
Applied Formal Methods

1

Modeling with Logic

The Modeling Hierarchy

Conceptualization (imaginary, perceptual, cognitive, real world)

Mathematical Model (formal, symbolic, abstract, mathematical)

Data Structure and Algorithms (representation, computational, software)

Machine Implementation (actual, structured, physical hardware)

Mathematical  Structures

propositional calculus  (Boolean algebra)

truth symbols

propositional symbols (binary variables)

connectives  (and, or, not)

interpretations

predicate calculus
truth symbols

constant symbols

variable symbols

function symbols

predicate symbols (relations)

quantifiers

equality and orderings

non-negative integers
data structures

strings trees lists sets

bags  (multi-sets) tuples graphs

Formal Modeling

A  formal system (a mathematical system) consists of

1.  several sets of labels (for objects, functions, relations) called constants,

2.  rules for building compound sentences (or equations or expressions),

3.  rules for evaluating and simplifying compound expressions, and

4.  some axioms or assumptions which assert equivalence sets.

Formal = Atoms + Forms + Transforms + Axioms

Ar istot le

Aristotle classified declarative language using three polar categories

single vs compound (Socrates is happy.  vs   Man is happy.)

universal vs particular

affirm vs deny
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The latter two categories form the  Square of Opposition

A F F I R M DENY

UNIVERSAL A    Every  _  is  _ . EE    No  _  is  _ .

(Everyone is happy.) (No one is happy.)

PARTICULAR I    Some  _  is  _ . OO    Some  _  is not  _ .

(Someone is happy.) (Someone is not happy.)

The Syllogism

The Syllogism according to Aristotle:

"discussion in which, when things are posited, other things necessarily follow."

All men are mortal.

Socrates is a man.

Thus, Socrates is mortal.

This non-Aristotelian form of logic was developed into

the first ever Axiomatic System with variables.

Crisis in the Twentieth Century

Oh No!  There is no consistency in mathematics, there are paradoxes in every system.

Logicism  (Russell)

Mathematics is identical to logic.  (We'll patch the holes.)

Intuitionism  (Brouwer)

Mathematics presupposes concepts.  Concepts rest on natural numbers.

(We'll construct what is known, and not admit infinity.)

Formal ism  (Hilbert)

Mathematics is a set of syntactic transformations.  (We'll refuse to interpret it.)

Predicate Calculus

A ggeneral purpose language for describing objects, facts, and transformations for 

particular domains.  Also called First Order Logic.  It consists of

connective logic {and, or, if, not, iff}  inference, proof

object domains {<unique atoms>}

quantification {all x, exists x}

predicates classes and properties

relations True associations between objects

functions indirect names, maps from one object to another
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Proof Techniques

Mechanisms of Proof

Truth tables exhaustive analysis of all possible cases

Natural deduction using language and intuition to figure out truths

Resolution a computational algorithm for deduction

Boundary logic a new form of spatial representation and parallel deduction

Generic Applications of Proof Theory

    1.  Database querying and management  (question answering)

Facts and database entries are expressed as logical assertions.

Abstract relations between facts are expressed as rules with variables.

To answer a query,  derive the answer from the facts and the rules.

    2.  Program analysis and verification  (compiling)

Program execution is expressed as logical formulas.

To verify a program, derive the termination conditions from the execution formula.

    3.  PPlanning  (state transformation and finite state machines)

States and state transformations are expressed as logical formulas.

To transform the start into the goal, derive the final state from the initial state.

    4.  Circuit design  (logic synthesis)

Circuits are expressed as logical formulas.

To execute a circuit, substitute the Boolean input values and evaluate the formula.

To minimize a circuit,  apply transformations to the logical formula.

    5.  DDecision making  (decision analysis)

Decisions are expressed as Boolean choices, which are expressed as logical formulas.

To make a complex network of decisions, evaluate the corresponding logical forms.

Motivation for the Hard Problem

The essential problem is that proof is difficult.  How logic is represented and how it is

transformed determine the ease of (all) computation.

•  Multiplicity ought not be posited without necessity. (Occam)

•  Programming =  data structure  +  algorithm (Wirth)

•  Proof =  definition  +  axiom (Lakatos)

•  A good representation for a problem permits simple transformations to a solution

however

any given representation blinds us to other ways of thinking. (Winograd)
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Truth Table Analysis

Examining all possibilities is exponential in number of cases:  there are 2^n cases to evaluate

for n variables even in the simplest case of propositional logic without functions or relations.

However, lookup tables are a brute force algorithm that is easy to understand and to implement.

The technique is to list all possible combinations of values for each variable, and use simple

definitions of the logical connectives to evaluate compound sub-expressions.

Example: if (P and Q) then (R = (not S))

P  Q  R  S   (not S) (P and Q) (R = (not S)) (if P&Q then R=~S)

T  T  T  T F T F F
T  T  T  F T T T T
T  T  F  T F T T T
T  T  F  F T T F F
T  F  T  T F F F T
T  F  T  F T F T T
T  F  F  T F F T T
T  F  F  F T F F T
F  T  T  T F F F T
F  T  T  F T F T T
F  T  F  T F F T T
F  T  F  F T F F T
F  F  T  T F F F T
F  F  T  F T F T T
F  F  F  T F F T T
F  F  F  F T F F T

The Rules of Natural Deduction

Natural deduction evolved from natural language and from human intuition, so it is relatively easy to

understand.  It is very difficult to find the right rules to apply at the right time (exponential in

difficulty of use).  Recall that humankind has had an extremely difficult time understanding logic,

and logic itself is still undergoing extreme revision.  The name of the primary rule of natural

deduction (modus ponens) is still in Latin.  "||=" means "logically implies" while "-->" is simply a

symbol referring to a specific truth table.  The same subtle difference exists between "aand" and "&&".

Modus Ponens: A and A -> B |= B

Modus Tollens: ~B and A -> B |= ~A

Double negation: A |= ~~A
~~A |= A

Conjunction: A and B |= A & B

S imp l i f i cat ion: A  &  B |= A
A  &  B |= B

Addition: A |= A  v  B



Applied Formal Methods

5

Natural Deduction Proof Techniques

Modus Ponens: A and A |- B |= B

Modus Tollens: ~B and A |- B |= ~A

Conditional proof: A |- B |= A -> B

Di lemma: (A or B)  and (A |- C)
       and (B |- C) |= C

Contradiction: (A |- B)  and   ~B |= ~A

Cases: (A is True  |- B) and
(A is False |- B) |= B

Note that "||-" is a sequence of formal steps, while "||=" is assurance of logical truth.

Generalization of Deduction

The rules of inference, or natural deduction, apply at three different levels of abstraction:

individual propositions,  individual sentences, and collections of sentences.

Modus Ponens serves as an example.

Atoms: (p  and (p implies q))  implies q

Sentences: (A  and (A implies B))  implies B

Collections of sentences:    ({A,B...} and ({A,B...} implies {C,D...}))  implies {C,D...}

Deductive Steps

There are three separate concepts of proof step (written above as "implies") which have been

shown to be equivalent:  material implication, logical implication, and entailment.

Material impl ication: p -> q

p q  (p -> q)
0 0      1
0 1      1
1 0      0
1 1      1

Material implication is defined by the Truth Table of values.

Notice that the second row, "(if False then True) is True",  does not make sense in

language structures, it is True by definition.
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Logical Implication: p  |=  q

"if (p is logically True) then (q is logically True)"

Logical implication is defined by common sense and by the rules of deduction.

Formal Proof: p  |-  q

"if (p is True) then a sequence of implications shows (q is True)"

Formal proof is defined by taking logical implication steps from p to q

Natural Deduction Example

In English:

Premise 1: If he is lying, then (if we can't find the gun, then he'll get away).

Premise 2: If he gets away, then (if he is drunk or not careful, then we can find the gun).

Premise 3: It is not the case that (if he has a car, then we can find the gun).

Conclusion: It is not the case that he is both lying and drunk.

Encode the propositions as letters:

L = he is lying

G = we can find the gun

A = he will get away

D = he is drunk

C = he is careful

H = he has a car

Premise 1: If L then (if (not G) A)
Premise 2: If A then (if (D or not C) then G)
Premise 3: Not (if H then G)
Conclusion: Not (L and D)

Encode the logical connectives:

P1: L -> (~G -> A)
P2: A -> ((D v ~C) -> G)
P3: ~(H -> G)
C: ~(L & D)

Figure out a good proof strategy.  This step is not algorithmic, and is the source of difficulty in

natural deduction approaches.  Here the Contradiction strategy works:

1. (L & D) assume the negated conclusion, plan to show a contradiction

2. L simplification of 1

3. D simplification of 1

4. ~G -> A modus ponens with 2 and  P1

5. ~(~H v G) rewrite P3 with conditional exchange:  X -> Y = ~X v Y
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6. ~(~H v ~~G) double negation of part of 5

7. H & ~G rewrite 6 with DeMorgan:  ~(~X v ~Y) = X & Y
8. ~G simplification of 8

9. A modus ponens with 8 and 4

10. ((D v ~C) -> G) modus ponens with 9 and P2

11. (D v ~C) addition of ~C to 3

12. G modus ponens with 11 and 10

13. G & ~G conjunction of 8 and 12

14. ~(L & D) contradiction 1-13

Steps from 1 to 13 have created a contradiction:   G & ~G = False, therefore the assumption

on line 1 is false.  But that assumption is the negation of the conclusion.  Therefore the negation

of the negation of the conclusion is True.  That is, the conclusion is True.

Variable Renaming

Variables are used in algorithmic deduction as arguments to functions and relations.  In this

case, it is necessary to assure that each variable name is unique.  This is in contrast with the

standard (pre-computational) conventions of logic and algebra which use the same variable

names in different rules.  The convention existed because quantification "protected" the variable

names by scoping rules, just as local variable declarations protect name clashes in

programming.

Conventional:

R1. if P(x) then Q(x)
R2. if R(x,y) and R(y,z) then R(x,z)
R3. if P(x) and R(x,y) then P(y)

Computational:  assign all variables unique names.

R1. if P(_1_) then Q(_1_)
R2. if R(_2_, _3_) and R(_3_, _4_) then R(_2_, _4_)
R3. if P(_5_) and R(_5_, _6_) then P(_6_)

Un i f i ca t ion

Facts do not contain variables, functions and relations can contain variables since they are

intended to be abstractions.  (The lexicographic arrangement of a form is an arbitrary choice,

but it must be consistent within a database for matching to succeed.)  Facts are combined with

functions and relations through unification, a generalization of pattern-matching.

Pattern-matching comes in three varieties:

1.  The pattern is a specific ground (a fact with no variables).  A match is exact, typographical

character by character.  Note that no conclusions follow if a pattern is not in the database.

(john is-parent-of sue)  =match=  (john is-parent-of sue)
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2.  The pattern contains variables which match grounds in the database.  In this case,

more than one match is possible.  The type of pattern variable can be used to control matching.

Below, the bindings are _1_ = {john, betty}.

(_1_ is-parent-of sue)  =match=  (john is-parent-of sue)
      =match=  (betty is-parent-of sue)

3.  Both the pattern and the data being matched contain variables.  This matching procedure is

called unification.  Below, the bindings are _1_ = {_2_} and _3_ = {sue}.  The result is the

further query:  (_2_ is-ancestor-of sue)

(_1_ is-parent-of sue)  =unify=
 if (_2_ is-parent-of _3_) then (_2_ is-ancestor-of _3_)

In matching, only variables from one side of the equation can be matched.  In unification,

variables on either side can be matched.  Examples:

  (parents-of _1_ are (father-of tom) (mother-of sue) )  =unify=
(parents-of sue are (father-of _2_) _3_)

bindings:  _1_ = { sue },  _2_ = { tom },  _3_ = { Mother(sue) }

  (_1_ likes _2_) and (sue likes tom)  =unify=
(tom likes sue) and (not (_3_ likes _4_))

bindings:  fail.    The word "not" does not match.

  F( G(a, _1_), H(_2_, J(_2_, _1_)) ) =unify= F(_3_, H( K(_3_), J(K(_3_), d)))

bindings:  _1_ = {d},  _2_ = { K( G(a, d) ) },  _3_ = { G(a, d) }

Reso lut ion

In 1965, John Robinson devised a computational approach to proof called resolution.  The

resolution principle uses the two possible cases of one variable.  If the fact that a thing is True

leads to one conclusion, and the fact that it is False leads to another conclusion, then in any case

either the first or the second conclusion is True.

((if P then Q) and (if (not P) then R))  implies (Q or R)

As a deductive rule, resolution can be stated in increasing general forms:

   P  and   ~P or False |=   False

   P  and     ~P or Q |=     Q

P or Q  and     ~P or Q |=     Q

P or Q  and     ~P or R |=   Q or R

   (P and U) or Q  and..(~P and V) or R   |=  (U or Q) or (V or R)
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Resolution proof uses a clausal data structure consisting of sets of literals in disjunction.  A

pair of sets, one with a positive occurrence of a variable and one with a negative occurrence, is

resolved by forming the union of the two sets, and deleting the resolvent variable.

{p, q} union {~p, r}   |=  {q, r}

Facts are expressed as a singular set:

{p}

Rules are converted from implicational form to disjunctive form:

p -> q  ==>  ~p or q   ==>   {~p, q}

When the resolvent atoms have  internal structure (functions and relations), the internal

variables are unified in the course of resolving the atoms.

Resolution Example

Example:  Who are Jon's parents?

F1. (Bob is-father-of Jon) = {bFj}
F2. (Sue is-mother-of Jon) = {sMj}
R1. If (_1_ is-father-of _2_)

then (_1_ is-parent-of _2_) = {~1F2, 1P2}
R2. If (_3_ is-mother-of _4_)

then (_3_ is-parent-of _4_) = {~3M4, 3P4}
Q. If (_5_ is-parent-of Jon)

then (answer-is _5_) = {~5Pj, A5}

Resolve C1. F1 and R1 = {bPj}
C2. F2 and R2 = {sPj}
C3. R1 and Q = {~5Fj, A5}
C4. R2 and Q = {~5Mj, A5} rename  {~6Mj, A6}

C5. Q and C1 = {Ab}
C6. Q and C2 = {As}
C7. F1 and C3 = {Ab}
C8. F2 and C4 = {As}

The algorithm completes all available resolutions, so that complete resolution over a database

usually generates the same answer more than once.   Database queries distinguish whether one

match, or answer, is requested, or whether all matches are requested.
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Quantif icat ion

Quantifiers introduce sets into logic, and serve to define the scope of variables in a logical

expression.

Universal quantification:  All x.  P(x)

The statement  All x. P(x) is True exactly when the predicate P (or the characteristic

function for the set P) is True for all objects in the set U for which x is an arbitrary member.

For finite domains U,  All x. P(x)  iff  (x1 and x2 and ... and xn)

Existential quantification: Exists x. P(x)

The  statement  Exists x. P(x)  is True exactly when the predicate P is True for at least one

object in the set U for which x is an arbitrary member.

For finite domains U,  Exists x. P(x)  iff  (x1 or x2 or ... or xn)

Relationships between Quantifiers

    All true = none false: All x. P(x)  iff  (not (Exists x. (not P(x))))

    All false = none true: All x. (not P(x))  iff  (not (Exists x. P(x)))

    Not all true = at least one false: (not (All x. P(x)))  iff  Exists x. (not P(x))

    Not all false = at least one true: (not (All x. (not P(x))))  iff  Exists x. P(x)

Algebraic Proof Techniques

Standard Form  (Boolean systems only)

A = B iff ((A -> B) & (B -> A))  isTrue

Direct Transformation  

A = B iff  A |- B  or  B |- A

Mutual Transformation

A = B iff  A |- C  and  B |- C

Case Analysis (Z: X => Y means "Y is substituted for X in expression Z")

A = B iff   (A:  E =>  True) = (B: E =>  True)
and   (A:  E => False) = (B: E => False)
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Complexity in Computation

Model Theory

Given an object domain and a collection of functions and relations on objects in that domain,

a model of the domain is defined by its facts:

all atoms (atom-names) in the domain are True

all atoms not in the domain are False

Example:  Object domain = {Mary, Tom, John} Relation: {Likes}

all possible atoms: all possible models:

Likes[Mary, Tom]   1 empty state (no atoms true)

Likes[Mary, John]   6 one Likes atom isTrue

Likes[John, Mary] 15 two Likes atoms  are True

Likes[Tom, Mary] 20 three True

Likes[John, Tom] 15 four True

Likes[Tom, John]   6 five True

  1  six True

64    possible models in total

The set of all possible models is called the Herbrand Universe.  In theories with integers or

theories with functions, this universe is usually infinite.

The Equivalence of Deduction and Computation

From 1920 to 1970, a central issue for theoretical computer science was whether a

computation maintained the meaning of a logical (deductive) process.  Fortunately the answer is

yes, given that the programming language follows the rules of logic.  These are the essential

concepts:

P |- Q Single turnstile:  Q is ccomputed from P

P |= Q Double turnstile:  Q is deducible from P

Soundness: IIf  P |- Q,  then  P |= Q

A sound computation always maintains the deductive model.  The computation

never generates a False model, it never produces an incorrect fact.

Completeness: IIf  P |= Q,  then  P |- Q

A complete computation never varies from the deductive model.  The computation

generates all True models.  If something can be deduced, the computation will be

able to deduce it.
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Sound and Complete: PP |- Q  =  P |= Q

The deductive model and the computation represent the same Universe.  The

computation produces all that can be deduced, and only what can be deduced.

Dec idab i l i t y

Un i ve r sa l :

If it can be computed formally, then it can be computed using First Order Logic

(Turing equivalence).

Decidable:

The computational procedure will terminate with a Yes/No result.

Semi-dec idab le :

The computation might halt, but you don't know when.  It may never halt if you

ask the wrong kind of question.  What we can't do is ask questions which depend on

the ffailure to prove something:

No: "Check to see if nothing is wrong"

No: "Prove that this search will fail to find X"

SAT and TAUT

The most important theoretical question in Computer Science (with the most critical

practical applications)  is

Can we write an algorithm which runs

in polynomial space and time with regard to the number of variables

that shows that an arbitrary expression in Propositional Calculus

has a non-trivial variable in it?

SAT:  Is a Boolean expression SATisfiable?

That is,  is there an assignment of variable values (True or False) which results

in different outcomes for the entire expression (again either True or False)?

TAUT:  Is a Boolean expression a TAUTology

That is, is every variable in the expression irrelevant?  Is the expression

always True regardless of the values assigned to the variables in it?

If TAUT or SAT is solvable within polynomial bounds, then  PP = NP
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P =?= NP

Almost all complex but common computational problems can be mapped onto the SAT problem.  If

you can show propositional satisfiability within polynomial bounds, then most computational

problems have an efficient solution.  In particular, programs and circuits can be verified

efficiently.

Polynomial complexity:  O[n^some-power]

some polynomials:    n^2      (n+1)(n - 1)      14n^6 + 3n^3 + n + 104

Non-deterministic polynomial complexity:  O[2^n] or worse

some non-polynomials:    2^n      7^(n + 3)      n!      2^(2^n)

Polynomial algorithms are called tractable:   they all run in "reasonable" time.  Non-

polynomial algorithms are intractable:  none of them are efficient enough to be useful for

problems of arbitrary size.

Irrelevant Variables

In 1930, Huntington provided the first proof that irrelevant logical structures of arbitrary

complexity can be introduced into a logical form.  Today, we can easily see how variables can

occur in a logical form (or in a computational control structure) without contributing to the

meaning of the form.

(A or True) = True

The logical law of Addition,  A |= (A or B), permits the  inclusion of arbitrary forms through

disjunction.  In a program, the order of execution of two forms joined by OR is important,

because one of the forms may render the computation of the other irrelevant.  However,

compilers can search for the "True" token in linear time, and simplify the code accordingly.  It

is no more difficult when the irrelevant forms are hidden in multiple disjunction:

(A  or (B or (C or True)))  =  True

(A or ~A) = True

The Law of Excluded Middle is more difficult, since it appears that "A" might need to be evaluated

at least once.  However, if the pattern "A" can be located in two different places by pattern-

matching, it can be coalesced into one.  Code compilers do this so that the subroutine "A" is

evaluated only once, and the result, rather than the call, is stored in memory.   If the coalesced

form is in the relation of Excluded Middle, it can be eliminated altogether, without evaluation.

The form of "A", however, may look different in different places, due to other logical invariants.

For example:

A and B  =  B and A

could make Excluded Middle more complex:
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((A and B) or (not (B and A))  =  True

This problem is resolved by sorting the form into a standard, or canonical, ordering.  Since

sorting can be achieved efficiently, this type of logical embedding is not the source of complexity

(although it does require more computation to avoid.

X = Y    iff    (X -> Y) & (Y -> X) = True

In the Boolean domain, an algebraic equivalence can always be converted into a Truth statement

in standard form.  This permits hiding irrelevant variables in yet another way.  Using the

symmetry of AND as an example:

((A and B) -> (B and A)) & ((B and A) -> (A and B))  =  True

This too can be addressed by sorting the form into a canonical ordering.
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Boundary Techniques

Boundary Logic

Boundary logic uses a spatial representation of the logical connectives.  Because boundaries

delineate both objects and processes, boundary forms can be evaluated using either an algebraic

(match and substitute) process or a functional (input converted to output) process.

Representation of logic and proof in spatial boundaries is new, and quite unfamiliar.  Boundary

logic is not based on language or on typographical strings, nor is it based on sequential steps.

Boundary techniques are inherently parallel and positional.  The meaning, or

interpretation,  of a boundary form depends on where the observer is situated.  From the

outside, boundaries are objects.  From the inside, you cross a boundary to get to the outside;

boundaries then are processes.  This dramatically different approach (that is, permitting the

observer to be an operator in the system) does not change the logical consequences or the

deductive validity of a logical process.

Spatial representations have built-in associativity and commutativity.  The base case is no

representation at all, that is, the void has meaning in boundary logic.  Logical expressions

are simplified by  erasure of irrelevancies rather than by accumulation of facts.

Boundary Logic Representation

log i c boundary comments

False <void> no representation.  Note:  (()) = <void>
True (  ) the empty boundary

A   A objects are labeled by names
not A  (A)
A or B   A  B Disjunction is sharing the same space
A and B ((A)(B))
if A then B  (A) B Implication is separating by a boundary
A iff B (A B)((A)(B))

In the above map from conventional logic to boundaries, the many textual forms of logical

connectives condense into one boundary form.  Note that the parens, ( ), is a linear, or one-

dimensional, representation of a boundary.  Circles and spheres are expressions of boundaries

in higher dimensional representations.

Multiple Readings of the Same Form

A simpler notation expresses in one form the many different forms of a more complex notation.

For example:
( (A) (B) ) A and B

(not ((not A) or (not B)))
(not (A implies (not B)))
((not A) or (not B)) implies False
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A proof of DeMorgan’s Law:

(A and B)  iff  (not ((not A) or (not B)))

Transcribe:   ((A)(B)) = ((A)(B)) equal by identity

Boundary Logic Algebraic Process

The transformation axioms of boundary logic:

Dominion  (the halting condition, when to stop)

( ) A  =  ( )

Involution  (double negation, how to remove excess boundaries)

((A))  =  A

Pervasion  (how to remove excess occurrences of variables)

A (A B)  =  A (B)

Each axiom suggests a definite reduction strategy:  eerasing irrelevant structure to convert

the left side of the equation to the right side.

A Boundary Logic Example:  Proving Modus Ponens

Modus Ponens: (A and (A implies B)) implies B

Transcribe: ( ((A) ((A) B)) )  B

Simplify (prove):

(  ( ( A ) ( (A) B ))  )  B

           ( A ) ( (A) B )      B    involution
           ( A ) ( (A)   )      B    pervasion of B
           ( A )    A           B    involution
           (   )    A           B    pervasion of A
           (   )                        dominion

The remaining form is transcribed back into logic as True.
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Truth Table Example in Boundary Logic

Example: if (P and Q) then (R = (not S))

Encode as boundaries:

(P  and  Q) ((P) (Q))
(R = (not S)) (R (S)) ((R)((S)))  =  (R (S)) ((R) S)

if...then... (((P) (Q))) (R (S)) ((R) S) = (P) (Q) (R (S)) ((R) S)

The expression is True whenever Dominion applies

When P is False, it is erased:    ( ) (Q) (R (S)) ((R) S)  =  ( ) dominion
When Q is False:    (P) ( ) (R (S)) ((R) S)  =  ( ) dominion

Note that the form (X (Y)) (Y (X)) is True when  X is not the same as Y,  so the expression is

True when R is False and S is True.  Substituting:

(P) (Q) ( (( ))) (( ) ( ))  =  (P) (Q)  ( )        =  ( )

and when R is True and S is False

(P) (Q) (( ) ( )) ( (( )))  =  (P) (Q)        ( )  =  ( )

These four cases identify all the True forms of the expression.

Conversely, the expression is False only when everything vanishes, that is, when

(P is True)  and  (Q is True)  and ((R and S are both True) or (R and S are both False))

  (( ))          (( ))    ( ( ) (( ))) ((( )) ( ))      (( )) (( ))

Natural Deduction Example in Boundary Logic

Premise 1: If  L  then  (if  (not  G)  A)
Premise 2: If  A  then  (if  (D  or  not  C) then G)
Premise 3: Not (if  H  then  G)
Conclusion: Not (L and D)

Encode the logical connectives as boundaries, and simplify:

P1: (L) ((G)) A    =  (L) G A involution
P2: (A) (D (C)) G
P3: ((H) G)
C: (((L)(D)))     =  (L)(D) involution
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Join all premises and conclusions into one form, using the logical structure:

(P1 and P2 and P3) -> C

The proof structure of "conjunction of premises imply the conclusion" as boundaries:

( ((P1) (P2) (P3)) ) C  =  (P1) (P2) (P3) C       involution

Substituting the forms of the premises and conclusion, and reducing:

    ( (L) G A )  ( (A) (D (C)) G )  ( ((H) G) )  (L) (D)
    ( (L) G A )  ( (A) (D (C)) G )     (H) G     (L) (D)      involution
    ( (L)   A )  ( (A) (D (C))   )     (H) G     (L) (D)      pervasion of G
    (       A )  ( (A) (D (C))   )     (H) G     (L) (D)      pervasion of (L)
    (       A )  (     (D (C))   )     (H) G     (L) (D)      pervasion of (A)
    (       A )         D (C)          (H) G     (L) (D)      involution
    (       A )         D (C)          (H) G     (L) ( )      pervasion of D
                                                     ( )      dominion

Interpret the final form: ( ) = True

Boundary Quantification

All x. P(x) (x) Px x implies Px  isTrue

Exists x. P(x) ((x)(Px)) x and Px  isTrue

Quantifier relations: Standard form Boundary form

  All x. P(x)  iff  (not (Exists x. (not P(x))))   (x) Px = (((x)((Px))))

  All x. (not P(x))  iff  (not (Exists x. P(x)))   (x)(Px) = (((x)(Px)))

  (not (All x. P(x)))  iff  Exists x. (not P(x))   ((x) Px) = ((x)((Px)))

  (not (All x. (not P(x))))  iff  Exists x. P(x)   ((x)(Px)) = ((x)(Px))


