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Predicate Calculus and Sets

Predicate Calculus

A ggeneral purpose language for describing objects, facts, and transformations for particular

domains.  Also called FFirst Order Logic.  It consists of

connective logic {and, or, if, not, iff}  inference, proof

object domains {<unique atoms>}

quantification {all.x, exists.x}

predicates classes and properties

relations True associations between objects

functions indirect names, maps from one object to another

Predicate logic differs from propositional logic in two ways:

•  Ground objects are more complex.  Instead of being concepts which

are either True of False, objects can consist of discrete elements from

infinite sets.  Functions are indirect names for particular objects.

Relations are propositions about these complex objects.

•  Quantification permits direct reference to sets of objects.

Compound Objects

propos it ions (Boolean variables)

The simplest objects.  Has values in the carrier set {0,1}.

propert ies/domains (set variables)

Simple collections of objects.

Can have finite sets (computer science) or infinite sets (mathematics).

r e l a t i ons (pairs of objects)

Propositions between objects, relating one object to another.

Compound objects.

funct ions/procedures (structured pairs of objects)

Alternative names for objects  (“2+3” is another name for 5).

Ways to move from one object to another.
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Sets

Sets   are unordered collections of unique objects.

S = {x | <statement about x> } intensional, set defined by a common property

S = {a,b,c,...} extensional, set defined by naming the members

characteristic function[x, S]:
A function which takes the value 1 exactly when x is in S.

membership: x inS  =def=  x=s1 or x=s2 or x=s3 or ...

empty set: x not inS

subset: if x inS1, then x inS2

union: x inS1  or  x inS2

intersection: x inS1  and  x inS2

difference: x inS1  and  not x inS2

power set: the set of all subsets of S

recursive set membership:

x inS  =def=  not[x = empty-set] and
x = first[S] or x in rest[S]

Set Axioms

Extent: A = B   iff   x inA <--> x inB

Specification: Exists A. x inA   iff   x inB and P(x)

Empty Set: The empty set is a member of all sets.

Specification means that a subset A of a set A can always be identified by specifying a property

that uniquely identifies members of A.

Set Equivalence

Two finite sets are equal when they both contain exactly the same members.

S1 = S2  iff  x inS1 -> x inS2  and  x inS2 -> x inS1
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Logic Plus Sets

Sets identify collections of objects.

Properties, or attributes, identify collections of objects.

The extrinsic description of a collection is an enumeration, or listing,

of the objects in the set.

The intrinsic description of a collection is the name of the property

which uniquely identifies the objects in a set.

S  =  {1,3,5,7,9}  =  OddDigit[x]

   extrinsic           intrinsic

Monadic Predicate Calculus

Adding properties to propositional logic makes predicate calculus without relations.

Monadic refers to operators with one argument only.  I.e.  Unary functions.

Quine (c. 1950) showed that, for finite sets,

monadic predicate calculus = propositional logic

One method to demonstrate this:

For each x in S, make (x in S) a proposition (i.e. True or False)

S  =  {a,b,c}  =  (a in S) & (b in S) & (c in S)

Quant if icat ion

Quantifiers introduce sets into logic, and serve to define the scope of variables in a logical

expression.

Universal quantification:  All x. P(x)

The statement  All x. P(x)  is True exactly when the predicate P (or the characteristic

function for the set P) is True for all objects in the set U for which x is an arbitrary member.

For finite domains U, All x. P(x) iff (x1 and x2 and...and xn)

Existential quantification: Exists x. P(x)
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The  statement  Exists x. P(x)  is True exactly when the predicate P is True for at least one

object in the set U for which x is an arbitrary member.

For finite domains U, Exists x. P(x) iff (x1 or x2 or...or xn)

Relationships between Quantifiers

All true = none false:

All x. P(x)  iff  (not (Exists x. (not P(x))))

All false = none true:

All x. (not P(x))  iff  (not (Exists x. P(x)))

Not all true = at least one false:

(not (All x. P(x)))  iff  Exists x. (not P(x))

Not all false = at least one true:

(not (All x. (not P(x))))  iff  Exists x. P(x)


