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Re lat ions

Re lat ions

A relation is an ordered set of tuples.  A binary relation is a set of ordered pairs.

Domain: the set of first elements in the ordered pair

Range: the set of second elements in the ordered pair

Cartesian Product: the set of all possible ordered pairs (domain X range)

Empty Relation: the set of no ordered pairs

Inverse: the relation formed by exchanging the range and the domain

Relation on a Set: the domain and the range are the same set

Identity Relation: (x,x) | x inR
Equivalence of ordered pairs:  (a,b) = (c,d)   iff   a = c  and  b = d

Relations as Graphs

Relations are a way of pointing from one set to another.  Relations establish directional pointers

between elements of the domain and elements of the range.  Thus, every relation is isomorphic to

a directed graph with elements as nodes and concrete relations as arcs.

Types of Existence

Some elements in the domain do not map onto a element in the range.

Some elements in the range do not correspond to an element in the domain.

Types of Connectivity

Relations support any type of connectivity

between elements in the domain and those in the range.

 GRAPH    NAME Examp le

one-to-one {(a,1),(b,2),(c,3)}

one-to-many {(a,1),(a,2),(b,3)}

many-to-one {(a,1),(b,1),(c,2)}

many-to-many {(a,1),(a,2),(b,1),(c,2)}
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Types of Relational Structure

Relations on a Set

reflexive all x | (x,x) inR

symmetric if (x,y) inR, then (y,x) inR

transitive if (x,y) inR and (y,z) inR, then (x,z) inR

antisymmetric if (x,y) inR and (y,x) inR, then x=y

trichotomy (x,y) inR xor (y,x) inR  xor x=y

irreflexive not reflexive

asymmetric not symmetric

Funct ions

identity Id op A = A op Id = A

inverse A op iA = iA op A = Id

associative (A op B) op C = A op (B op C)

commutative A op B = B op A

distributive A op1 (B op2 C) = (A op1 B) op2 (A op1 C)

idempotent A op A = A

Equiva lences

An equivalence set  is a relation which is

reflexive xRx
symmetric xRy -> yRx
transitive xRy and yRz -> xRz

Pa r t i t i o n s

A partition of a set (or a relation) is a collection of disjoint subsets of the set.  The union of

partitions is the entire set.

The equivalence relation determines a partition, and each partition of a set defines an

equivalence relation.
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Order ings

A partial order is a relation which is

reflexive xRx
antisymmetric xRy and yRx -> x=y
transitive xRy and yRz -> xRz

A total order is a relation which is

trichotomous xRy xor x=y xor yRx
transitive xRy and yRz -> xRz

Cartesian Product

A relation is between two sets.  The Cartesian Product of two sets is the set of ordered pairs

consisting of all possible combinations of elements from each set.  Example:

S1 = {1,2,3} S2 = {a,b}

S1xS2 = {(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)}

The set of all possible relations between S1 and S2 is defined by all the possible combinations of

the product elements.  In the example above, there are six product pairs, so the total number of

possible relations is

6 things taken 0 at a time =   1

“ 1 “ =   6

“ 2 “ = 15

“ 3 “ = 20

“ 4 “ = 15

“ 5 “ =   6

“ 6 “ =   1

Total number of relations = 64 = 2^6

There are two ways of analyzing the structure of relations illustrated above.

1. Using the coefficients of the binomial expansion

sum[i choose n] for i=0..n

2.  Using the power set of the relational pairs

2^n
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Ways to View Relations

I. A set of ordered pairs: {(a,b),(a,c),(b,d)…}

I I . A set of points matching elements in the Domain set with elements in the Range set.

|
|  *

Range |         *
|    *
|___________
    Domain

I I I .  A lookup table between two sets

__R_|__a__b__c__
    |
  a |  x     x
    |
  b |     x
    |
  c |        x

IV.  A matrix:

            -           -
|  1  0  1  |
|  0  1  0  |
|  0  0  1  |

            -           -

V.  A connection graph:

c
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•

•
•
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VI. A relational database:

R  a  a
R  a  c
R  b  b
R  c  c
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VII. A link table (a possibility database):

A   B   C    n

0   0   0    0
0   0   1    1
0   1   0    1
0   1   1    0
1   0   0    1
1   0   1    1
1   1   0    0
1   1   1    0

Relations on a Set

When both the Domain and the Range of a relation are the same Set, the relation is on a set.

The lookup table and matrix representations can contain common patterns, which define the

concepts associated with relations.

_R_|_a_b_c_
REFLEXIVE  a | x
  b |   x
  c |     x

_R_|_a_b_c_
SYMMETRIC  a |   x
  b | x
  c |     x

_R_|_a_b_c_
TRANSITIVE  a |   x
  b |     x
  c | x

_R_|_a_b_c_
ANTISYMMETRIC  a |   x
  b | x        iff  a = b
  c |

Composition of Relations

Relational composition is very similar to functional composition.

(R o S) =def=  all pairs (x,z) exists y | (x,y) inS and (y,z) inR

Note that the range of S is a subset of the domain of R
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(R o S)(A) = R(S(A))

associative: (R o S) o T = R o (S o T)

not commutative: R o S =/= S o R

inverse of a composition: (R o S)^-1 = S^-1 o R^-1

Transitive Closure

A relation is transitive when it is possible to follow relations for one pair to another in a cycle.

The transitive closure is computed by multiplying the matrix of a relation by itself N times.  A

matrix will return to its original configuration after N multiplies if there is transitive path of

N steps between the elements.

Example:  non-transitive, no path between b and c

  a b c
a 0 1 1     0 1 1     0 0 0
b 0 0 0  *  0 0 0  =  0 0 0      no paths
c 0 0 0     0 0 0     0 0 0

Example:  non-transitive, no path to a

                   A^1       A^2                   A^3
  a b c
a 0 1 1     0 1 1     0 0 1       0 1 1     0 0 0
b 0 0 1  *  0 0 1  =  0 0 0    *  0 0 1  =  0 0 0
c 0 0 0     0 0 0     0 0 0       0 0 0     0 0 0

Example:  transitive with cycle length 3

                   A^1       A^2                   A^3                   A^4
  a b c
a 0 1 0     0 1 0     0 0 1       0 1 0     1 0 0       0 1 0     0 1 0
b 0 0 1  *  0 0 1  =  1 0 0    *  0 0 1  =  0 1 0    *  0 0 1  =  0 0 1
c 1 0 0     1 0 0     0 1 0       1 0 0     0 0 1       1 0 0     1 0 0

Example:  identity, degenerate transitive with cycle length 1

 A^1       A^2
  a b c
a 1 0 0     1 0 0     1 0 0
b 0 1 0  *  0 1 0  =  0 1 0
c 0 0 1     0 0 1     0 0 1
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Relations or Functions?

Functions are a subset of relations.  Using functions provides the advantages that functions place

on relational structures:  existence and uniqueness.  However, since functions are less general,

these same constraints make generalization impossible.  Thus functional encoding is often

brittle and difficult to modify.  For example:

Domain D = students {s1,s2,s3}

Range R = chairs {c1,c2,c3,c4,c5}

When every student sits in a chair, the uniqueness (no student sits in two chairs) and existence

(a chair for every student) constraints on a function are met.

F[students] = {(s1,c1),(s2,c2),(s3,c5)}

Note that it is still permitted for two students to sit in one chair.

If the situation changes, the functional constraints may be violated.  For example, if one student

lounges across two chairs, uniqueness is violated.  If some student stands rather than sits in a

chair, then existence is violated.

Most generally, whenever a specification may change (almost always the case), more general

data structures achieve better code modularity, portability, and maintenance.

Many concepts do not permit a functional approach.  For example, consider:

Proof-of[theorem] = <proof-sequence>

Domain = logical formulas as theorems

Range = proof-sequences

The above assertion has relational semantics.  There is no assurance that a proof does exist for

any formula (existence violated), and certainly there are many different proof sequences for

any formula (uniqueness violated).  In contrast:

Theorem-of[proof-sequence] = <theorem>

Domain = proof-sequences

Range = theorems as formulas

This assertion is (or can be) functional, since any proof leads to a unique theorem, and every

proof-sequence leads to some theorem.  The assertion, of course, can also be seen as relational.


