises and conclusion, and reducing:

    ( (L) G A )  ( (A) (D (C)) G )  ( ((H) G) )  (L) (D)
    ( (L) G A )  ( (A) (D (C)) G )     (H) G     (L) (D)      involution
    ( (L)   A )  ( (A) (D (C))   )     (H) G     (L) (D)      pervasion of G
    (       A )  ( (A) (D (C))   )     (H) G     (L) (D)      pervasion of (L)
    (       A )  (     (D (C))   )     (H) G     (L) (D)      pervasion of (A)
    (       A )         D (C)          (H) G     (L) (D)      involution
    (       A )         D (C)          (H) G     (L) ( )      pervasion of D
                                                     ( )      dominion

Interpret the final form: ( ) = True

Boundary Quantification

All x. P(x) (x) Px x implies Px  isTrue

Exists x. P(x) ((x)(Px)) x and Px  isTrue

Quantifier relations: Standard form Boundary form

  All x. P(x)  iff  (not (Exists x. (not P(x))))   (x) Px = (((x)((Px))))

  All x. (not P(x))  iff  (not (Exists x. P(x)))   (x)(Px) = (((x)(Px)))

  (not (All x. P(x)))  iff  Exists x. (not P(x))   ((x) Px) = ((x)((Px)))

  (not (All x. (not P(x))))  iff  Exists x. P(x)   ((x)(Px)) = ((x)(Px))
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Proof Techniques, an Extended Example

Here is an example from relational calculus to illustrate each of the four methods of proof

(case-analysis or truth tables, natural deduction, resolution, and boundary logic)  The example

can be viewed as a knowledge-base query.  A knowledge-base (KB) is a collection of facts
(which contain no variables) and rules (which contain variables, and are usually stated in an

if...then... format).  Both the fact-base and the rule-base have been greatly simplified for this

example.  The deductive processes are essentially the same, regardless of the complexity of the

knowledge-base.

A Relational Calculus (Database Query) Example

Facts:
F1. (George  is-the-father-of  Harry)
F2. (Rita    is-the-sister-of  Harry)
F3. (Rita    is-never-married)
F4. (Harry   is-a-male)

Rules:
R1. If  (_1_  is-the-father-of  _3_)

                and (_2_  is-the-sister-of  _3_)
  then (_1_  is-the-father-of  _2_)

R2. If  (_4_  is-the-father-of  _5_)
                and (_5_  is-a-male)

  then (_5_  is-the-son-of  _4_)

R3. If  (_6_  is-the-son-of  _7_)
then (_6_  has-same-last-name-as  _7_)

R4. If  (_8_  is-the-father-of  _9_)
                and (_9_  is-never-married)

  then (_9_  has-same-last-name-as  _8_)

R5. If  (_10_  has-same-last-name-as  _11_)
    and (_10_  has-same-last-name-as  _12_)

  then (_11_  has-same-last-name-as  _12_)

R6. If  (_13_ has-same-last-name _14_)
then  (_14_ has-same-last-name _13_)

Query:
Q.      (Harry has-same-last-name-as  Rita)

Abbreviations:
George   = g
Rita   = r
Harry   = h
(_1_  is-the-father-of  _2_)   = 1F2
(_1_  is-the-sister-of  _2_)   = 1T2

      (_1_  is-the-son-of  _2_) = 1S2
(_1_  has-same-last-name-as  _2_) = 1L2
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(_1_  is-a-male)   = 1M
(_1_ is-never-married)   = 1N

Variables will be integers   = {1, 2, 3, ...}

Abbreviated knowledge-base:

F1. gFh
F2. rTh
F3. rN
F4. hM

R1. if   1F3   and    2T3   then   1F2
R2. if   4F5   and    5M    then   5S4
R3. if   6S7   then   6L7
R4. if   8F9   and    9N    then   9L8
R5. if  10L11  and   10L12  then  11L12       transitivity
R6. if  13L14  then  14L13       commutativity

Q0. hLr

This particular example was designed with these objectives in mind:

1.  Intuitive semantics, easy for a human to understand

2.  Tractable size but enough to illustrate both natural and algorithmic processes

3.  Simple but non-trivial proof in natural deduction

4.  Easy forward-chaining proof in case-analysis  (as a consequence of this, a complex

 backward chaining proof)

5.  Surprising proof in algorithmic resolution

6.  Illustrative proof of minimal boundary techniques, including more complex set

techniques.

7.  Difficulty general transitivity and commutativity rules

8.  Tricky and subtle knowledge engineering issues.

Note:  in pattern-matching systems, there is no substantive difference between algebraic

functions (ie. functions which are not evaluated) and relations.

Natural Deduction

The natural deduction approach is to use reason to show that Harry and Rita have the same last

name because George is their common father and Rita has never married.  We show that George

is the father of both Harry and Rita, then we show that George has the same last name as both

Harry and Rita, then we conclude that Harry and Rita have the same last name.  Although the

logic is clear, the syntactic transformations to get the rules to confirm the logic require the

additional skill of pattern-matching through unification.

Show  gFh F1. gFh          given
Show  gFr F2. rTh

R1. gFh and rTh  therefore  gFr
Show  gLh R3. gFh and hM   therefore  hSg
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R3. hSg          therefore  hLg
R6. hLg          therefore  gLh

Show  gLr R4. gFr and rN   therefore  rLg
R6. rLg          therefore  gLr

Show  hLr R5. gLh and gLr  therefore  hLr

Case-analysis and Chaining

Truth tables list all possible facts.  In a KB, rules can be seen as sets of facts that have yet to be

enumerated.   The identifying characteristic of case-analysis is that no variables are included in

the final form of rules or queries.  One approach is to substitute all possible variable bindings

into the rules in all possible combinations.  Since we have three people {George, Rita, Harry} in

the KB,  and all variables refer to these three people, each variable has 3 cases, and each rule

would have 3^n cases, where n is the number of different variables in the rule.  In the example,

this would generate (3^3 + 3^2 + 3^2 + 3^2 + 3^3 + 3^2) = 90 rule cases for the six rules.

A more efficient procedure would be to use the known facts to constrain the generation of cases.

We begin with the known facts and then use the rules to (indiscriminately) generate all the

other possible facts that are consistent with both the initial facts and the rules.   The forward

generation of facts from initial conditions and rules is called forward-chaining.  We attempt

to unify each fact with the premise of each rule;  when unification is successful, the conclusion

of the rule is asserted as a new fact.

The order of enumeration of facts (the enumeration strategy) is a significant issue.  The

order in which facts are applied to rules determines which new facts get enumerated first.

Since new facts themselves may trigger applications of rules, a choice can be made between

depth-first enumeration (following new facts first) or breadth-first enumeration

(following old facts first).   Often a single fact may unify with one premise of a rule which

requires two or more facts to fulfill its premise.  In this case, a new, shorter rule is asserted.

Below we use the following strategy:  first all new facts are generated, then they are in turn

used to generate more facts.  Duplications has been suppressed (this is called an occurs-
check).  Using the current facts to generate more facts is called a sset-of-support strategy,

since the set of known facts support the conclusions.

F5. F1+F2, R1: gFr
F6. F1+F4, R2: hSg    no other rules unify, use new facts
F7.   F5+F3, R4: rLh
F8. F6,    R3: hLg
F9. F7,    R6: hLr    QED

Note that this algorithmic proof is shorter than the natural deduction proof.  It is still not

optimal, since step F8 was unnecessary.  Algorithmic proof is always committed to following a

blind strategy, trading thought and efficiency for ease of implementation.  There is a general

computational heuristic here:  almost always it is better to implement blind brute force rather

than subtle computational intelligence.   The corollary to this heuristic is that brute force only

works with the appropriate data structure.  It is almost always better to apply design

intelligence to the representation of a problem than to the algorithm.
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Another strategy is to use the query to generate all possible queries stemming backwards from

the target query, until the existing facts terminate the search.  Queries are matched with the

conclusions of rules;  the premises of these rules are then the new queries.  This technique is

called backward-chaining.  We first generate queries which can be answered by single facts,

then queries which require more than one fact, finally trying to bind queries which contain

variables to the initial fact base.  The example follows:

Q0.      hLr ?
Q1.   Q0,  R3:            hSr    ?
Q2.   Q0,  R6:               rLh ?
Q3. Q2,  R3:      rSh ?     No other simple queries
Q4. Q0,  R4:  rFh  and  hN ?
Q5.   Q0,  R5: 20Lh  and 20Lr ?     Introduce new variable numbers
Q6.   Q1,  R2:     rFh  and  hM ? =>  rFh    using F4
Q7. Q2,  R5: 21Lr  and 21Lh ? duplicate of Q5
Q8. Q3,  R2:  hFr  and  rM ?
Q9.   Q6,  R1:  rF22 and  hT22 ? No more bindings or ground Qs
Q10. Q5a, R3:           23Sh ? Begin using variable Qs
Q11. Q5b, R3:           24Sr ?
Q12. Q10, R2:  hF25 and 25M ?
Q13. Q11, R2:  rF26 and 26M ?
Q14. Q5a, R6:            hL27 ?
Q15.  Q5b, R6:            rL28 ?
Q16. Q14, R3:            hS29 ?
Q17. Q15, R3:            rS30 ?
Q18. Q16, R2: 31Fh  and  hM ? => 31Fh    using F4
Q19. Q17, R2: 32Fr  and  rM ?
Q20. Q18, F1:      gFh ? bind 31 to g using fact F1

At this point we have back-chained to an initial fact, gFh.  Reversing the logic, this fact

combined with F4 and R2 (see line Q18) answer line Q16, binding variable 29 to g.  This

answers Q14, binding 27 to g.  Q14 answers the first part of Q5 (that is Q5a), binding 20 to g,

and leaving the query sequence below as Q5b.  (While we are at an interrupt, note that if the

below sequence fails, the queries would pick up where they left off, at Q12 where 25 would bind

to h using F4.  This would create the query hFh ? and so on)

Q21. Q5b:            gLr ?
Q22. Q21, R3:            gSr ?
Q23. Q21, R6:            rLg ?
Q24.  Q23, R3:            rSg ? No other simple queries
Q25.  Q21, R4:  rLg  and  gN ?
Q26. Q21, R5: 33Lg  and 33Lr ?
Q27. Q22, R2:  rFg  and  gM ?
Q28. Q23, R4:  gFr  and  rN ? =>  gFr    using F3
Q29.  Q23, R5: 34Lr  and 34Lg ?
Q30.  Q28, R1:  gF35 and  rT35 ? No other grounded queries
Q31. Q30, F1:  gFh  and  rTh ? Bind 35 to h using F1
Q32. Q31, F2:            rTh ? =>  True   using F2

We have now reached a final conclusion, since all queries have been answered.  Reconstructing

the path in reverse order:
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Q32: rTh
Q31: Q32 and gFh
Q30: Q31

R1               thus gFr
Q28: Q30 and rN

R4               thus rLg
Q23: Q28

R6               thus gLr
Q21: Q23

Q20: gFh
Q18: Q20 and hM

R2               thus hSg
Q16:        Q18

R3               thus hLg
Q14: Q16

R6               thus gLh

Q5: Q14 and Q21
R5               thus hLr

Q0: Q5               QED

Note that this proof is similar to the natural deduction, and not as direct as the forward-

chaining proof.  These differences are an artifact of the particular KB, and are not general.

Some KBs are particularly efficient for forward-chaining and some are particularly efficient

for backward-chaining.  In general, which method is best depends on the specific query, on the

particular KB, and on the way in which each rule is formulated (see the  Addendum).  Usually

the methods need to be mixed.  The resolution technique accomplishes this mixing.

Resolut ion

In resolution, the KB is converted into sets of clauses.  A clause is a set of both positive or

negative atoms joined by disjunction.  A KB is a set of clauses.  New clauses are added by

matching and deleting positive and negative atoms which unify across two clauses.  For instance,

the logical form (if A then B) is converted into the equivalent form ((not A) or B), which

then is turned into a set of atoms {~A, B}.  Resolution looks like this:

{~C, A}   resolve-with  {~A, B}  ==>  add {~C, B}

This can be read for logic as ((C implies A) and (A implies B) therefore (C implies B)).

Since resolution is an algorithm, we proceed down the list of clauses in a linear fashion.  The query

is negated, and we hope to resolve it with an assertion of the positive fact to end the resolution with

an empty clause.  This looks like:

{A}  resolve-with  {~A}  ==>  {  }

Several resolution strategies are possible, based on the structure of each clause.  For instance

facts (clauses with single positive atoms) could be resolved first.  Or clauses with single atoms

regardless of polarity could be resolved first.  Another strategy might be to resolve all instance

of a particular relation first.  The strategy used below is to resolve all singular clauses first.
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F1. {gFh}
F2. {rTh}
F3. {rN}
F4. {hM}
Q. {~hLr}

R1. {~1F3, ~2T3, 1F2} if  1F3  and   2T3  then  1F2
R2. {~4F5, ~5M, 5S4} if  4F5  and   5M   then  5S4
R3. {~6S7, 6L7} if  6S7             then  6L7
R4. {~8F9,  ~9N, 9L8} if  8F9  and   9N   then  9L8
R5. {~10L11, ~10L12, 11L12} if 10L11 and  10L12 then 11L12
R6. {~13L14, 14L13} if 13L14            then 14L13

C1. {~20Th, gF20} F1,  R1 rename varaibles
C2. {~hM, hSg} F1,  R2
C3. {~hN, hLg} F1,  R4
C4. {~21Fh, 21Fr} F2,  R1
C5. {~22Fr, rL22} F3,  R4
C6. {~23Fh, hS23} F4,  R2
C7. {~hSr} Q,   R3
C8. {~rFh, ~hN} Q,   R4
C9. {~24Lh, ~24Lr} Q,   R5
C10. {~rLh} Q,   R6
C11. {gFr} F1,  C4
C12. {hSg} F1,  C6
C13X {gFr} F2,  C1 duplicate of C11
C14X {hSg} F4,  C2 duplicate of C12

C15. {~rFh, ~hM} C7,  R2 begin using new facts
C16. {~rFh} C7,  C6
C17. {~rSh} C10, R3
C18. {~hFr, ~rN} C10, R4
C19X {~25Lr, ~25Lh} C10, R5 duplicate of C9
C20X {~hLr} C10, R6 duplicate of query
C21. {~hFr} C10, C5
C22. {~26Tr, gF26} C11, R1
C23. {~rM, rSg} C11, R2
C24. {~rN, rLg} C11, R4
C25. {rLg} C11, C5
C26. {hLg} C12, R3
C27X {~hFr} F3,  C18 duplicate of C21
C28X {rLg} F3,  C24 duplicate of C27
C29X {~rFh} F4,  C15 duplicate of C16

C30. {~rF27, ~hT27} C16, R1 begin with new facts again
C31. {~hFr, ~rM} C17, R2
C32. {~hF28, ~rT28} C21, R1
C33. {~hFh} C21, C4
C34. {~rL29, gL29} C25, R5
C35. {~rL30, 30Lg} C25, R5
C36. {gLr} C25, R6
C37. {~hL31, gL31} C26, R5
C38. {~hL32, 32Lg} C26, R5
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C39. {gLh} C26, R6
C40X {~hFh} F2,  C32 duplicate of C33
C41. {gLg} C25, C34
C42X {gLg} C25, C35 duplicate of C41
C43X {gLg} C26, C37 duplicate of C41
C44X {gLg} C26, C38 duplicate of C41
C45. {~hFh, ~hTh} C33, R1 begin with new facts again
C46. {~gL33, rL33} C36, R5
C47. {~gL34, 34Lr} C36, R5
C48X {rLg} C36, R6 duplicate of C27
C49. {~gLh} C36, C9 resolves with C39 to {}
C50. {~gL35, hL35} C39, R5
C51. {~gL36, 36Lh} C39, R5
C52X {hLg} C39, R6 duplicate of C25
C53. {~gLr} C39, C9 resolves with C36 to {}
C54. {~gL37, gL37} C41, R5
C55. {} C54 QED.

The proof terminated with a clause which has a negative and a positive instance of the same atom.

There are many observations to be made in this example.  Let's begin by unwinding the logic of

the proof.  When the non-productive resolutions are pruned, the proof is quite straight forward

and short.

C54: {~gL37, gL37}
  R5: {~10L11, ~10L12, 11L12}
  C41: {gLg}
    C34: {~rL29, gL29}
      C25: {rLg}

  proof below
      R5: {~10L11, ~10L12, 11L12}
    C25: {rLg}
      C5: {~22Fr, rL22}
        F3: {rN}

  R4: {~8F9,  ~9N, 9L8}
      C11: {gFr}
        F1: {gFh}
        C4: {~21Fh, 21Fr}
          F2: {rTh}
          R1: {~1F3, ~2T3, 1F2}

First, the resolution proof adopted a non-intuitive strategy, arguing from absurdity that a

person cannot both have the same last name as someone (variable 37 in C54) and not have the

same last name as that someone.  This approach does not rely on any semantic knowledge about

last names, obviously the computation does not understand naming conventions.  The consequence

is built into the transitivity rule (R5) itself.

Note the recursive use of C25.  The established fact rLg (from C25) is used with R5 to

construct the smaller rule (if rL29 then gL29), if Rita has the same last name as someone,

then so does George.  It is then used again with that rule (C25 + C34) to show that the unknown

person is George himself!  Finally R5 is used again with the fact that George has his own last

name to terminate the proof.  Non-intuitive proofs and proof strategies are characteristic of

algorithmic proof systems.
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The proof would have been substantively different if R6, the commutative rule for last-names

had not been included.  In fact, it is not necessary for a proof.  In this resolution proof, it is

surprising that R2, R3, R6, and F4 were not used at all, even though from a natural deduction

perspective they appear mandatory.

Note also the many convergent proofs toward the end.  Had C54 not occurred, both C49 and C53

would have terminated the proof during the next cycle.   Again, multiple paths with high

redundancy are characteristic of algorithmic techniques.

Note also that the distinction between forward and backward chaining is largely lost, since

matching positive facts and negative facts uses the same algorithm without distinction.  The

algorithmic proof followed all paths at the same time, taking small steps along each possible

path without regard to conclusions or duplications.

Other control strategies for the resolution would have resulted in different proofs and even

different proof strategies.  It may have been more efficient, for example, to resolve the new

facts with the shorter new rules first, before using the original rules, since the original rules

R1 and R5 introduced excess variables.

In resolution, it is possible to resolve rules together, as well as just to follow facts.  For

example:

R2. {~4F5, ~5M, 5S4}
R3. {~6S7, 6L7} ==>    {~20F21, ~21M, 21L20}

This generates a new rule, which is more direct for the purposes of the question that has been

asked.  When to do this becomes clear in the following boundary logic approach.

Boundary Logic

Again we transcribe the rules into a new, boundary, notation:

R1: ( ((1F3) (2T3)) ) 1F2 if  1F3  and  2T3  then  1F2
R2: ( ((4F5) (5M)) ) 5S4 if  4F5  and  5M   then  5S4
R3: (6S7) 6L7 if  6S7            then  6L7
R4: ( ((8F9) (9N)) ) 9L8 if  8F9  and  9N   then  9L8
R5: ( ((10L11) (10L12)) ) 11L12 if 10L11 and 10L12 then 11L12
R6: (13L14)  14L13 if 13L14           then 14L13

In this notation, some redundant logical structure can be seen at the level of individual rules.

We simplify the rules individually using Involution:

R1: (1F3) (2T3) 1F2
R2: (4F5) (5M) 5S4
R3: (6S7) 6L7
R4: (8F9) (9N) 9L8
R5: (10L11) (10L12) 11L12
R6: (13L14)  14L13
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The boundary approach is based on reducing the entire collection of rules and facts as a whole.

Rather than accumulate new facts, all the facts are combined into a single "conjunction of facts

and rules implies conclusion" form.  The general template is:

( ((fact1) ... (factn) (rule1)... (rulen)) ) query

which simplifies to

   (fact1) ... (factn) (rule1)... (rulen)    query

For the example, the template is

(F1) (F2) (F3) (F4) (R1) (R2) (R3) (R4) (R5) (R6) Q

and the specific structure is

(gFh) (rTh) (rN) (hM) facts
((1F3)(2T3) 1F2) R1
((4F5)(5M) 5S4) R2
((6S7) 6L7) R3
((8F9)(9N) 9L8) R4
((10L11)(10L12) 11L12) R5
((13L14)  14L13) R6
hLr query

The boundary approach has taken yet another step away from intuition, now rules and facts are

no longer distinguished.   Like resolution, there is only one primary transformation, Pervasion.

The idea is use the forms on the outside to extract their matching forms from the inside.  Again,

the matching technique is unification.  Unlike resolution, the primary boundary transformation

of Pervasion is augmented with two other transformations.  Involution cleans up irrelevant

logical distinctions, and Dominion tells the process when to stop.

Rule simplification and compilation

It is a good idea to simplify rules first, since they are abstractions applying to all facts, and are

the source of complexity.

The first observation is that transitivity (R5) and commutativity (R6) apply all the time.

They are not specific enough to help with deductions, but they do help to broaden the generality

of facts.   Use these rules only to generate new facts, not as part of a deduction.

Since the S relation shows up only once as a premise (in R3) and once as a conclusion (in R2),

it can be compiled away.  There is only one way to use (that is, to instantiate) the S relation,

going from the premises of R2 to the conclusion of R3.  In general we do not want to lose the

ability to use either R2 or R3 by themselves (for instance in the case that the query is about an

S relation), so we compile the S relation dynamically, in the presence of a known query.

Compile rules R2 and R3 into R23, using resolution  (A B) ((B) C) ==> (A C)

S:  6 => 5,  7 => 4
((4F5)(5M) 5S4)  ((6S7) 6L7) ==> ((4F5)(5M) 5L4)
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The new knowledge base:

(gFh) (rTh) (rN) (hM) hLr
((1F3)(2T3) 1F2) ((4F5)(5M) 5L4) ((8F9)(9N) 9L8)
((10L11)(10L12) 11L12) ((13L14) 14L13)

Should a rule have more than one premise, the ability to branch using the simple rule is lost in

compiling.  So, for instance, it is not possible to compile the F relation, even though it shows up

only once as a conclusion (in R1).

Forced bindings

Now we make all forced bindings between the facts and the remaining rules.  The Pervasion

transformation says that a form on the outside of a boundary must match a form on the inside of

a boundary, using unification as the matching technique.  When a match is found, bind the

variables and extract the inner form:

xAy  (1A2  1B3)  ==>  xAy  (xB3)

In the example KB, we have the fact (rN) on the outside which matches the inner form of R4

((6F8) (9N) 9L8), binding the variable 9 to the atom r and erasing the (9N):

(rN) ((8F9)(9N) 9L8)  =>  (rN) ((8Fr) rL8)

There is only one (rN) form on the outside and only one in all the insides, so there is only one

possible extraction of an N relation.    In this example, extracting (rN) leaves the knowledge

base looking like:

N:  9 => r (rN) ((8F9)(9N) 9L8)  =>  (rN) ((8Fr) rL8)

New KB:
(gFh) (rTh) (rN) (hM) hLr
((1F3)(2T3) 1F2) ((4F5)(5M) 5L4) ((8Fr) rL8)
((10L11)(10L12) 11L12) ((13L14) 14L13)

In general, there will be more than one fact matching each inner form, and more than one

binding for each variable.  This is what makes query management hard.  The boundary approach

lets us bind all possible variables, using sets of facts rather than individual facts.  The set-

based boundary approach would extract all matches, binding the variable to a *set* of matches.

We continue the forced (only one choice) bindings, using the strategy of binding the least

number of variables first (ie using facts to their full extent).  Portions of rules can be deleted

when there is no possible way of using them again.

M:  5 => h (hM) ((4F5)(5M) 5L4)  =>  (hM) ((4Fh) hL4)

New KB:
(gFh) (rTh) (rN) (hM) hLr
((1F3)(2T3) 1F2) ((4Fh) hL4) ((8Fr) rL8)
((10L11)(10L12) 11L12) ((13L14) 14L13)
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There are several different strategies now available, the worst of which is to use either of the

general transitivity or commutativity rules.  (gFh) could extract (4Fh), but this is premature

since the rule portion could not be deleted in the presence of other F relations in the KB (in

particular R1 may generate a need for the remaining portion of R23).  Again seeking uniqueness

and specificity, the best approach is to select the T relation which has only single occurrences

on the outside and the inside of the KB.

T:  2 => r,  3 => h (rTh) ((1F3)(2T3) 1F2)  =>  (rTh) ((1Fh) 1Fr)

New KB:
(gFh) (rTh) (rN) (hM) hLr
((1Fh) 1Fr) ((4Fh) hL4) ((8Fr) rL8)
((10L11)(10L12) 11L12) ((13L14) 14L13)

Now the F relation in both R1 and R23 should be extracted.  Neither R1 nor R23 can be deleted.

Along the way, a third possible F extract is generated and taken.

F:  1 => g (gFh) ((1Fh) 1Fr)  =>  (gFh) (gFr)

New KB:
(gFh) (rTh) (rN) (hM) hLr
(gFr) ((4Fh) hL4) ((8Fr) rL8) ((1Fh) 1Fr)
((10L11)(10L12) 11L12) ((13L14) 14L13)

F:  4 => g (gFh) ((4Fh) hL4)  =>  (gFh) (hLg)

New KB:
(gFh) (rTh) (rN) (hM) hLr
(gFr) (hLg) ((8Fr) rL8) ((4Fh) hL4) ((1Fh) 1Fr)
((10L11)(10L12) 11L12) ((13L14) 14L13)

F:  8 => g (gFr) ((8Fr) rL8)  =>  (gFr) (rLg)

New KB:
(gFh) (rTh) (rN) (hM) hLr
(gFr) (hLg) (rLg) ((8Fr) rL8) ((4Fh) hL4) ((1Fh) 1Fr)
((10L11)(10L12) 11L12) ((13L14) 14L13)

There remains only one path for implication of F relations, that is the backward binding of hLr
to the remains of R23.  By taking this step, we are then free to erase all F rules.

F:  4 => r hLr ((4Fh) hL4)  =>  hLr ((rFh))  =>  rFh

New KB:
(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
((10L11)(10L12) 11L12) ((13L14) 14L13)

We have used the "query" hLr to generate another query rFh.  There are now no more forced

bindings, so we must use transitivity or commutativity of L to generate new facts.  Finally we

must use the branching rules, but with the comfort that every step thus far was without choice.

Note that we can now focus on generating only new L facts.
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The pair of facts (hLg)(rLg) provide a set match for either of the transitivity premises, but

there is still a minimal approach to be taken.   The commutativity rule has only one match, and

further the hLr form only matches one form within the commutativity rule.  We make that

binding:

L:  14 => h, 13 => r hLr ((13L14) 14L13)  =>  hLr ((rLh))  =>  rLh

New KB:
(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
((10L11)(10L12) 11L12) ((13L14) 14L13) rLh

Above, we used the query hLr to extract a conclusion from R6.  The resulting form which is not

inside a boundary is also a query; that is, we would know hLr if we could show rLh.  The critical

point here is that we cannot collapse the commutativity rule out of the KB because there are

facts present which could use it again.  R6 can be used in either direction, forward or backward.

The appropriate strategy now is to go ahead and make full use of R6 in the forward direction,

with the set of bindings from (hLg) and (rLg):

L:  13 => h, 14 => g (hLg) ((13L14) 14L13)  => (hLg) (gLh)
L:  13 => r, 14 => g (rLg) ((13L14) 14L13)  => (rLg) (gLr)

New KB:
(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
((10L11)(10L12) 11L12) (gLh) (gLr) rLh  ((13L14) 14L13)

We now face many branches, but we have constrained them to only one rule, R5.  There are two

uses of transitivity in the backward direction, reasoning from queries, so we bind them both,

without eliminating the rule.

L:  11 => h, 12 => r hLr ((10L11)(10L12) 11L12) => hLr ((10Lh)(10Lr))
L:  11 => r, 12 => h rLh ((10L11)(10L12) 11L12) => rLh ((10Lr)(10Lh))

New KB:
(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
((10L11)(10L12) 11L12) (gLh) (gLr) rLh
((13L14) 14L13) ((10Lh)(10Lr)) ((10Lr)(10Lh))

L:  10 => g (gLh) ((10Lh)(10Lr))  =>  (gLh) ((gLr))  =>  gLr

New KB:
(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh  
((10L11)(10L12) 11L12) (gLh) (gLr) rLh
((13L14) 14L13) gLr ((10Lr)(10Lh))

L: gLr  (gLr)  =>  gLr  (   )  =>  (   )

New KB:

(gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
((10L11)(10L12) 11L12) (gLh) (   ) rLh
((13L14) 14L13) gLr ((10Lr)(10Lh))
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The boundary deduction has concluded in its characteristic manner by asserting a ( ) into the

KB.  By the Dominion rule, this truth symbol erases all other forms in the problem space,

leaving a mark of proof.  Notice in the second to last step, the selection (gLr) was also available

for binding.  It would have been chosen next, should the current choice have failed.  And it too

would have terminated the proof process.

The signature characteristic of this boundary proof is its minimality.  In contrast to resolution,

very little search was conducted because the problem was structured as a global statement

rather than as a collection of fragments.  Thus the available strategies addressed the entire

problem at all times.  To reconstruct the logic of the boundary proof, we trace the binding

processes of steps which are used to reach the conclusion (only the step which generated rFh
was unnecessary):

((4F5)(5M) 5S4)  ((6S7) 6L7) ==> ((4F5)(5M) 5L4) R2+R3     = R23

(rN) ((8F9)(9N) 9L8)    =>  ((8Fr) rL8) F3+R4     = R4a

(hM) ((4F5)(5M) 5L4)  =>  ((4Fh) hL4) F4+R23    = R23a

(rTh) ((1F3)(2T3) 1F2)  =>  ((1Fh) 1Fr) F2+R1     = R1a

(gFh) ((1Fh) 1Fr) =>  (gFr) F1+R1a    = (gFr)

(gFh) ((4Fh) hL4) =>  (hLg) F1+R23a   = (hLg)

(gFr) ((8Fr) rL8)  =>  (rLg) (gFr)+R4a = (rLg)

hLr ((13L14) 14L13)  =>  ((rLh)) => rLh Q+R6      = rLh

(hLg) ((13L14) 14L13)  =>  (gLh) (hLg)+R5  = (gLh)
(rLg) ((13L14) 14L13)  =>  (gLr) (rLg)+R5  = (gLr)

hLr ((10L11)(10L12) 11L12)  =>  ((10Lh)(10Lr)) Q+R5      = R5a
rLh ((10L11)(10L12) 11L12)  =>  ((10Lr)(10Lh)) rLh+R5    = R5b

(gLh) ((10Lh)(10Lr))  =>  ((gLr)) => gLr (gLh)+R5a = gLr

gLr  (gLr) gLr+(gLr) = QED
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Addendum

The phraseology and structure of rules in a knowledge-base is extremely critical to the success

of an inference engine.  Examples:

1.  To generate a sequence of numbers, it may be tempting to put in a integer generation rule

such as

if (_1_ is-an-integer) then  ( (_1_ + 1) is-an-integer)

This rule could immediately generate an infinite string of integers, which would, of course, be

expressed computationally as an over-flow crash.

2.  Similar recursive overflows can occur with quite common rules such as transitivity and

commutativity.  Both of these rules occur in the example KB above (R5 and R6 for the has-

same-last-name relation).  Implicit in the actual transforms is an "occurs-check"  which stops

rules from being called when they generate items which duplicate already existing items.

3.  Some rules can be expressed in different ways.  The forms of these rules strongly effect both

the sequence of fact generation, and the efficiency of the deductive process.  For instance,

transitivity is commonly expressed as

if (1R2 and 2R3) then 1R3

In the example KB, R5 expresses transitivity as

if (1R2 and 1R3) then 2R3

This design choice was made because of the natural semantics of the has-same-last-name

relation.  The design choice has a strong effect on the sequence of generated facts in each

example.

4.  Some rules implicitly incorporate other rules, in that the other rules are strictly

redundant.  If we let the variable 3 be equal to "1" in the above transitivity rule, (and we omit

the trivial fact that a person has their own last name), we get the commutative R6.

if (1R2 and 1R1) then 2R1    ==>    if 1R2 then 2R1

Again, the choice of whether to include rules specifically, or let them be implicit in other rules

has a strong and unpredictable effect on the performance of the engine.

5.  Rules should take care to exclude unwanted cases, although it is often a difficult choice

between simple rules with fast cycling time, or larger rules which take effort to compute.  This

issue also shows up in programming as choices about function decomposition, and in CPU design

as RISC vs CISC architectures.  In the example, we elected not to exclude the fact that a person

has their own last name, but we could have expressed R1 as:

if (1F2 and 1 2 and 2T3 and 2 3) then 1F3
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Alternatively, the deduction might have been able to make use of the same-last-name-as-

yourself rule, and we may have wanted to include it as

if ( 1 = 2 ) then 1L2
or as

if  1L2  then 1L1
if  1L2  then 2L2

These decisions are quite difficult to make, and depend on the expected types of queries, the

structure and frequency of facts in the KB, and the other rules in the KB.

6.  Rule ordering plays a critical role in algorithmic transformations.  When a decision has to

be made about what rule to bind next, it is often the case that a general strategy like set-of-

support or simplest-first still results in several equally likely choices.  Algorithms tend to

take the next rule in sequence, but this may not be best or be most efficient.  When having to

answer a query like "Which people are a child of a President?" it is imperative that the search

engine know something about the size of the domains.  It is far better to approach this by looking

for Presidents first, then looking for their children, than it is to look at all the children in the

country and ask each if their parent is a President.  You can play with this issue yourself by

querying a web search engine for pages which have some common word, such as "set", and some

rarer word such as "recursion".  Do your results depend on the order of the query words?

7.  Finally, the reason for this addendum is that I wasted many hours (and distributed faulty

code to the class) with a poorly designed R1.  This design flaw was subtle, since both the original

and the final form of the rule were valid.   R1 originally said "if person A is your father and you

are the sister of person B, then person A is the father of person B".  This makes sense, but

logically it needs the support of another rule, "if you are the sister of person C, then person C is

the brother-or-sister of you" in order to converge with the other rules.  That is, there was no

way for the inference engine to turn around the idea that you are a sister, making it a sibling

relation.  This inversion was necessary basically due to the structure of the fact-base, in that

the constant "Harry" never found its way to a position where it could be matched.  The solution

in this case was to change the form of R1:

if (1F2 and 2T3) then 1F3  NO
if (1F3 and 2T3) then 1F2 YES

Note that this artifact is due to the very limited rule-base.  A more acceptable and correct

solution would be to include the entire spectrum of relationships:

if (1 is-sister-of 2) and (2 is-male) then (2 is-brother-of 1)
if (3 is-brother-of 4) and (4 is-female) then (4 is-sister-of 3)
if (5 is-father-of 6) and (6 is-sister-of 7) then (5 is-father-of 7)
if (8 is-father-of 9) and (9 is-brother-of 10) then (8 is-father-of 10)
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Revised Syllabus

NOTE: TOPICS may change by class consensus.

Class meeting   Topic  

1 ) introduction

2 ) overview of formal methods

3 ) complexity, proof techniques

4 ) proof systems,  unification

5 ) pattern-matching, skolemization

6 ) Boolean minimization [exercise]

7 ) abstract domains

8 ) induction

9 ) program verification

10) string and graph rewrite

11) Mathematica,

12) lambda calculus, combinators

13) abstract algebra and group theory

14) relational algebra

15) logic revisited, BDDs

16) boundary techniques

17) cellular automata

18) fractals

19) dilemmas [discussion]

20) review and summary
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Class Handouts;  Exploration Project

The following readings have been selected as relatively clear and concise summary articles for

specific topics.  There is no textbook for the class.  Of course, all students are expected to access

the Internet to find additional information for any topic.

There will be a lot of reading material, and some of it will be fairly technical.  Students are

expected to read all of the class handouts before class.  Students should scan each of the articles,

read and study parts which are of interest, and ask questions in class about unclear areas.

In-Depth Exploration Project

Each student will explore in depth one particular topic, and report to the class their

experiences while learning about that topic.  The presentation should be a chronicle of

experiences while exploring the topic, including high and low points, confusions, learnings,

false paths, discovered treasures, treacherous territories, and an overall evaluation of the

utility of the topic.

Efforts solely to impress the instructor or to generate a pretty report should be avoided.

Efforts to clarify the ideas of the topic are encouraged, however, students will not be

responsible for teaching the content of a topic to the class.  Students who locate particularly good

or interesting articles on a topic are encouraged to add these articles (or websites) to the class

reading list.

Handouts

WEEK 1:

ClassNotes 1:  Course Information, Variety of Formal Methods, References, Web Pointers

ClassNotes 2:  Modeling with Logic, Proof Techniques, Quantification, Complexity,

Boundary Techniques

ClassNotes 3:  Proof Techniques Extended Example

Stuart Shapiro, Ed.  (1987)  Encyclopedia of Artificial Intelligence, Wiley

Articles on Pattern Matching, Predicate Logic, and Theorem Proving

John Lucas (1990)  Introduction to Abstract Mathematics Second Edition
Ch 2 Mathematical Proof

David Gries  (1981) The Science of Programming, Springer-Verlag

Part 0:  Why Use Logic?  Why Prove Programs Correct?

Randy Katz  (1994)  Contemporary Logic Design, Cummings

Figures from front cover
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WEEK 2:

ClassNotes 4:  Syllabus

ClassNotes 5:  Handouts, Exploration Project

ClassNotes 6:  Evolution of Tools

ClassNotes 7:  Pattern Encoding

Jonathan Bowen (1996)  Ten Commandments of Formal Methods

Oxford University Computing Lab Technical Memo

see http://www.comlab.ox.ac.uk/oucl/people/jonathan.bowen.html                                                                                                        

William Bricken (1987)  Analyzing Errors in Elementary Mathematics, Stanford University

Appendix I: The Canons of Formal Symbol Systems

Matt Kaufmann (1987) Skolemization explained simply,

Computational Logic Inc Internal Note #27

Peter Burke (1987) Naming and Knowledge, UCLA Computer Science Dept.

WEEK 3:

ClassNotes 8:  Combinational Minimization Exercise

Bertram Meyer (1985)  On Formalism in Specifications,

in IEEE Software 1/85

Thomas L. Floyd (1998)  Digital Fundamentals Fifth Edition, Prentice-Hall

4.11  Digital System Application, The 7-Segment Display

Giovanni DeMicheli (1994)  Synthesis and Optimization of Digital Circuits, McGraw-Hill
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An Evolution of Mathematical Tools

From Conceptualization to Formalization

Here's what we do when we build a formal model (or do a computation):

0.  Identify a collection of objects/events in the real world.  This is the semantic mapping, how

math is linked with reality.  The objects/events must have these properties:

unique, not confused with different objects/events

stable and permanent, not in flux or changing too rapidly to identify

discrete, not lacking well defined borders

comprehendible, not confusing or too ambiguous

relevant, not outside of what we consider to be the objects in question

permitted, not in violation of tacit understandings about how things are

1.  Use unique labels to identify each of the things in the semantic mapping.  The value of a label

is the thing it identifies.

2.  Limit our interest in the types of things in the real world to an abstract mathematical

property, such as Truth or Count or Membership.

3.  Use different labels to name different abstract things:

labels for things object labels
labels for an entire set of things property labels
labels for an arbitrary thing in the set variable labels
labels to name properties of things indirectly function labels
labels to name combinations of things relation labels

4. Follow the rules of symbol transformation in manipulating the labels as if they were the

things.  However, the labels do not have to share any of the real world properties of the physical

things.

In summary, we convert from physical to virtual, ignore the physical aspects of reality,

manipulate the virtual (or digital) aspects using the rules of virtuality, and then return to

physical reality with new knowledge.  The rules of virtuality are listed in the handout The
Canons of Formal Symbol Systems.

Virtuality has become so prevalent in the current Information Age that much of what we do is

never part of physical reality in the first place.  Computer Science, for example, is a discipline

in which the only connection to physical reality is silicon hardware.  Study of the physicality of

hardware is a different discipline, Electrical Engineering.

Computational hardware is engineered (constructed) to behave as if it were a mathematical

system called Timed Boolean Logic.  “Timed” simply means that some parts of the physical

hardware are used more than once to do the Boolean logic task for which they were constructed.
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Formal Simplicity

The simplest interesting formal domain is PPropositional Calculus, also known as  Boolean

Logic, and also known as BBoolean Algebra.

In Boolean algebra, the labels for real world objects are sentences in human language which can

be evaluated as either True or False.  These sentences are composed of atoms (propositions) and

logical connectives.  The atoms are labels for things which exist and are in some way actual, or

real, or True.  The logical connectives are those parts of language which do not refer to

something in physical reality.

More generally, Boolean algebra includes all of decision theory, which phrases a problem space

as a sequence of binary decisions.  (Note that more complex decisions can usually be phrased as a

collection of binary decisions.)

The truth of a sentence, the direction of a decision, and the voltage in a digital circuit wire are

all binary properties.  Every object label in a Boolean problem has the binary property, either

0 or 1, and that is the only property of interest.  Logic is the set of rules which maintains the

invariance of the value of binary properties.

Labeling Reality

Let {a, b, c, ...}  be simple Boolean variables identifying a set of decision events, each either 0

or 1.

The ways which we combine Boolean variables have been part of our language from antiquity.

They are the familiar operators:  {not, or, and, if, equal, if-then-else}.    Combinations of

Boolean operators and Boolean variables are called sentences or expressions.

Let {A, B, C, ...} be names of Boolean expressions.

Valid Boolean expressions are defined recursively,

a simple variables are expressions

not A negated expressions are expressions

A or B expressions joined by disjunction are expressions

Since all other Boolean operators can be expressed in terms of nnot and oor, they are all included

in the above definition.  This definition means that Boolean expressions are composable and

decomposable;  the recursive rules provide Constructors and Accessors.

Symbolic Complexity

The truth table (or Boolean property table) of a Boolean operator specifies how that operator

combines the Boolean properties, or the values, joined by the operator.  But here things start to

get complex.  Mainly, we can form a huge variety of expressions, and to find the Boolean value of

any expression, we must examine a table with a size exponential in the number of variables
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(2^n entries).  So a logic circuit with 200 input variables requires an impractical 2^200 rows

in the truth table.

So all decision problems which require a large number of decisions become intractably

inconvenient to examine in the whole.  Boolean algebra provides transformation rules which

hold for all expressions, regardless of which Boolean value an expression has.  For example,

not (not A) = A

is valid regardless of the expression A.

Axioms and Theorems

Transformation rules can be decomposed into axioms and theorems.  The axioms are a minimal

set of rules which preserve the Boolean property and serve as a basis for all other possible

theorems.  All the axioms of an axiomatic formal system can be compressed into one single,

usually complex axiom.  For Boolean logic, the simplest single axiom which supports all other

Boolean transformations is the Kauffman/Flagg formalization:

(A or B) and (A or (not B)) = A

Similarly, the Resolution rule is a single rule which supports all Boolean transformation.  The

many rules of Natural Deduction provide another, more complex set of axioms.   One

particularly simple set of supporting axioms (Bricken’s formalization of Boundary Logic) is

the following:

A or True = True

not (not A) = A

A or (not (A or B)) = A or (not B)

This set is particularly useful for pattern-matching and automated deduction, since the patterns

to be matched are relatively simple, and the right-hand-side of each equation is simpler than

the left-hand-side solely through erasing something from the right-hand-side.

P roo f

Boolean algebra axioms and theorems (valid transformations) provide a way to explore decision

spaces without making the actual decisions.  This is called logical or algebraic proof.  However,

the situation remains complex because now we must select which theorem to apply and where to

apply it.  Although the search space is more abstract, it is still intractable and inconvenient.

Although Boolean algebra abstracts the physical properties of decisions, it is still a real world
problem to use Boolean algebra efficiently.

Predicate Calculus

The next extension to mathematical technique is to permit more complex types of objects.

Instead of being restricted to atoms with no internal complexity, predicate logic lets us form

complex objects in two ways:
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1.  Quantification:

Property labels were introduced at the very beginning in order to identify a set of things we

wish to talk about.  Without them, we could not group any things together, we could only talk

about specific particular things.  (This is the difference between Arithmetic and Algebra.)

Quantification lets us address sets or collections of things directly within a logical expression.

The fforall quantifier permits transformation of property labels (entire sets) rather than only

individual members of the set.  The eexists quantifier allows us to refer to the existence of at

least one object in a set, a generic object, without saying which particular object we are talking

about.  The generic object is an arbitrary object;  we choose one object from the set of interest,

but we do not say exactly which object it is.  Thus, the generic object can stand in place of any

particular object in a collection.

2a.  Relations:

Instead of non-decomposable atoms having a Boolean property, we permit arbitrary

compositions of atoms to have that property.  The arbitrary compositions, or relations, are

specified by a table of associations.  If the association is in the table, then the relation between

two (or more) simple objects is True, otherwise it is False.  Only simple objects or atoms can

be in relationship to each other.  Expressions cannot be in a relation, but a relation (such as

aRb), is an expression and can be combined with other expressions by Boolean operators.

2b.  Functions:

Technically functions are a structured subset of relations, since FF(a)=b can be expressed as

aFb=True.  Functions let us name objects indirectly by naming other objects and the function

which tells us how to get to the object in question.  For instance, the function aadd1 moves us

from one integer to the next.

The two extensions are sufficient to characterize all of standard mathematics, and therefore all

of computation.

Other Formal Systems

The art of mathematical modeling is to find properties of real world objects which are both

understood mathematically (i.e. formal) and useful for physical description.  Predicate calculus

provides the framework for formally defining arbitrary properties, but without special

computational techniques, each structure becomes difficult to use for computation.  Other

formal systems provide specialized techniques for speeding up particular types of computation.

Induction/Recursion:  This fundamental technique lets us work with a general case of a set of

expressions, so long as the entire set is in some way structured by an ordering relation.  We can

then analyze entire classes of expressions by looking at only the base case and the general

recursive case.  This then provides a programming style.
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Relational Calculus:  The techniques of computing with only relations have been developed by

the relational database community.  The query language SQL exemplifies this approach.

Lambda Calculus:  Likewise, the techniques of computing using only functions have been

developed primarily as programming languages by the functional programming community.

Combinators:  The combinator calculus is an elaboration of lambda calculus which turns

functional operations into string operations. The specific abstraction technique removes all

variable labels.

String Rewrite Theory:  When expressions are represented by strings of tokens, the rules

of transformation can be formulated as changes in the strings, using matching and substitution

for effecting changes.  This is the primary technique of mathematical manipulation and of

theorem proving.

Graph Theory:  Almost all data structures can be expressed using graphs.  A graph rewrite

theory supports valid graph transformations.  As well, the graph data structure provides

information about the problem itself, such as the shortest path (fewest number of

transformations) to get from one expression to an equivalent one.  This extremely general

technique is underdeveloped solely because graphs are two dimensional structures, while

language has developed using one dimensional strings.

Probability Theory:  When the property of interest is a composite of the individual

properties of a sample of objects, that property is a probability, and the rules for manipulating

this statistical object are expressed as probability theory.

Cellular Automata:  This is an exotic formal system based on a regular array of autonomous

cells acting on their local neighborhoods.  These models have limited but growing applicability.

Fractals:  This technique is based on recursive functions usually expressed on a set of two or

higher dimensional objects.  Again, fractals are new since they apply to spatial rather than

linear structures.

Boundary Mathematics:  This is a general technique which converts all mathematical

string-based operations (logic, sets, numbers, and equations) into spatial operations.  The zero

concept is the Void, that is, no representation at all.  As a consequence, Boundary Mathematics is

far more efficient in both representation and in transformation than all other mathematical

formalisms.  As a spatial technique, it suffers from both unfamiliarity and from the cultural

bias of expressing mathematical operations in string languages.
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Pattern Encoding

Encoding Algebraic Laws as Patterns

The laws of algebra can be expressed as transformation patterns.  “Equal” means that one form

can be freely substituted for the other whenever the patterns match.

Commutative Law

x*y = y*x

equal[prod[x,y],prod[y,x]]

P[Q[x,y],Q[y,x]]

Associative Law

(x*y)*z = x*(y*z)

equal[prod[prod[x,y],z],prod[x,prod[y,z]]]

P[Q[Q[x,y],z],Q[x,Q[y,z]]]

Distributive Law

x*(y+z) = (x*y) + (x*z)

equal[prod[x,plus[y,z]],plus[prod[x,y],prod[x,z]]]

P[Q[x,R[y,z]],R[Q[x,y],Q[x,z]]]

Proof Needs Semantics

This example illustrates why automated proof (and intelligent computation) is very unlikely.

We must design programming and verification systems to be interactive, so that they augment

human intelligence rather than attempting to emulate it.  Note that conventional programming

puts the interaction in a batch mode.

For any natural number n>=2, (n^3-n)/6 is an Integer

<[n,2] or isInt[div[minus[power[n,3],n],6]]

L[n,2] or P[Q[R[S[n,3],n],6]]

where the semantics is L is < less than
P is isInt type check, to be proved
Q is / divide
R is - subtract
S is ^ power



Applied Formal Methods

2

A person may elect to factor the expression in question, in order to understand more:

(n^3-n) = n*(n^2-1) = n*(n+1)*(n-1) = (n+1)*n*(n-1)

A machine can do this, not in order to understand, but as part of a set of automated

transformations to be explored.

R[S[n,x],n]  =>  T[n,R[S[n,R[x,1]],1]]

 =>  T[n,T[U[n,1],S[n,1]]]

where T is * multiply
U is + add

Note how very specific these patterns are.  These rules could be generalized, but it is difficult to

know in advance in which direction the generalization should be formulated.

Number Facts

A human might next retrieve a collection of esoteric number facts:

For any three numbers in a row,

there must be at least one even number

and at least one number divisible by three

and these two numbers are not the same number.

so, the product contains divisors of 2 and 3 (i.e. 6)

A machine can’t make this step, because there are too many esoteric number facts.  Even with

very sophisticated meta-knowledge to steer the selection of which number facts to explore first,

finding the correct set of facts which leads to a proof is generally not possible.  The problem, for

example, may be only slightly different, but would then require entirely different esoteric

number facts:

if n is odd, then (n^3-n)/8 is an Integer

div[n,2]
or

isInt[div[minus[power[n,3],n],8]]

Q[n,2] or P[Q[R[S[n,3],n],8]]

Induct ion

We simply do not know if there are automated paths, using different proof strategies, which

reduce all mathematical problems to trivialities.  For example, machines can do induction.

Rather than recalling esoteric number facts to generate a natural, intelligent proof, we could

have gone blindly forth in the above problem, trying an inductive proof:
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For any natural number n>=2, (n^3-n)/6 is an Integer

base: (2^3-2)/6 isInt (the base case is not n=0)

general: (k^3-k)/6 isInt

show: ((k+1)^3 - (k+1))/6 isInt

((k+1)^3 - (k+1))/6

= (k^3 +3k^2 + 3k +1 - k - 1)/6

= (k^3-k)/6 + 3(k^2+k)/6

if A isInt and B isInt, then (A + B) isInt

(k^3-k)/6 isInt assume general

3(k^2+k)/6 isInt to show

k(k+1)/2 isInt lemma

((k+1)^3 - (k+1))/6 isInt QED

Lemma: k(k+1)/2 isInt

base: 2(2+1)/2 isInt

general: k(k+1)/2 isInt

show: (k+1)(k+1+1)/2 isInt

(k+1)(k+2)/2

= (k^2 + 3k + 2)/2

= k(k+1)/2 + 2(k+1)/2

k(k+1)/2 isInt assume general

2(k+1)/2 isInt k isInt

(k+1)(k+2)/2 isInt QED

Existence Proof

An existence proof demonstrates that a particular object, or solution, does exist, but the proof

does not identify exactly what that object is.  Automated systems cannot conduct existence proofs.
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Essentially, existence proofs demonstrate universal principles, whereas computational proofs

demonstrate a verification of a particular principle.

Prove there exists a function that is both odd and even.

Odd function: F[-x] = -F[x] e.g.  sine

Even function: F[-x] = F[x] e.g.  cosine

Find an F[x] such that:

E[F[R[0,x]], R[0,F[x]]]  and  E[F[R[0,x]],F[x]]

where E is = and R is -

An example of such a function is: F[x] = 0

For pattern-matching, we are looking for two different matches to the second argument of E.

Equivalently, we can eliminate F[-x] algebraically, so that we are looking for the single

pattern:
F[x] = -F[x]

E[F[x], R[0,F[x]]]

From here, the example of F[x]=0 is easy to identify, since R[0,0]=0 and E[0,0] isTrue.  In

general, the problem is to show:

Exists F. E[F[x],R[0,F[x]]]

One problem is that the existential quantifier is over *functions*, not variables.  This requires

Second Order Logic, for which theorem provers are not yet well developed.  What is the Domain
of all Functions?  How do we enumerate, even recursively, all possible functions?

Verifying a Condition from a Search Program

Suppose that the inner loop of a search program is protected (defined) by the following

assertion (also called a guard, or a loop invariant).
Line

( j<i    1

and m<=p<=q<=n    2

and All x,y. (m<=x<i and j<y<=n) implies G[x]<=G[y]    3

and All x,y. m<=x<=y<=j implies G[x]<=G[y]    4

and All x,y. i<=x<=y<=n implies G[x]<=G[y]    5
)

implies G[p]<=G[q]    6

The above conjunctive constraint is an assertion about the state of a program.  We have six

database items being searched {i,j,m,n,p,q}, and a property G.
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M and n are minimal and maximal bounds for the item ids.

I and j relative bounds between m and n.

P and q are arbitrary entries for which we want to determine

if their G properties are ordered.

We know the following:

(line 1) the bounding items j and i are ordered

(line 2) m,p,q,n are partially ordered

The constraints on the G property (lines 3,4 and 5) state that G is ordered in these cases:

(line 3) all items are bounded below between m and i and above between j and n
(line 4) ordered items are bounded below between m and j
(line 5) ordered items are bounded above between i and n

When all of the orderings are satisfied, the G property is assured to be ordered as well.

Without the modern language capability of including assertions within the code, these

constraints must be proved independently (using a logic programming and verification system).

The first step in a proof is to add defining axioms for the functions and relations used by the

constraints.  Here we need to add the ordering axiom

x<=y xor y<x

Next we form clauses out of multiple constraints on single lines (e.g. line 2)

m<=p
p<=q
q<=n

Now Skolemize to eliminate quantifiers.  The labels {i,j,m,n,p,q} are Skolem constants and

the labels {x,y} are universal variables.  C9 is the conclusion.

C1. x<=y xor y<x
C2. j<i
C3. m<=p
C4. p<=q
C5. q<=n
C6. (m<=x and x<i and j<y and y<=n) implies (G[x]<=G[y])
C7. (m<=x and x<=y and y<=j) implies (G[x]<=G[y])
C8. (i<=x and x<=y and y<=n) implies (G[x]<=G[y])
C9. G[p]<=G[q]

Here are the highlights of a backward chaining, natural deduction proof.  The form of the

conclusion suggests a strategy:  immediately bind the universal variables to constants.  We seek

to find a set of ordering conditions that are subgoals of C6-C8, and that are satisfied by C1-C5.
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 (1) G[p]<=G[q] ? C9
 (2) (m<=p and p<i and j<q and q<=n) implies (G[p]<=G[q]) C6,(1)
 (3) m<=p and p<i and j<q and q<=n ? (2)
 (4) (m<=p and p<=q and q<=j) implies (G[p]<=G[q]) C7,(1)
 (5) m<=p and p<=q and q<=j ? (4)
 (6) (i<=p and p<=q and q<=n) implies (G[p]<=G[q]) C8,(1)
 (7) i<=p and p<=q and q<=n ? (6)

 (8) p<i and j<q and q<=n ? (3),C3
 (9) p<i and j<q ? (8),C5
(10) p<=q and q<=j ? (5),C3
(11) q<=j ? (10),C4
(12) i<=p and q<=n ? (7),C4
(13) i<=p ? (12),C5

At this point, satisfying the equations on any one of lines (9), (11), or (13) achieves the goal.

In this case, all three lines are needed for the proof, which demonstrates that the guard is not

overly restrictive.  The proof strategy is case analysis.

(14) q<=j xor j<q C1
(15) i<=p xor p<i C1
(16) if q<=j then QED else j<q 11,14
(17) if i<=p then QED else p<i 13,15
(18) if not QED then (j<q and p<i) 16,17
(19) if (j<q and p<i) then QED 9
(20) QED in all cases 16-19

The natural logic in line (18) says:  all I need is to satisfy either line (11) or line (13).  If I

don’t succeed, it must be because both j<q and p<i hold.

Pattern-matching as Computation

Here is a simple example of using Resolution to conduct computation.

The accumulating factorial function as resolution clauses:

{Fac[0,1]} base

{~Fac[x,r], Fac[S[x],*[S[x],r]} general

Supporting clauses define the successor function and multiplication:

{~S[0], 1}

{~S[x], +1[x]}

{~*[x,1], x}

{~*[S[x],y], +[*[x,y],y]}
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These clauses will need to be renamed with unique variable identifiers.  Note that the Successor

notation is designed for nested recursive pattern-matching.  The numeral 3 is a shorthand

notation for S[S[S[0]]].

The query form, what is the Factorial of 3?

{~Fac[S[S[S[0]]], ANS]}

The resolution computation begins by matching the query to the general recursive part of the

function definition:

match     Fac[S[S[S[0]]], to Fac[S[x],
binding x to S[S[0]]
and binding ANS to *[S[x],r], which is *[S[S[S[0]]],r]]

generating the new renamed clause:

{~Fac[S[S[0]],ANS1]} ANS = *[S[S[S[0]]],ANS1]]

Using the general clause of the definition two more times yields these new clauses:

match         Fac[S[S[0]], to Fac[S[x],
binding x to S[0]
and binding ANS1 to *[S[x],r] which is *[S[S[0]],r]

new renamed clause:

{~Fac[S[0],ANS2]} ANS1 = *[S[S[0]],ANS2]

match Fac[S[0], to Fac[S[x],
binding x to 0
and binding ANS2 to *[S[x],r], which is *[S[0],r]

new renamed clause:

{~Fac[0,ANS3]} ANS2 = *[S[0],ANS3]

This last clause matches the base rule:

match ANS3 to 1

new renamed clause (the termination of the computation):

{}

The result itself is embedded in the ANS variables, which require backwards substitution and

arithmetic evaluation:
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ANS3 = 1

ANS2 = *[S[0],ANS3] = *[S[0],1] = *[1,1] = 1

ANS1 = *[S[S[0]],ANS2] = *[S[S[0]],*[S[0],1]] = *[2,1] = 2

ANS = *[S[S[S[0]]],ANS1]] = *[S[S[S[0]]],*[S[S[0]],*[S[0],1]]]]
    = *[3,2] = 6

Representing a Procedural Program Fragment as a Resolution Pattern

Consider the following pseudo-code fragment for in-place sorting of the elements of an array A.

The code moves elements indexed i+1 to j one position earlier in the array.  The question is to

verify that the subscripts of A never go outside the bounds of 0 to n as the DO loop executes.

INTEGER A[n]
INTEGER k
...
k := i+1
DO WHILE (k <= j)
  A[k-1] := A[k]
  k := k+1
END DO
...

We assume that i and j are iteration variables that are ordered and bounded by the array size:

0<=i<=n
0<=j<=n
i<j

State (Simulating Memory)

The binding list (also called the environment) represents all variables in memory and their

current value.  We model it using a recursive nested notation which works well for pattern-

matching.  The arguments to the State function (technically State is not a function, it is just a

labeled pattern) are the current variable name, its value, and another State pattern which

contains the rest of the program variables and their bindings.

State[<variable>,<value>,State[<next-variable,<next-value>,State[...]]]

The symbolic state of the example program may look like this:

State[i,4,State[k,?,State[j,n,nil]]]

The question mark is used to mean “not-initialized”, i.e. the value of k is not known.  The

variable i is bound to the numerical value 4, the variable j is bound to the symbolic value n.
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A r r a y s

Arrays are slightly more complex that simple binding lists, since array indexing must be used

for access.  Lets assume that the environment is stored symbolically as an array.  For pattern-

matching, it is convenient to represent an array as a recursive nested form, with three

arguments (index, value, and rest):

Array[<index>, <value>, Array[<next-index>,...]]

The pattern representation of an example array A follows:

variable n  k  i  j  x
index 0  1  2  3  4
value 4  ?  4  n  0

A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]]

Array has the same pattern structure as State;  they are both representations of memory.  The

index of an array serves the same purpose as the memory address used by the CPU, both are

pointers to the symbolic name and its value.  However, in simulation, the array is treated like a

list;  the time-savings of indexed access is a physical implementation detail rather than a

symbolic quality.

To represent arrays as a State pattern, the array is simply treated like a compound variable:

State[<array-name>,<array>,State[...]]

In the example, the name of the array is A:

State[A, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]], State[k...]]

Execution (Simulating Process)

We need a representation of execution, the action upon the program statement currently being

executed in the current binding environment that produces a computational step.  In the

resolution simulation, all actions are substitutions (unifications), essentially the same action

that CPU registers use at the physical level.  The simulation executes symbolic substitution, the

CPU executes physical substitution.

Execute[<statement>,<environment>]

The initial Execute process, when we enter into the example program, would look like this:

Execute[assign1,
  State[A, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]],
   State[n,4,
    State[k,?,
     State[i,2,
      State[j,n,
       State[x,0,nil]]]]]]]
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Program Statements

We now provide a general pattern, or clause, for each type of program statement.  Each

statement type will have the abstract form:

<Statement-type>[<statement-name>,<action>,<next-statement>]

This pattern identifies the statement type by the outer label, and the specific instance of that

type by the first argument.  Action is the unique transformation which defines the statement

type.  Next-statement achieves sequential actions, it is equivalent to the sequence operator

“;” in procedural languages such as C, and specifies the next program statement in sequence.

The evaluation strategy for program statements in general has the form:

If the computation is at statement P1 and at state S1

then execute statement P2 with resulting new state S2.

Environment S2 is the result of processing statement P1 in the context of environment S1.  S2 is

S1 with changes introduced by P1.  An abstract example of process would look like this:

If Execute[P1,S1] and <Statement-type>[P1,<action>,P2],
then Execute[P2,<new-state-changed-by-statement>]

Variable Declarations

Rather than a conditional execution statement, the initializations included in variable and array

declarations are treated directly as equality assertions for match-and-substitute.

INTEGER k  INIT:0

Equal[k,0]

INTEGER A[n]

Equal[HighBound[A],n]

HighBound is the maximal array size of array A.

Assignment

The procedural form of assignment translates into a declarative, resolution-based template for

the assignment computation.  The form of assignment is

NEW := OLD

Assign[<statement>,<new>,<old>,<next-statement>]
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Example:  k := i+1 assign1

Assign[assign1,k,+[i,1],dowhile1]

The meaning of the Assign pattern is provided through its execution/evaluation template

If Execute[P1,S1] and Assign[P1,<new>,<old>,P2],
then Execute[P2,Save[<new>,Eval[<old>,S1],S1]]

This says that if the current program statement P1 is an Assign, then move forward to the next

program statement P2, by asserting that P1 has been processed and the result of that processing

has changed the current state S1 into the next state S2.

The new patterns, Save and Eval, manage memory storage and ground evaluation respectively,

implementing the match-and-substitute process.  Eval binds any variables in <old> to their

current values stored in S1.  Save substitutes the result of Eval into the value field of the

variable <new> in S1, constructing S2 in the process.

Expressed as a resolution clause, the Assign execution template looks like:

{ ~Execute[P1,S1],
  ~Assign[P1,new,old,P2],
   Execute[P2, Save[new,Eval[old,S1],S1]] }

In the example, we are entering the fragment with the program statement assign1, binding the

new k to the old i+1, and preparing for the following program statement dowhile1.

{ Assign[assign1,k,+[i,1],dowhile1] }

Resolving, bind

P1 to assign1
new to k
old to +[i,1]
P2 to dowhile1

New clause:

{ ~Execute[fragment-entry,S1],
   Execute[dowhile1, Save[k,Eval[+[i,1],S1],S1]] }

Eval[+[i,1],S1] finds i in S1 and binds it to its value (which is 4 in the example).  Then

+[4,1] is evaluated to 5.

Save[k,5,S1] stores 5 as the value of variable k in S1, constructing S2 in the process.

Note that both Eval and Save achieve their functionality also through pattern-matching and

substitution, using resolution.  Details have been omitted.
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DoWh i l e

The DoWhile program statement evaluates a test in the context of a binding environment,

branching to P2 or P3 depending on the outcome of the test.

DO WHILE <test> <body> END

DoWhile[P1,<test>,P2,P3]

END DO

DoEnd[P1,P2]

Example: DO WHILE (k <= j) dowhile1
  A[k-1] := A[k] assign2
  k := k+1 assign3
END DO doend1
... fragment-exit

DoWhile[dowhile1,<=[k,j],assign2,doend1]

DoEnd[doend1,fragment-exit]

When the test succeeds, the next program statement inside the DO body, P2, is queued for

execution.  When the test fails, the next program statement outside the DO body, P3, is queued.

The execution template for DOWHILE:

If Execute[P1,S1] and DoWhile[P1,test,P2,P3]
then Execute[If[Eval[test,S1],P2,P3],S1]

The semantics of DOWHILE is to Eval test, and branch using if-then-else to either P2 or P3.

The DoEnd statement terminates the DOWHILE by moving Execute to the next program

statement.

If Execute[P1,S1] and DoEnd[P1,P2]
then Execute[P2,S1]

Finally, the looping process of DOWHILE, when the exit test fails, is achieved simply by

encoding the <next-statement> field of the last statement inside the DO body to be the start of the

DOWHILE loop:

Assign[assign3,k,+[k,1],dowhile1]

E r r o r s

In order to answer questions about array out-of-bounds, we need to treat errors as legitimate

program statements.  (This need is also reflected in the evolution from C to Java, in that Java

incorporates errors as first-class program entities.)
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In procedural programming languages which do not support error checking through assertions,

the checks must be written directly into the program:

INTEGER A[n]
INTEGER k
...
k := i+1
DO WHILE (k <= j)
IF (k-1 > HighBound[A]) ERROR
IF (1 > k-1) ERROR
IF (k > HighBound[A]) ERROR
IF (1 > k) ERROR
  A[k-1] := A[k]
  k := k+1
END DO
...

This approach is an obsoleted programming style, in that the ERROR halts the program flow.  A

more modern approach would be use If-Then-Else to incorporate the error branch directly into

the program flow:

If[<test>,<throw-to-error-handler>,<next-statement>]

The IfError statement has the following form:

IF <test> ERROR

IfError[P1,<test>,P2]

Example:  IF (1 > k-1) ERROR iferr2

IfError[iferr2,>[1,-[k,1]],iferr3]

The execution template for IfError is identical to that of If-Then-Else:

if Execute[P1,S1] and IfError[P1,test,P2]
then Execute[If[Eval[test,S1],Error,P2],S1]

The Transcribed Program Fragment

Finally, all the program statement patterns can be assembled into a resolution database.  The

program statement templates come first, followed by the program itself.  Finally the initial

Execute clause triggers the computational process;  the end result is stored in the State clause

which remains after all executions have been resolved.

Note that all variables in the statement templates have been given unique names.  However, what

we call program variables {k,i,j,A} are symbolic constant labels here (Skolem constants),

since they identify an arbitrary but not specific value.  Statement names are also constants.

Statement constants are carried without change throughout the set of clauses representing the

program.
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{ ~Execute[P1,S1],
  ~Assign[P1,new,old,P2],
   Execute[P2, Save[new,Eval[old,S1],S1]] }

{ ~Execute[P3,S2],
  ~DoWhile[P3,test,P4,P5],
  Execute[If[Eval[test,S2],P4,P5],S2] }

{ ~Execute[P6,S3],
  ~DoEnd[P6,P7],
  Execute[P7,S3] }

{ ~Execute[P8,S4],
  ~IfError[P8,errtest,P9],
  Execute[If[Eval[errtest,S4],Error,P9],S4] }

{ Equal[ HighBound[A],n] }

{ Equal[arrayA, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]] }

{ Assign[assign1,k,+[i,1],dowhile1] }

{ DoWhile[dowhile1,<=[k,j],iferr1,fragment-exit] }

{ IfError[iferr1,>[-[k,1],HighBound[A]],iferr2] }

{ IfError[iferr2,>[1,-[k,1]],iferr3] }

{ IfError[iferr3,>[k,HighBound[A]],iferr4] }

{ IfError[iferr4,>[1,k],assign2] }

{ Assign[assign2,A[i1,-[k,1]],A[i2,k],assign3] }

{ Assign[assign3,k,+[k,1],dowhile1] }

{ DoEnd[doend1,fragment-exit] }

{ Execute[assign1,
    State[A, arrayA,
     State[n,4,
      State[k,?,
       State[i,2,
        State[j,n,
         State[x,0,nil]]]]]]] }
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Combinational Circuit Minimization

Section 4-11 of Floyd's Digital Fundamentals (handout) introduces a small practical example of

the use of Boolean algebra in digital circuit design.

The segments of a familiar seven-segment display (labelled aa through gg) are activated to read-

out as integers (0-9) by a network of logic gates actualized in silicon.  The integers to be

displayed are input into the logic circuit encoded as four binary bits (0000 to 1001, with

1010 through 1111 not used), in a code named BCD for binary-coded-decimal.

Thus the BCD-to-7segment. parsing problem is to convert four binary input signals into seven

binary output signals in a given configuration.  The parser/decoder itself is built onto a silicon

chip.

There are many different configurations of logic gates which achieve bcd-to-7segment decoding.

And there are many different criteria that a circuit manufacturer might wish to optimize when

designing the decoder logic circuit.  To get the best price at a particular silicon foundry, or for a

particular substrate material, the logic network might need fewer wires but more gates, or it

may need to consume very little power, or perhaps it might have fit a regular array of

particular types of gates.

The parse logic can be represented as a set of seven equations in Boolean algebra, with four

inputs (the four BCD bits) and seven outputs (the on-off bits for each segment).  Fortunately,

fundamental features of the mathematical representation map well onto important design

features of the silicon circuit.

For example, here is one particular solution in which each parenthesis boundary is a logical

NOR gate:

a = (( D B ((C)(A)) (C A) ))

b = (( D (C) (B A) ((B)(A)) ))

c = (( D C (B) A ))

d = (( (C A) (C (B)) ((B) A) ((C) B (A)) ))

e = (A ((C) B))

f = (( D (B A) ((C) A) ((C) B) ))

g = (( D ((B) A) ((C) B) (C (B)) ))

Inputs:  The number of occurences of input labels (A-D) is the fanout of the input, which

relates to wiring and to power consumption. It is customary to use literals (either positive or

negative occurences of an input, as in A or (A) ) as circuit inputs, since both signal and negated

signal are usually available.  This version has a low number of input references, 42, but 24 is

a minimum.

Chip Area:  The number of parentheses represents the number of NOR gates, which maps well

to the surface area of silicon that the circuit will take. Again in counting gates, the (A) form is

an input literal, and does not count in the gate count.  This version uses 28 gates.
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Wiring:  Wiring is becoming the dominant design issue for sub-micron silicon layout

technology.  The number of wires in a circuit is indicated by the number of subterms of each

above expression, viewing the parentheses as a representation of a tree structure.  The above

solution has few wires, 70 (equal to the number of gates plus the number of inputs), but it is

easy to reduce this number.

Timing:  Perhaps the most important design criteria for a combinational circuit is its critical
path, the longest path from any input to an output.  This determines the delay time of the circuit

and thus the rate of the driving clock.  Critical path is modeled by the deepest nesting of

parentheses, since each parenthesis is a gate.  This solution is well balanced for timing, several

equations have the maximum depth of 3 gates.

Noise:  The noise in a circuit refers to the

Power Consumption:  When a signal passes through a logic gate

Finally, we must recognize that silicon layout introduces new geometrical issues which require

the simple Boolean equation model to be extended.  The primary example is structure sharing,

when the output of a subtree is used more than once.  This converts the Boolean tree model into a

Boolean graph model.  In the above example, the subcircuit "((C) B)" occurs in equations e, f,

and g.  These can be implemented as one circuit with three outputs, resulting in a savings of two

gates and four literals.  (The example is not well suited for structure sharing.)  To indicate

structure sharing, construct an new variable name for the shared structure:

n = ((C) B)

e = ((A n))

f = (( D (B A) ((C) A) n ))

g = (( D ((B) A ) n (C (B)) ))

EXERCISE

Find the (close to) minimal configurations of the BCD-to-7segment decoder for

number of simple NOR logic gates

number of wires between gates

length of critical path

number of literals

Early in the assignment, read the section from DeMicheli’s Synthesis and Optimization of Digital
Circuits.  Try your understanding of optimization techniques on example 8.2.2.
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The Function Eval

Evaluation is an implicit action of the ALU.  By claiming evaluation is automatic, we are

committed to wiring the ALU in a specific way.  However handling memory can be made flexible

by defining EEval in the programming language itself.  This process is called meta-circular
evaluation, cause it uses a language itself to define how that language should behave.  All we have

to do is to define the evaluation function by telling the system what to do when an expression is

typed in.  The function EEval takes two arguments, the expression to be evaluated and the binding
environment, that is, an address of the memory array which contains all of the primitive

functions and atoms (and any other symbols which we may have added) in the language.  The

binding environment contains the definitions of all user defined functions, and the values of each

of the variables (function arguments).

Since the binding environment does not change in this example, (i.e. we have not designed the

language to establish separate environments for each function call), we will treat the token

Eval to mean “Eval-in-environment”.  (Some of the syntax has been changed to make EEval

more readable.)

The definition of EEval which follows recognizes only seven reserved words as primitive

functions.  In addition, EEval uses three built-in tests to determine the types of objects.

F i r s t Rest Cons

I fThenE lse Equa l Quote Let

I s - e m p t y I sa -a tom I sa - exp res s i on

[Notes and supporting functions are on this page to save space.  EEval itself is on the next page.]

Notes, *  process Atom in First:  This defines a syntax for parsing.  Every expression begins

with an atom or is an atom.  If an expression begins with an atom, the processor assumes that

that atom is an operator, and thus a processing instruction.  The operator QQuote is the no-op.

Notes, **  Cons Eval of Rest:  This is again a syntax constraint.  Once we have removed the

beginning operator of an expression, what follows is either an atom, or another expression

which itself begins with an atom operator.

EvalLogic exp  =def=
If Equal (Eval (First exp)) (Quote True) ;if First is TRUE

 Then ;Eval second argument
   Eval (Rest exp)
 Else ;Eval third argument
   Eval (Rest (Rest exp)))

EvalExp exp   =def=
If Is-empty exp ;if at the end

 Then ;return ground
   nil
 Else ;Eval the parts

  Cons (Eval (First exp)) (Eval (Rest exp)) ;  and put them together
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Eval exp  =def=

If Isa-atom exp
 Then ;process atom
   If Is-empty (First exp)
    Then ;return the SYMBOL
      Rest exp
    Else ; or its VALUE
      First exp
 Else ;process expression
   If Isa-atom (First exp)
    Then ;process Atom in First*

      Let token (First exp) ;naming the atom
        If Equal token (Quote Quote)
         Then ;return what follows
           Rest exp
         Else ;other operators
           If Equal token (Quote IfThenElse)
            Then ;process logic operator
              EvalLogic (Rest exp)
            Else ;other operators
              If Equal token (Quote First)
               Then ;First of Eval of Rest
                 First (Eval (Rest exp))
               Else ;other operators
                 If Equal token (Quote Rest)
                  Then ;Rest of Eval of Rest
                    Rest (Eval (Rest exp))
                  Else ;other operators
                    If Equal token (Quote Isa-atom)
                     Then ;Isa-atom Eval of Rest
                       Isa-atom (Eval (Rest exp))
                     Else ;other operators
                       If Isa-expression token
                        Then ;process expression
                          EvalExp (Rest exp)
                        Else ;other operators
                          If Equal token (Quote Cons)
                           Then ;Cons Eval of Rest**
                             Cons (Eval (Rest exp))
                                   (Eval (Rest (Rest exp)))
                           Else ;other operators
                             If Equal token (Quote Equal)
                              Then ;Equal Eval of args
                                Equal (Eval (Rest exp))
                                       (Eval (Rest (Rest exp)))
                              Else ;replace the token

                                Eval ; with its value
                                   Cons (First token) (Rest exp)
    Else ERROR))
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The Structure of Domain Theories

A ddomain theory (or abstract knowledge structure) consists of a domain of objects, and

axioms and rules which define the symbolic interaction between the symbolic form of these

objects.  In particular, a domain theory consists of:

1.  A collection of symbols, including

constants

variables naming arbitrary forms

functions

relations

2.  Generation axioms
These define the typing hierarchy of forms

3.  Uniqueness axioms
These define how forms stay the same when they are manipulated, and how forms

are composed of atomic units.

4.  Special axioms
These define the characteristics of special types.

5.  An Induction Principle
This rule template is the mechanism which allows construction and

deconstruction of arbitrary forms, and provides an algebraic (abstract)

approach to domain forms.

For proof and for programming, several ccomposition tools are then proved/provided for

construction and deconstruction.

6.  Decomposition
Permission to take apart an arbitrary form into atomic components and functions

to do the construction/deconstruction.

7.  Equality under Decomposition
Equal forms don't change if you do equivalent things to them.  Generally, forms

are mmappable, you can map a function across the atomic parts.

8.  Special functions as theorems
With the above basis (1-7), we now begin to build specialized functions

(macros) which make it easier to take large steps while manipulating forms.  A

recursive definition axiom says what we mean by the new function in terms of

the basis functions.  Then other theorems relate all the other mechanisms to the

new function.  Generally each new function has analogous axioms for each item

above.



Applied Formal Methods

2

Abstract Domain Theory:  STRINGS

Here is the TTheory of Strings as an example.  Note that the TTheory of Sequences and the

Theory of Non-Embedded Lists are almost identical.

Constants: {E} the Empty string

Variables (typed): {u,v,...} characters

{x,y,z,...} strings

Functions: {•, head, tail, *, rev, rev-accum, butlast, last}

• is prefix, attach a character to the front of a string

* is concatenate, attach a string to the front of another string

[the rest are defined below as special functions]

Relations: {isString, isChar, isEmpty, =}

isEmpty[x] test for the empty string

isChar[x] test for valid character

isString[x] test for valid string

GeneratorFacts:
isString[E]
isString[u]
isString[u•x]

Uniqueness:
not(u•x = E)
if (u•x = v•y) then u=v and x=y

Special char axiom:
u•E = u
E•u = u

Decomposition:
if not(x=E) then (x = u•y)
head[u•x] = u
tail[u•x] = x
if not(x=E) then (x = head[x]•tail[x])

Decompose equality:
if (u=v) then (u•x = v•x)
if (x=y) then (u•x = u•y)

Mapping:
F[u•x] = F[u]•F[x]
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The String IInduction Principle:

if F[E] and
forall x: if not[x=E],

then if F[tail[x]] then F[x]
then  forall x: F[x]

Recursion, mapping:

F[E] base

F[u•x] = F[u]•F[x] general1

F[x] = F[head[x]]•F[tail[x]] general2

Pseudo-code for testing string equality, using the Induction and Recursion templates for

binary relations

if =[E,E] and
   forall x,y:

if (not[x=E] and not[y=E]),
  then if (=[head[x],head[y]] and =[tail[x],tail[y]])

   then =[x,y]
  then forall x,y: =[x,y]

=[E,E] base

=[x,y] = =[head[x],head[y]] and =[tail[x],tail[y]] general1

=[a,b]  =def=
(a=E and b=E)

   or (=[head[a],head[b]] and =[tail[a],tail[b])

Some axioms and theorems for specialized functions

Concatenate, *, for joining strings together:

E*x = x,    x*E = x base definition

(u•x)*y  =  u•(x*y) recursive definition

isString[x*y] type

u*x = u•x character special

x*(y*z) = (x*y)*z associativity

if x*y = E, then x=E and y=E empty string

if not(x=E) then head[x*y] = head[x] head

if not(x=E) then tail[x*y] = tail[x]*y tail
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Reverse, rev, for turning strings around:

rev[E] = E base definition

rev[u•x] = rev[x]*u recursive definition

isString[rev[x]] type

rev[u] = u character special

rev[x*y] = rev[y]*rev[x] concatenation

rev[rev[x]] = x double reverse

rev[x*u] = u•rev[x] suffix

Reverse-accumulate, reverse the tail and prefix the head onto the accumulator:

rev-acc[x,E] = rev[x] identicality

rev-acc[E,x] = x base definition

rev-acc[u•x,y] = rev-acc[x,u•y] recursive definition

Last and Butlast, for symmetrical processing of the end of a string:

butlast[x*u] = x definition

last[x*u] = u definition

if not(x=E) then isString[butlast[x]] type

if not(x=E) then char[last[x]] type

if not(x=E) then x = butlast[x]*last[x] decomposition

if not(x=E) then butlast[x] = rev[tail[rev[x]]] tail reverse

if not(x=E) then last[x] = head[rev[x]] head reverse

Here is a function which mixes two domains, Strings and Integers:

Length, for counting the number of characters in a string

length[E] = 0

length[u•x] = length[x] + 1

length[x*y] = length[x] + length[y]
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A symbolic proof by induction

To prove:  rev[rev[x]] = x x is of type STRING

Base case: Rule applied:

rev[rev[E]] =?= E 1. problem

rev[E] =?= E 2. rev[E] = E

E =?= E 3. rev[E] = E

QED 4. identity

Inductive case:

rev[rev[x]] =?= x 1. problem

rev[rev[u•x]] = u•x 2. assume by induction rule

rev[rev[x]*u] = u•x 3. rev[a•b] = rev[b]*a

rev[u]*rev[rev[x]] = u•x 4. rev[a*b] = rev[b]*rev[a]

u*rev[rev[x]] = u•x 5. rev[a] = a     a is a char

u•rev[rev[x]] = u•x 6. lemma  a*b=a•b   a is a char

rev[rev[x]] = x 7. a•b = a•c   iff   b=c

QED

Lemma:

u*x =?= u•x 1. problem

(u•x)*y = u•(x*y) 2. prefix/concatenate distribution

(u•E)*y = u•(E*y) 3. let x=E

u*y = u•(E*y) 4. a•E = a

u*y = u•y 5. E*a = a

QED
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Abstract Domain Theory:  TREES

Predicates
atom[x]
tree[x]

Constructor
+[x,y]

Uniqueness
not[atom[+[x,y]]]
if (+[x1,x2] = +[y1,y2]) then (x1=y1 and x2=y2)

Left and Right
left[+[x,y]] = x
right[+[x,y]] = y

Decomposition
if not[atom[x]] then x = +[left[x],right[x]]

Induction
if F[atom] and
   (if F[x1] and F[x2] then F[+[x1,x2]])
then F[x]

Some recursive tree functions

size[x] =def= size[atom[x]] = 1;
size[+[x,y]] = size[x] + size[y] + 1

leaves[x] =def= leaves[atom[x]] = 1;
leaves[+[x,y]] = leaves[x] + leaves[y]

depth[x] =def= depth[atom[x]] = 1;
depth[+[x,y]] = max[depth[x],depth[y]] + 1

(pseudocode for leaves)
leaves[x] =def= if empty[x] then 0

  else if atom[x] then 1
   else leaves[left[x]] + leaves[right[x]]

(pseudocode for leaves-accumulate)
leaves-acc[x,res] =def=

if empty[x] then res
  else if atom[x] then leaves-acc[(), res + 1]
  else leaves-acc[right[x], res + leaves-acc[left[x]]]



Applied Formal Methods

7

Abstract Domain Theory:  SETS

An sset implementation with the functions Insert, Delete, and Member is called a dictionary.

Mathematical model:

S = {x| <statement about x>} extensional, collection defined by common property

S = {a,b,c,...} intensional, collection defined by naming the members

empty set: not (x in S) forall x

membership: x in S  =def=  x=s1 or x=s2 or x=s3 or ...

subset: if (x in S1) then (x in S2)

union: (x in S1) or (x in S2)

intersection: (x in S1) and (x in S2)

difference: (x in S1) and not(x in S2)

recursive set membership:

x in S  =def=
not[x=empty-set]
and
x = get-one[S] or (x in rest[S])

Implementation functions:

Make-empty-set
Make-set[elements]
Insert[element,set]
Delete[element,set]
Equal[set1,set2]

Cardinality[set] = count of members

Characteristic function F:

(F[x] = 1 iff x in S)  and  (F[x] = 0 iff not(x in S))
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Algebraic Specification of Sets:

This algebraic specification is also a functional implementation (ie code) in a

programming language designed for formal verification.

theory    TRIVIAL   is

   sorts    Elt

endtheory    TRIVIAL

module    BASICSET [ELT :: TRIVIAL]   is

   sorts    Set

   functions  
Phi, Universe : Set
{_}: Elt -> Set
_ symmetric-diff _ : Set, Set -> Set

(  assoc     comm     ident   : 0)
_ intersect _ : Set, Set -> Set

(  assoc     comm     idem       ident   : Universe)

   variables  
S,S’,S’’: Set
Elt,Elt’: Elt

   axioms   
(S sym-diff S) = Phi

{Elt} intersect {Elt’} = Phi  :-  not(Elt = Elt’)

S intersect Phi = Phi

S intersect (S’ sym-diff S’’)
= (S intersect S’) sym-diff (S intersect S’’)

endmodule    BASICSET

module    SET [X :: TRIVIAL]   using   NAT, BASICSET[X]   is

   functions  
_ union _ : Set, Set -> Set
_ - _ : Set, Set -> Set
#_ : Set -> Nat

   predicates
_ member _ : Elt, Set
_ subset _ : Set, Set
empty : Set
_ not-member _ : Elt, Set
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   variables  
X: Elt
S,S’,S’’: Set

   axioms   
S union S’ = ((S intersect S’) sym-diff S) sym-diff S’
S - S’ = S intersect (S sym-diff S’)
empty(S) :- S = Phi
X member S :- {X} union S = S
X not-member S :- {X} intersect S = Phi
S subset S’ :- S union S’ = S’
# Phi = 0
#({X} sym-diff S) = #(S) - 1 :- X member S
#({X} sym-diff S) = #(S) + 1 :- X not-member S

endmodule    SET

Abstract Domain Theory:  RATIONAL NUMBERS

base 0
recognizer is-number[n]
constructor +1[n]
accessor -1[n]

some invariants is-number[n] or not[is-number[n]]
is-number[+1[n]]
is-number[0]
+1[n] =/= 0
(is-number[n] and n =/= 0) implies (+1[-1[n]] = n)
is-number[n] implies (-1[+1[n]] = n)

induction if F[0] and (F[n] implies F[-1[n]]) then F[n]

module    BASICRAT   using    INT   is

   sorts    Rat
   subsorts  Int =< Rat

   functions  
_ / _ : Int, NzInt -> Rat
_ * _ : Rat, Rat -> Rat  (  assoc       commut       ident   : 1)
_ + _ : Rat, Rat -> Rat  (  assoc       comm       ident   : 0)

   variables  
N,X,Z: Int
Y,W: NzInt
A: NzNat
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   axioms   
nzint(Y*W)

N/1 = N

0/Y = 0

N/(-A) = (-N)/A

X/Y = (X/gcd(X,Y))/(Y/gcd(X,Y)) :- not(gcd(X,Y)=1)

(X/Y)+(Z/W) = ((X*W)+(Z*Y))/(Y*W)

N+(X/Y) = ((N*Y)+X)/Y

(X/Y)*(Z/W) = (X*Z)/(Y*W)

N*(X/Y) = (N*X)/Y

endmodule    BASICRAT
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Induction and Recursion

Induction is a mathematical proof technique.  When this technique is used in programming, it

is called rrecursion.  Induction/recursion is the fundamental mechanism for

•  extending logical proof techniques into object domains and data structures,

•  defining and building mathematical and programming objects,

•  decomposing objects so that functions can be applied to the elementary units, and

•  robust programming style and program verification.

Many practical computational problems are most succinctly expressed in a recursive form (for

instance, tree and graph traversal, spatial decomposition, divide-and-conquer algorithms,

sorting, searching, and large classes of mathematical functions).  As well, recursive function

theory defines what can and cannot be computed.

Inductive Definition

An inductive definition consists of

1) a base case

2) a general generating case

3) an ordering principle which moves from one general case to the next

Base case: the value of tthe most elementary case

Examples: 

zero the additive identity

one the multiplicative identity

Phi the empty set

nil the empty list, the empty tree

false the logical ground

Generating rule:  the transform which ddefines the next case, given an arbitrary case.

Examples:
power-of-2[n] = 2*power-of-2[n-1]
summation[n] = summation[n-1] + n
prefix[str] = first-char • rest[str]
last[list] = rest[list] = nil
length[list] = length[rest[list]] + 1
member[x,S] = x=select[S] or member[x,rest[S]]
power-set[S] = power-set[S-{ele}]*S
node[btree] = left[btree] + right[btree]
logic-form[lf] = ante[lf] implies conseq[lf]
parenthesis[pf] = "("in[pf]")" or left[pf] + right[pf]
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Recursive Programming

Inductive definitions build up from the base case to any degree of complexity.  Recursive

programs reduce any degree of complexity one step at a time until the base case is reached.  A

recursion must be wwell-founded, that is the steps must eventually terminate at the base.  In

most cases, the step increment is monotonically decreasing.

Recursive programs can be expressed in two forms, mathematical and accumulating.  The

mathematical form accumulates unevaluated operators on the outside and evaluates them after

the base is reached.  The accumulating form evaluates operators as they accumulate;  when the

base is reached, the result is returned.

Mathematical: if (base-case isTrue) then base-value else F[recursive-step]

Accumulating: if (base-case isTrue) then accum else F[recursive-step, accum+step]

Primitive Recursion Templates

These templates refer to arbitrary functions F on types of data structures.  P is an arbitrary

Boolean function, G and H are arbitrary domain functions

General: F[x] = if P[x] then G[x]
else H[F[x]]

Unstructured: F[x] = if P[x] then G[x]
else F[H[x]]

Integers:  F[n] = if n=0 then G[0]
else H[n-1,F[n-1]]

Lists: F[u] = if null[u] then G[nil]
else H[head[u],tail[u],F[tail[u]]]

Trees: F[v] = if leaf[v] then G[v]
else H[left[v],right[v],F[left[v]],F[right[v]]]

Graphs: F[v] = if null[v] then G[nil]
else H[adjacent[v],F[not-visited[adjacent[v]]]]

Some Programming Examples

Here are a variety of programming styles for the function Factorial.  Note that as the style

moves more toward mathematical and away from procedural, the code becomes more succinct.  It

also becomes easier to debug and to verify.  In general, the evolution of programming languages

is away from CPU specifics and toward mathematical generalizations.  This evolution simply

means that more and more of the low-level mechanical details are moved out of the

programming language and into the compiler.
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proceduralFactorial[n_Integer?Positive] :=
Block[{iterator = n, result = 1},
      While[iterator != 1,

      result = result * iterator;
      iterator = iterator - 1];

      result]

sugaredProceduralFactorial[n_] :=
Block[{result = 1},
      Do[result = result*i,{i,1,n}];

       result]

recursiveFactorial[n_] :=
If[n == 1,1,n*recursiveFactorial[n-1]]

rulebasedFactorial[1] = 1;
rulebasedFactorial[n_] := n*rulebasedFactorial[n-1]

mathematicalFactorial[n_] :=
Apply[Times,Range[n]]
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Program Verification, Induction Exercises

Here is a collection of relatively simple program transformations for practice of inductive

proof and recursive implementation.  Domain definitions and facts are provided.  Use simple

numerical and algebraic facts in the case of integers.

There are several approaches you might take to this exercise (in order of difficulty):

1.  Use the domain theories and the induction principle to write recursive code.

2.  Use the domain axioms to prove the assertions algebraically by hand.

3.  Submit a subset of the axioms and rules to an algorithmic theorem prover (such as

Mathematica, Maple, Reduce, Otter, or any of the tools available on the web).

Induction in the Integer Domain:

{i,j,k,n} are positive integers.  Note that all integer functions can be defined inductively.

Definitions

i + j  =def=  i + 0 = i
  i + next[j] = (i + j) + 1

i * j  =def=  i * 0 = 0
  i * next[j] = (i * j) + i

i ^ j  =def=  i ^ 0 = 1
  i ^ next[j] = (i ^ j) * i

sum[n] =def=  sum[0] = 0
  sum[i+1] = sum[i] + (i + 1)

fac[n] =def=  fac[0] = 1
  fac[i+1] = fac[i] * (i + 1)

fib[n] =def=  fib[1] = fib[2] = 1
  fib[i+2] = fib[i+1] + fib[n]

Prove

•  (i * i) = (i ^ 2)

•  (i * j) + (i * k) = i * (j + k)

•  (2 * sum[n]) = n * (n + 1)

•  (n ^ 2) = (2 * sum[n-1]) + n

•  (3 * sum[n^2]) = (2*n + 1) * sum[n]

•  fib[n^2] = fib[n+1] * fib[n]

•  sum[n^3] = (sum[n] ^ 2)
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Recursive Programming

•  Write recursive programs for the following functions:

Domain

equal[a,b] All domains -> Boolean

difference[i,j] Natural numbers -> Integer

fibonacci[i] Natural numbers -> Natnum

accumulating-fibonacci[i] Natural numbers -> Natnum

greater-than[i,j] Integers -> Boolean

remainder[i,j] Integers -> Natnum

substitute[x,y,z] Lists -> List

ordered-insert[item,x] List -> List

same-length[x,y] Strings -> Boolean (do not use Integers)

remove-substring[x,y] Strings -> String

explode[x] String -> List

fill[item,a] Array

ordered[a] Array -> Boolean

is-path[list,x] Trees -> Boolean

depth[x] Trees -> Integer

flatten[x] Trees -> List

search[x, property] Trees -> node

best-leaf[x] Trees -> atom

occurrences[value,x] Trees -> Integer

balanced-branches[x] Trees -> Boolean

union[x,y] Sets -> Set

intersection[x,y] Sets -> Set

connected[n1,n2,g] Graphs -> Boolean

delete-vertex[v,g] Graphs -> graph

complement[g] Graph -> Graph

reachable[v1,v2,g] Graph -> Boolean

partition[x] List -> Lists  (harder)

tautology[lf] Boolean -> Boolean (harder)

•  Now prove that each program is correct.

•  Do these recursive programs terminate?

Oscillate, for one integer (hint:  try n=27):

osc[n] =def=
if n=1 then 1

else if even[n] then osc[n/2]
else osc[3n+1]
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Ackerman, for two integers m and n:

ack[m,n] =def=
if m=0 then n+1

else if n=0 then ack[m-1,n]
else ack[m-1, ack[m, n-1]]

Ackerman, for two strings:

sack[x,y] =def=
if (char x) then x•y

else if (char y) then sack[rest[x],y]
else sack[rest[x], sack[x, rest[y]]

Takeuchi for three integers:

tak[i,j,k] =def=
if i<=j then k

else tak[tak[i-1,j,k],tak[j-1,k,i],tak[k-1,i,j]]

•  How would you prove the correctness of this do-loop?

(2 ^ i) = (res := 1; for n from 1 to i do (res := res * 2))

Induction in the String Domain:

{u,v} are characters, {x,y} are strings

•  Prove that the length of two strings concatenated together is the sum of the lengths of each.

•  Prove that the length of the reverse of a string is the same as the length of the string.

•  Develop a theory of ssubstrings of a string.  Here are the axioms you'll need:

The definition of a substring:

x sub y  =def=  z1*x*z2 = y

The empty string is a substring of every string

E sub y

No string is a substring of the empty string

not(y sub E)

Prefixing a character to a string maintains the substring relation

if (x sub y) then (x sub u•y)
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The following three properties of the substring relation establish that substring is an ordering
relation.

transitivity if s1 is a substring of s2, and s2 is a substring of s3,

then s1 is a substring of s3

antisymmetry if two strings are substrings of each other, they are equal

reflexivity a string is a substring of itself

•  Prove or define the above relations.  Then prove:

•  A string is a substring of itself when a character is prefixed.

•  A string is a substring of the empty string when it is the empty string.

•  Substring implies all the characters in the substring are in the string.

•  The length of a substring is equal to or less than the length of the string.

•  Extend the results:

The definition of a pproper substring:

x proper-sub y  =def=  not(z1=E and z2=E) and z1*x*z2 = y

•  Prove the properties of proper substrings (transitivity, irreflexivity, asymmetry)

•  Use the results:

The definition of a palindrome:

palin[x]  =def=  (x = rev[x])

•  Write a provable implementation of a palindrome tester/generator

palin[x] = (x = y*rev[y]) or (x = y*u*rev[y])

Finally, here's an example of how a larger provable program might be built to construct long

palindrome sentences, using a dictionary and a grammar checker:

1.  select an arbitrary word from the dictionary

2.  find the words which begin with the reverse of that word.

3.  identify the end substring of the new word which is not covered by the first word

4.  reverse the uncovered substring and find words ending with that substring

5.  recur to step 2 until failure to match

6.  use the grammar parser to screen the result for proper sentence structure

7.  recur to step 1 to try again



Applied Formal Methods

1

Mathematica

Numeric or Symbolic Processing

Mma computes symbolically unless either

1. no efficient symbolic technique is known, or

2. processing efficiency is far more important than coding efficiency.

Otherwise, it uses optimized numeric techniques.

SYMBOLIC MODEL

meaning

--written as--> symbol structures

--reduced by--> symbolic transformation rules

- - i n to - -> simpler symbolic structures

--interpreted for--> meaning

NUMERIC MODEL

meaning

--exemplified by--> selected instances

--substituted into--> symbolic structures

--reduced by--> numeric evaluation rules

- - i n to - -> approximate results

--read for--> meaning

The Mathematica Program

A general purpose computational engine for

numerical calculations (arithmetic)

symbolic transformations (algebra)

graphic display (geometry)

A modern programming language with multiple styles

procedural

functional

logical

object-oriented

rule-based

mathematical

An integrated tool

C, TeX, UNIX, Postscript. MathLink

The Philosophy

The programmer’s time is more valuable than the processor’s time.
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Thus, the architecture is

interpreted (interactive)

real-time

goal-oriented

“Programs you write in Mathematica may nevertheless end up being faster than those you write

in compiled languages”  p.506

•  Processing speed depends on the exact implementation algorithm

•  Mathematica algorithms are both sophisticated and optimized

•  The internal data form is optimized and compiled for efficiency

The Limits

•  Out-of-memory  can crash the program

•  Some algorithms require large searches and exponential processing time

“The internal code of Mathematica uses polynomial time algorithms whenever they are known.”

p.63

• In a second, you can do

arithmetic with thousand digit numbers

factoring a hundred term polynomial

apply a recursive rule a few thousand times

find the numerical inverse of a 50x50 matrix

format a few pages of output

draw a few thousand lines

Everything is an Expression

x + y Plus[x,y]
120 Integer[120]
2ab Times[2,a,b]
{a,b,c} List[a,b,c]
i = 3 Set[i,3]
x^2+2x+1 Plus[ Power[x,2], Times[2,x], 1]

An undefined symbol is itself, providing functional transparency and WYSIWYG debugging.

The Meaning of Expressions

F[x,y] F is the head.  x,y are the contents.
Apply function F to arguments x and y.

Do action F to objects x and y.

The label F points to elements x and y.

The object-type F has parts x and y.
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The head can both act on its contents (as a function) and maintain the structure of its contents

(as an object), depending on context (the location of the expression, the presence of a

definition).

L i s t s

The boundary labeled List maintains its internal structure as a database.

Lists are used for all collections:

data record {John, 555-1234, j@mma.com}
vector {x, y, z}
matrix { {11,12},{21,22} }
set Union[{a,b},{a,c}] ==>  {a,b,c}
graphics spec Line[ {{0,1}, {1,1}, {1,0}} ]
stream {1,2,3, ...}
structure template {_, {_,_}, { {_,_},...} }

The Fundamental Principle of Computation

Take any expression and apply transformation rules until the result no longer changes.

1.  Reduce head

2.  Reduce each element base case arithmetic

3.  Standardize

4.  Apply user defined rules inductive case algebra

5.  Apply built-in rules.

6.  Reduce the result. recursion

The Internal Mechanism

All expressions are stored in an augmented binary transform table (?)

we see internal table entry

x=3 11001... 11
a[1]=x 1000[1] 10110
f[n_]=n^2 1011[#] 10110[#1110]

•  The input expression is matched (using a linear-time algorithm) to the internal

table:
E = 00110[0100011]001010[11101]

•  Each match generates a substitution.

•  No match causes no change.

•  The structure of the expression is not a string but a network.
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Patterns

A pattern is a class of expressions with the same structure.

_ “blank”, underline means any expression

x_ any expression locally named x

x__ any sequence of expressions

x___ any sequence, including none

x_h any expression with head = h.

Examples:

f[n_] the function f with a parameter named n

2^n_ 2 raised to any power

a_ + b_ the sum of two arbitrary expressions

{a__} a list with at least one element

Data Types

“At a fundamental level, there are no data types in Mathematica.  Every object you use is an

expression, and every function can take any expression as an argument.”  p.496

The head of an expression can be interpreted as a type constraint.

Integer[3] means Type[3] = Integer

Unity of Programming Paradigms

Mathematica accepts code in all of the modern programming paradigms.

“All the approaches are in a sense ultimately equivalent, but one of them may be vastly more

efficient for a particular problem, or may simply fit better with your way of thinking about the

problem.”  p.487

“As a matter of principle, it is not difficult to prove that any Mathematica program can in fact

be implemented using transformation rules alone.” p.503

Object-oriented Organization

square/: perimeter[ square[n_] ] := 4*n
square/: area[ square[n_] ]      := n^2
circle/: area[ circle[r_] ]      := Pi*r^2

The outer “function” transforms the inner “argument”.

The inner “object” contains a private outer “message handler”.

The outer “matrix” is indexed by the inner “accessors”.
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Relational Algebra

A relation is a set of tuples.  In CS, this is called a database or file.  The items of the relation can

be seen as aattribute value pairs, with the values being atomic ground forms (ie not

composite terms and not pointers).  Other terms:

Domain: the set of possible values for a relation

Relation: a subset of the cartesian product of domains

Attribute: column of a relation

Item: row of a relation, a tuple

Key: a minimal set of attributes which identify a unique tuple

Since a relational database contains the same information as a relation table, the database must:

1.  have no duplicates

2.  have values from the same domain

3.  have simple attribute structures (not composite)

4.  an attribute must be accessed by a single key

It is always possible to express multiple argument relations using only binary relations.  E.g.:

PERSON[name, age, sex]  =  PERSON[name, age] and PERSON[name, sex]

Operators in a Relational Algebra:

Selection: Reduce the number of rows in a table (horizontal cut)

Projection: Reduce the number of columns (vertical cut), and remove duplicates.

Restriction: Make a relation consisting of all rows which meet a functional test

Union: Combine rows of two tables (same attributes).  Same as file-merge.

aka:  Or, Append

Difference: The rows of relation 1 with duplicates in relation2 removed

aka:  -, remove, minus

Join: Make a table with the items common to both relations.

aka:  intersection

Generalized Join:   For relations with unequal number of attributes,  carry along the

extra attributes in the new table.  If the relations have no common

attributes, form the cartesian product.

Hierarchy is formed in two ways:

1.  generalization of subtypes (standard oo inheritance)

2.  aggregation of components, making new relations of existing fields
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Relational Knowledge-base Example

Vocabulary:

(father X Y)

(mother X Y)

(male Y)

(female Y)

(parent X Y)

(sibling X Y)

(brother X Y)

(sister X Y)

(uncle X Y)

(aunt X Y)

(gfather X Y)

(gmother X Y)

(ancestor X Y)

(cousin X Y)

Knowledge Base:

(if (father A B) (parent A B))

(if (mother A B) (parent A B))

(if (and (parent A C) (parent A B) (not (= B C))) (sibling B C))

(if (and (sibling A B) (male A)) (brother A B))

(if (and (sibling A B) (female A)) (sister A B))

(if (and (parent B C) (brother A B)) (uncle  A C))

(if (and (parent B C) (sister A B)) (aunt  A C))

(if (and (parent B C) (father A B)) (gfather  A C))

(if (and (parent B C) (mother A B)) (gmother  A C))

(if (parent A B) (ancestor A B))

(if (and (parent A B) (ancestor B C)) (ancestor  A C))

(if (and (parent A C) (parent B D) (sibling A B)) (cousin C D))

(if (father A B) (male A))

(if (mother A B) (female A))

Facts:

(father arthur bertram)

(father arthur bailey)

(father bertram cornish)

(father bertram carey)

(mother beatrice cornish)

(mother beatrice carey)

(father bailey carleton)

(father bailey cassandra)

(mother bessie carleton)

(mother bessie cassandra)

(male cornish) Example questions:

(male carey) (gfather arthur ?)

(male carleton) (cousin ? cassandra)

(female cassandra)
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Themes and Dilemmas

Ever since Descartes (c1640), we have conceptualized our world in terms of discrete OObjects

embedded within a context of SSpace and Time.  Since Einstein (c1920), embedding has been in

Spacetime, a single four-dimensional manifold.

Mathematics is the study of unique, discrete objects embedded in and interacting within the

context of a dimensional manifold.  The dual interpretation of objects as interaction (emphasized

by quantum mechanics) is to see the interactions themselves as primary and the objects as

patterns of interaction.

Computation is the study of discrete binary objects interacting within the constraints of a

timed boolean algebra.

The  Meta-theme of Formal Systems

F i e l d Object concept Space-time concept

geometry points space

physics (classical) masses 3space and directional time

physics (modern) wave/particle entanglement, observation

physics (relativistic) events spacetime

mathematics structures axiomatic bases, proof steps

computation sets processes

computation (serial) bit-streams boolean networks

boundary math distinction void

Formal Systems i nva r i ance va r i ance

propositional logic truth proof

quantification property existence

predicate logic domain recursion

relational theory domain pairs domain intersection

function theory abstraction application

pattern-matching pattern pattern variables

proof systems assumptions logic

category theory math systems morphism

cellular automata cell neighborhood

fractals generator recursion

finite state machines bit-stream state transition graph

program verification specification program

Note that the meta-theme has been with us since ancient Greek philosophy, and is peculiar to the

mathematical/scientific way of viewing the world.  In particular, the object/spacetime

decomposition is not appropriate -- does not work -- for biological systems (cells, viruses,

organisms, plants, humans, institutions, societies, cultures, minds, religions).
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Philosophical Dilemma I:  Cyber-addiction

From Communications of the ACM, 3/98, p11:

"Almost a fifth of college students spend more than 20 hours a week on the Internet...this amount

of time qualifies as addition....a New York University study (that) correlates high student

Internet use with doubled rates of academic dismissals.  As a way of dealing with this problem,

schools in Michigan, Maryland, Texas, and Washington have imposed limits on student Internet

use.  Dominant areas of user involvement:  email, Web surfing, MUD interactive role-playing,

and home page production."

ibid. p.128 (by Peter Neumann):

"...activities that can lend themselves to addictive or compulsive behavior include...even

programming itself -- which seems to inspire compulsive behavior in certain

individuals....computers intensify and depersonalize whatever activity is being done, enabling it

to be done remotely, more expeditiously, less expensively, and perhaps without identification,

accountability, or answerability.

The effects of compulsive computer-related behavior can involve many risks to individuals and

to society, including diminution of social and intellectual skills, loss of motivation for more

constructive activities, loss of jobs and livelihood, and so on.  A reasonable sense of physical

reality can be lost through immersion in virtual reality.  Similarly, a sense of time reality can

be lost through computer access that is totally encompassing and uninterrupted by external

events."

Biological systems are incomprehensibly complex.  Computational systems are

incomprehensibly simple.  Since the world we live in is beyond our comprehension, we

construct projections (virtual worlds with detail removed) to support the illusion that we

understand and are in control.  The manufactured flat surfaces which surround us everywhere

are an example of the removal of natural complexity to enhance our illusion of tractability.

Computational environments are another example of this aabstraction neurosis.

People fall into cyberspace because it is unnaturally simple and therefore supports the illusion

of competence.  Of course, cyberspace is not simple, it too is an artifact of biological activity.  It

is the illusion of potential simplicity which makes computational systems attractive.

Why have you chosen a profession which requires you to stare at a computer screen all day

long?  Was your mother correct when she asked you not to sit too closely in front of the

television screen?  How do you think physical reality will respond to the competition of virtual

reality for the attention of humanity?  Is the modern mind committed /addicted to

representations of reality (reading-writing-arithmetic, books, films, computers, etc.) rather

than to reality itself?
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Philosophical Dilemma II: Triviality

Quotes from Gian-Carlo Rota, IIndiscrete TThoughts:

"The philosophy of mathematics carries out its work by focusing on the correlation between

mathematical things and mathematicians."  Robert Sokolowski, p.xiii

That is, between the object-concept of mathematical items (which may or may not exist in a

Platonic world independent of our minds) and the process-concept of mathematical minds.

"Of all escapes from reality, mathematics is the most successful ever.  It is a fantasy that

becomes all the more addictive because it works back to improve the same reality we are trying

to evade.  All other escapse -- sex, drugs, hobbies, whatever -- are ephemeral by comparison."

p.70

"Not only is every mathematical problem solved, but eventually every mathematical problem is

proved trivial.  The quest for ultimate triviality is characteristic of the mathematical

enterprise." p.93

Computer Science deals with a trivial subset of mathematical trivality by excluding the sacred

concept of Infinity and the mysterious concept of Void, and by avoiding even "intractable" (ie

non-polynomial, search-based, mathematically interesting) complexity.  Computer Science (at

least Artificial Intelligence and Cognitive Science) pretends that the mind is like a computer, so

that the issues of complexity of mind and of humanity can be conveniently ignored or forgotten.

Computer Science engages in an extreme of abstraction neurosis, let's say aabstraction

psychosis, by constructing the narrowest of worlds (binary bit-streams which interact only

over timed boolean networks), and then by suggesting that this extreme reduction is somehow

whole.  In fact, computation addresses only ttrivial trivialities.

How can humanity become so enamored with a technology that it forgets the reality within which

it is embedded?  Why are we so ready and able to limit our experiences to a small screen of

phosphers and a tableaux of a few dozen labelled keys?  How can our minds so easily confuse a

pixel array with fully visceral experience?  Confuse an email exchange with fully interactive

human dialog?  Confuse digital information processing with bodily experience?
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