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A Circuit Configuration Array (CCA) is a set of connections that define the

functionality of a particular circuit.  Like the logic graph structure of an

ASIC, the CCA can be rearranged into different patterns of connectivity while

keeping functionality invariant.  The CCA pattern is defined by a dnet, a

network of distinction nodes, with logical structure defined by the links.

DIAGONALIZATION

Many different CCA layout techniques are available.  The simplest is a square

CCA (Figure 1). Since connectivity is sparse, this wastes much of the

potential computational area, while keeping infrastructure wiring and

resource management to an absolute minimum.
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Figure 1: A Square CCA Layout

Rearranging connections can help to compress their distribution in array

space, and thus reduce the area of the array required for the particular

functionality. A diagonalized configuration restricts all connections to one-

half of the array, the upper-right-triangle (Figure 2). Diagonalization is
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easily achieved in software during compilation, and requires no additional

infrastructure logic and wiring.
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Figure 2: A Diagonalized CCA Layout

Each array mark represents a connection between two dnodes. The location of

that mark identifies two coordinates, a row-distance and a column-distance,

both measured from the diagonal (Figure 3). These distances are always equal.

Thus, twice the row distance specifies the length of wire along which an

evaluative signal must propagate (at 200ps/mm).
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Figure 3: Wire-distance from the diagonal to a mark

RECONFIGURATION

A second step in diagonalization is to minimize the distance to the diagonal

of the furthest away connections. Mathematically, minimizing this distance is

the same a minimizing a topological sort of a Directional Acyclic Graph
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(DAG). Since structural operators in the compiler can modify the graph which

is being sorted, the minimal topological sort can vary across different graph

structures.

Figure 4 shows the diagonalized configuration in two-level (SOP) form.  Here,

the array processing time is minimal; the trade-off is that the length of

wires which propagate signals is maximal. All free array space is pushed into

another triangle inside the larger upper-right-triangle.
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Figure 4: Two-level diagonal form

The most deeply nested form of a configuration (the Implicate Normal Form

INF) has the longest evaluation path, but the shortest connecting wires.  In

Figure 5, marks are clustered closely to the diagonal.  Free array space is

pushed into another triangle, in the most upper-right corner.
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Figure 5: Deeply-nested diagonal form
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Spread

The row-distance of the furthest mark is the spread of the INF-array.

Several techniques exist for reducing the spread of an INF-array.  These

include:

Reduce the number of marks in a particular column (split columns)

Move a particular row or column (align internal inputs)

Change the structure of the dnet (structural rearrangement)

In all circuits, the spread can be reduced to a reasonable target distance.

Spread is a function of the bit-width of the computation, and reducing some

row-distances creates extra rows, so spread does have a lower bound.  Here we

assume a nominal spread of 140 rows.

Row Density

With .25um feature size, approximately 1000 rows fit into one mm of silicon.

The length of the diagonal is 1.4 that of the side of a square array (side *

sqrt 2). Similarly, the linear distance of the furthest connection from the

diagonal is .7 spread (spread / sqrt 2).

Thus, when CCA hardware for N rows is reoriented, we have a total area of

(rows * spread) (Figure 6):

1.4 rows

.7 spread

Figure 6:  Reorientation of a diagonal form

We assume that the row size will be much greater than the spread. A width of

1 mm in the reoriented CCA would support 700 rows. Choose the spread to be

140 rows, making the height of the reoriented CCA .1 mm (140*.7 = 100 rows at

1000 rows/mm).

Thus one mm^2 of silicon would contain 700*10 = 7000 rows.

Each row of a CCA can contain multiple marks, making each row equivalent to

an n-ary gate, where n is the number of marks.  This would convert to (N-1)
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two-input gates. We assume that the average circuit would permit a minimal

average of 3 marks per row.  This would double the effective gate size of the

CCA, and is listed under ACE.

Row densities are summarized below:

feature size rows/mm gate-equivalents/mm^2

   WCE      ACE

.25 1000    7000    14000

.18 2000   14000    28000

.13 4500   31500    63000

In general, let D be the density in rows/mm for a given feature size.

WCE gate-equivalents/mm^2 = 1/2 spread * D

A nominal 100 mm CCA chip would incur a fabrication cost of around $10. It

would accommodate around 1/2 million gates, while providing easier

programming and greater flexibility than current FPGAs.  For $10 CoG, current

PLD and FPGA technologies offer around 20K gates.  The performance

improvement, for the same cost, is 25:1.

Note:  The CCA idea is currently abstract, so that physical size and

performance estimates are not anchored in a physical implementation.


