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Induction and Recursion

Induction is a mathematical proof technique.  When this technique is used in programming, it

is called rrecursion.  Induction/recursion is the fundamental mechanism for

•  extending logical proof techniques into object domains and data structures,

•  defining and building mathematical and programming objects,

•  decomposing objects so that functions can be applied to the elementary units, and

•  robust programming style and program verification.

Many practical computational problems are most succinctly expressed in a recursive form (for

instance, tree and graph traversal, spatial decomposition, divide-and-conquer algorithms,

sorting, searching, and large classes of mathematical functions).  As well, recursive function

theory defines what can and cannot be computed.

Inductive Definition

An inductive definition consists of

1) a base case

2) a general generating case

3) an ordering principle which moves from one general case to the next

Base case: the value of tthe most elementary case

Examples: 

zero the additive identity

one the multiplicative identity

Phi the empty set

nil the empty list, the empty tree

false the logical ground

Generating rule:  the transform which ddefines the next case, given an arbitrary case.

Examples:
power-of-2[n] = 2*power-of-2[n-1]
summation[n] = summation[n-1] + n
prefix[str] = first-char • rest[str]
last[list] = rest[list] = nil
length[list] = length[rest[list]] + 1
member[x,S] = x=select[S] or member[x,rest[S]]
power-set[S] = power-set[S-{ele}]*S
node[btree] = left[btree] + right[btree]
logic-form[lf] = ante[lf] implies conseq[lf]
parenthesis[pf] = "("in[pf]")" or left[pf] + right[pf]
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Recursive Programming

Inductive definitions build up from the base case to any degree of complexity.  Recursive

programs reduce any degree of complexity one step at a time until the base case is reached.  A

recursion must be wwell-founded, that is the steps must eventually terminate at the base.  In

most cases, the step increment is monotonically decreasing.

Recursive programs can be expressed in two forms, mathematical and accumulating.  The

mathematical form accumulates unevaluated operators on the outside and evaluates them after

the base is reached.  The accumulating form evaluates operators as they accumulate;  when the

base is reached, the result is returned.

Mathematical: if (base-case isTrue) then base-value else F[recursive-step]

Accumulating: if (base-case isTrue) then accum else F[recursive-step, accum+step]

Primitive Recursion Templates

These templates refer to arbitrary functions F on types of data structures.  P is an arbitrary

Boolean function, G and H are arbitrary domain functions

General: F[x] = if P[x] then G[x]
else H[F[x]]

Unstructured: F[x] = if P[x] then G[x]
else F[H[x]]

Integers:  F[n] = if n=0 then G[0]
else H[n-1,F[n-1]]

Lists: F[u] = if null[u] then G[nil]
else H[head[u],tail[u],F[tail[u]]]

Trees: F[v] = if leaf[v] then G[v]
else H[left[v],right[v],F[left[v]],F[right[v]]]

Graphs: F[v] = if null[v] then G[nil]
else H[adjacent[v],F[not-visited[adjacent[v]]]]

Some Programming Examples

Here are a variety of programming styles for the function Factorial.  Note that as the style

moves more toward mathematical and away from procedural, the code becomes more succinct.  It

also becomes easier to debug and to verify.  In general, the evolution of programming languages

is away from CPU specifics and toward mathematical generalizations.  This evolution simply

means that more and more of the low-level mechanical details are moved out of the

programming language and into the compiler.
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proceduralFactorial[n_Integer?Positive] :=
Block[{iterator = n, result = 1},
      While[iterator != 1,

      result = result * iterator;
      iterator = iterator - 1];

      result]

sugaredProceduralFactorial[n_] :=
Block[{result = 1},
      Do[result = result*i,{i,1,n}];

       result]

recursiveFactorial[n_] :=
If[n == 1,1,n*recursiveFactorial[n-1]]

rulebasedFactorial[1] = 1;
rulebasedFactorial[n_] := n*rulebasedFactorial[n-1]

mathematicalFactorial[n_] :=
Apply[Times,Range[n]]
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Program Verification, Induction Exercises

Here is a collection of relatively simple program transformations for practice of inductive

proof and recursive implementation.  Domain definitions and facts are provided.  Use simple

numerical and algebraic facts in the case of integers.

There are several approaches you might take to this exercise (in order of difficulty):

1.  Use the domain theories and the induction principle to write recursive code.

2.  Use the domain axioms to prove the assertions algebraically by hand.

3.  Submit a subset of the axioms and rules to an algorithmic theorem prover (such as

Mathematica, Maple, Reduce, Otter, or any of the tools available on the web).

Induction in the Integer Domain:

{i,j,k,n} are positive integers.  Note that all integer functions can be defined inductively.

Definitions

i + j  =def=  i + 0 = i
  i + next[j] = (i + j) + 1

i * j  =def=  i * 0 = 0
  i * next[j] = (i * j) + i

i ^ j  =def=  i ^ 0 = 1
  i ^ next[j] = (i ^ j) * i

sum[n] =def=  sum[0] = 0
  sum[i+1] = sum[i] + (i + 1)

fac[n] =def=  fac[0] = 1
  fac[i+1] = fac[i] * (i + 1)

fib[n] =def=  fib[1] = fib[2] = 1
  fib[i+2] = fib[i+1] + fib[n]

Prove

•  (i * i) = (i ^ 2)

•  (i * j) + (i * k) = i * (j + k)

•  (2 * sum[n]) = n * (n + 1)

•  (n ^ 2) = (2 * sum[n-1]) + n

•  (3 * sum[n^2]) = (2*n + 1) * sum[n]

•  fib[n^2] = fib[n+1] * fib[n]

•  sum[n^3] = (sum[n] ^ 2)
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Recursive Programming

•  Write recursive programs for the following functions:

Domain

equal[a,b] All domains -> Boolean

difference[i,j] Natural numbers -> Integer

fibonacci[i] Natural numbers -> Natnum

accumulating-fibonacci[i] Natural numbers -> Natnum

greater-than[i,j] Integers -> Boolean

remainder[i,j] Integers -> Natnum

substitute[x,y,z] Lists -> List

ordered-insert[item,x] List -> List

same-length[x,y] Strings -> Boolean (do not use Integers)

remove-substring[x,y] Strings -> String

explode[x] String -> List

fill[item,a] Array

ordered[a] Array -> Boolean

is-path[list,x] Trees -> Boolean

depth[x] Trees -> Integer

flatten[x] Trees -> List

search[x, property] Trees -> node

best-leaf[x] Trees -> atom

occurrences[value,x] Trees -> Integer

balanced-branches[x] Trees -> Boolean

union[x,y] Sets -> Set

intersection[x,y] Sets -> Set

connected[n1,n2,g] Graphs -> Boolean

delete-vertex[v,g] Graphs -> graph

complement[g] Graph -> Graph

reachable[v1,v2,g] Graph -> Boolean

partition[x] List -> Lists  (harder)

tautology[lf] Boolean -> Boolean (harder)

•  Now prove that each program is correct.

•  Do these recursive programs terminate?

Oscillate, for one integer (hint:  try n=27):

osc[n] =def=
if n=1 then 1

else if even[n] then osc[n/2]
else osc[3n+1]
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Ackerman, for two integers m and n:

ack[m,n] =def=
if m=0 then n+1

else if n=0 then ack[m-1,n]
else ack[m-1, ack[m, n-1]]

Ackerman, for two strings:

sack[x,y] =def=
if (char x) then x•y

else if (char y) then sack[rest[x],y]
else sack[rest[x], sack[x, rest[y]]

Takeuchi for three integers:

tak[i,j,k] =def=
if i<=j then k

else tak[tak[i-1,j,k],tak[j-1,k,i],tak[k-1,i,j]]

•  How would you prove the correctness of this do-loop?

(2 ^ i) = (res := 1; for n from 1 to i do (res := res * 2))

Induction in the String Domain:

{u,v} are characters, {x,y} are strings

•  Prove that the length of two strings concatenated together is the sum of the lengths of each.

•  Prove that the length of the reverse of a string is the same as the length of the string.

•  Develop a theory of ssubstrings of a string.  Here are the axioms you'll need:

The definition of a substring:

x sub y  =def=  z1*x*z2 = y

The empty string is a substring of every string

E sub y

No string is a substring of the empty string

not(y sub E)

Prefixing a character to a string maintains the substring relation

if (x sub y) then (x sub u•y)
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The following three properties of the substring relation establish that substring is an ordering
relation.

transitivity if s1 is a substring of s2, and s2 is a substring of s3,

then s1 is a substring of s3

antisymmetry if two strings are substrings of each other, they are equal

reflexivity a string is a substring of itself

•  Prove or define the above relations.  Then prove:

•  A string is a substring of itself when a character is prefixed.

•  A string is a substring of the empty string when it is the empty string.

•  Substring implies all the characters in the substring are in the string.

•  The length of a substring is equal to or less than the length of the string.

•  Extend the results:

The definition of a pproper substring:

x proper-sub y  =def=  not(z1=E and z2=E) and z1*x*z2 = y

•  Prove the properties of proper substrings (transitivity, irreflexivity, asymmetry)

•  Use the results:

The definition of a palindrome:

palin[x]  =def=  (x = rev[x])

•  Write a provable implementation of a palindrome tester/generator

palin[x] = (x = y*rev[y]) or (x = y*u*rev[y])

Finally, here's an example of how a larger provable program might be built to construct long

palindrome sentences, using a dictionary and a grammar checker:

1.  select an arbitrary word from the dictionary

2.  find the words which begin with the reverse of that word.

3.  identify the end substring of the new word which is not covered by the first word

4.  reverse the uncovered substring and find words ending with that substring

5.  recur to step 2 until failure to match

6.  use the grammar parser to screen the result for proper sentence structure

7.  recur to step 1 to try again


