
Applied Formal Methods

1

Mathematica

Numeric or Symbolic Processing

Mma computes symbolically unless either

1. no efficient symbolic technique is known, or

2. processing efficiency is far more important than coding efficiency.

Otherwise, it uses optimized numeric techniques.

SYMBOLIC MODEL

meaning

--written as--> symbol structures

--reduced by--> symbolic transformation rules

- - i n to - -> simpler symbolic structures

--interpreted for--> meaning

NUMERIC MODEL

meaning

--exemplified by--> selected instances

--substituted into--> symbolic structures

--reduced by--> numeric evaluation rules

- - i n to - -> approximate results

--read for--> meaning

The Mathematica Program

A general purpose computational engine for

numerical calculations (arithmetic)

symbolic transformations (algebra)

graphic display (geometry)

A modern programming language with multiple styles

procedural

functional

logical

object-oriented

rule-based

mathematical

An integrated tool

C, TeX, UNIX, Postscript. MathLink

The Philosophy

The programmer’s time is more valuable than the processor’s time.

Applied Formal Methods

2

Thus, the architecture is

interpreted (interactive)

real-time

goal-oriented

“Programs you write in Mathematica may nevertheless end up being faster than those you write

in compiled languages” p.506

• Processing speed depends on the exact implementation algorithm

• Mathematica algorithms are both sophisticated and optimized

• The internal data form is optimized and compiled for efficiency

The Limits

• Out-of-memory can crash the program

• Some algorithms require large searches and exponential processing time

“The internal code of Mathematica uses polynomial time algorithms whenever they are known.”

p.63

• In a second, you can do

arithmetic with thousand digit numbers

factoring a hundred term polynomial

apply a recursive rule a few thousand times

find the numerical inverse of a 50x50 matrix

format a few pages of output

draw a few thousand lines

Everything is an Expression

x + y Plus[x,y]
120 Integer[120]
2ab Times[2,a,b]
{a,b,c} List[a,b,c]
i = 3 Set[i,3]
x^2+2x+1 Plus[Power[x,2], Times[2,x], 1]

An undefined symbol is itself, providing functional transparency and WYSIWYG debugging.

The Meaning of Expressions

F[x,y] F is the head. x,y are the contents.
Apply function F to arguments x and y.

Do action F to objects x and y.

The label F points to elements x and y.

The object-type F has parts x and y.

Applied Formal Methods

3

The head can both act on its contents (as a function) and maintain the structure of its contents

(as an object), depending on context (the location of the expression, the presence of a

definition).

L i s t s

The boundary labeled List maintains its internal structure as a database.

Lists are used for all collections:

data record {John, 555-1234, j@mma.com}
vector {x, y, z}
matrix { {11,12},{21,22} }
set Union[{a,b},{a,c}] ==> {a,b,c}
graphics spec Line[{{0,1}, {1,1}, {1,0}}]
stream {1,2,3, ...}
structure template {_, {_,_}, { {_,_},...} }

The Fundamental Principle of Computation

Take any expression and apply transformation rules until the result no longer changes.

1. Reduce head

2. Reduce each element base case arithmetic

3. Standardize

4. Apply user defined rules inductive case algebra

5. Apply built-in rules.

6. Reduce the result. recursion

The Internal Mechanism

All expressions are stored in an augmented binary transform table (?)

we see internal table entry

x=3 11001... 11
a[1]=x 1000[1] 10110
f[n_]=n^2 1011[#] 10110[#1110]

• The input expression is matched (using a linear-time algorithm) to the internal

table:
E = 00110[0100011]001010[11101]

• Each match generates a substitution.

• No match causes no change.

• The structure of the expression is not a string but a network.

Applied Formal Methods

4

Patterns

A pattern is a class of expressions with the same structure.

_ “blank”, underline means any expression

x_ any expression locally named x

x__ any sequence of expressions

x___ any sequence, including none

x_h any expression with head = h.

Examples:

f[n_] the function f with a parameter named n

2^n_ 2 raised to any power

a_ + b_ the sum of two arbitrary expressions

{a__} a list with at least one element

Data Types

“At a fundamental level, there are no data types in Mathematica. Every object you use is an

expression, and every function can take any expression as an argument.” p.496

The head of an expression can be interpreted as a type constraint.

Integer[3] means Type[3] = Integer

Unity of Programming Paradigms

Mathematica accepts code in all of the modern programming paradigms.

“All the approaches are in a sense ultimately equivalent, but one of them may be vastly more

efficient for a particular problem, or may simply fit better with your way of thinking about the

problem.” p.487

“As a matter of principle, it is not difficult to prove that any Mathematica program can in fact

be implemented using transformation rules alone.” p.503

Object-oriented Organization

square/: perimeter[square[n_]] := 4*n
square/: area[square[n_]] := n^2
circle/: area[circle[r_]] := Pi*r^2

The outer “function” transforms the inner “argument”.

The inner “object” contains a private outer “message handler”.

The outer “matrix” is indexed by the inner “accessors”.

