
1

COMPUTATIONAL MESH WITH PULL-UPS

William Bricken

January 2002

FUNCTIONAL MODEL ILLUSTRATED TOUR

Illustrations of functional Comesh circuits follow. They include the mesh

architecture, the most simple logic gates and registers, common three input

circuits, and a brief example of Comesh composition.

CONTENTS

Mesh

generic mesh 01a

mesh diagonal element 01b

Cross-points

generic cross-point 02a

ROM cross-point 02b

PROM cross-point 02c

EEPROM cross-point 02d

Registers

single explicit register 03a

register feedback loop 03b

register loop convention 03c

Logical Operators

nor1 04a

nor2 04b

nor4 04c

norN 04d

or1 05a

or2 05b

or4 05c

orN 05d

and1 06a

and2 06b

and4 06c

andN 06d

nand1 07a

nand2 07b

nand4 07c

nandN 07d

xor2 version I 10a

xor2 version II 10b

xor2 composed of AND of NOR and NAND 10c

2

Three Input Functions

2to1-multiplexer 11

2/3-majority version I 12a

2/3-majority version II 12b

2/3-majority version III 12c

half-adder 13

2bit-tally 14

Combinational Functions

1to4-demultiplexer 15

4to1-multiplexer 16

2to4-decoder 17

3

Mesh

The mesh consists of an orthogonal array of potential interconnect points.

It is a reconfigurable triangular matrix with inverters on the diagonals.

Multiple connections on a column wire is wire-OR. A wire-OR line is pulled-

up to 1. All diagonal inverters of rows that are wire-ORed are Open-

Collection Buffers (OCB). Single connections to a column wire are simple

negations, converting the wire-OR column to a NOR.

Multiple connections on a row are fanout of the row signal. Only a row

signal of 1 creates fanout into columns.

 I/O value Meaning Wire-OR Pull-up column

 0 True pull-down pulled-down

 1 False Z pulled-up

C

B

A

INVERSE LOGIC: 0 = TRUE, 1 = FALSE, CONNECT = WIRE-OR

0
1

0
1

Z Z Z 0

0
1

Z 1

+

Z 1

+

Z

4

Mesh Diagonal Element

For reconfigurability, each column line can be accessed from its accompanying

row via an ordinary NOT or via an OCB. For one connection on the column

line, NOT is used. The switch which chooses OCB also activates the pull-up

resistor on the column line.

INVERTER/PULL- UP SELECT

OUT

IN

+

Comesh uses negative logic at input and output.

0 line-value is True

1 line-value is False

Incoming and outgoing signals from the Comesh can be inverted to return to

positive logic.

Multiple column line connections are wire-or under the negative logic

interpretation. In negative logic, a 0 signal value will pull-down a column

value. Each 1 signal will be converted into Z by the OCB. When all row

connections are Z (i.e. none are 0), the column pull-up resistor will set the

column signal value to 1. When a column is pulled-up to 1 (as False), it

becomes irrelevant as the <void>.

5

Crosspoints

Crosspoints use negative logic: 0 = True, 1 = False.

Crosspoints are indicated symbolically by a dot at the intersection of a row

and a column (crosspoint-cell value = 1). Non-dotted intersections are not

connected (crosspoint-cell value = 0)

Row crosspoints spread a particular signal value to multiple columns. Column

crosspoints form a logical wire-OR. In boundary terms, row crosspoints

identify the containers of the row output, column crosspoints indicate

contents of the column input.

In a void-based model, any 0 row value propagating through an open crosspoint

(encoded as 1) will dominate (Dominion) the column of a crosspoint. Other

potential inputs to the column are irrelevant. The dominant signal will

propagate to the column diagonal, where it is inverted to 1 or to Z depending

upon the type of diagonal connection. When all row input values to a column

equal Z, the pull-up on the column will set the column value to 1.

Generic Crosspoint

Row-ACTIVE=1

Column-ACTIVE=Row-ACTIVE

1

1

+

6

ROM Crosspoint

Row-CONNECT=1

Z

Z

PROM Crosspoint

Fuse- INTACT=1

Row-ACTIVE=1

Column-ACTIVE=Row-ACTIVE

Z

Z

7

EEPROM Crosspoint

Row- and-Voltage-ACTIVE=1

+5V

Z

Z

Registers

Each row that is either an output row or an abstract register row is

terminated by a single register. In the case of an abstract register row,

the output is the stored value of the abstract register, which is converted

to the stored value in the actual terminal register. The registers are

physically wired to input rows, to be reintroduced into the array on the next

array processing cycle.

RETURN TO INPUT

1

0
1

X

D

C

S

R

Q

Q

0

8

The feedback loop from a register row is indicated by a feedback wire into an

input terminal associated with that particular register row. Register outputs

connect only to the same register input and not to any other row.

D

C

S

R

Q

Q

Z

X X

We will use a shorthand notation for the feedback loop, by indicating which

row the output of a register should reenter. The loop wiring is implicit.

The register below returns a signal to itself, after the signal has been

processed through the connections in the array.

REGISTER

Z X

9

GATES

1-input NOR

Parens: (A)

A
0

1

1

0

The configuration for elementary NOT.

2-input NOR

Parens: (A B)

B

A

0

1

0

1

0

0

1

1

+

10

4-input NOR

Parens: (A B C D)

A

B

D

C

0

1

0

1

1

1

1

0

0

1

0

1

1

1

+

Arity is simply the opportunity for any one of several row signals to

dominate a column.

11

N-input NOR

Parens: (..N-1.. N) This notation is descriptive, not functional.

N
0

1

X

1

X

+

N-1 NOR

C

The N-input NOR illustrates how to add another input to a wire-OR

configuration.

12

1-input OR

Parens: A

A
0

1

1

One-input OR is simply a wire.

2-input OR

Parens: A B

A

B
0

1

0

1

0

0

0

+

The only difference between OR and NOR is that the final inverter of NOR is

absent in OR.

13

4-input OR

Parens: A B C D

C

D

B

A

0

1

0

1

1

1

1

0

1

0

1

1

1

+

14

N-input OR

Parens: ..N-1.. N

N
0

1

0

0

+

N-1 OR

C

15

1-input AND

Parens: ((A))

A
0

1

+

0

0

1

1

One-input AND is double negation.

Note the behavior of the pull-up column. When A is 1, the first inverter

changes it to 0. The OCB propagates the 0 value and the final inverter

changes it back to the original value of A. When A is 0, it is inverted to 1

and changed to Z by the OCB. Lacking a dominant signal on the pull-up column,

the Z is passed as 1, which is changed to 0 by the final inverter.

Essentially, pull-up columns are transparent to logical intent.

16

2-input AND

Parens: ((A)(B))

A

B
0

1

0

1

0

1

0

1

1

0

+

The difference between AND and NOR is that the AND inputs are first passed

through inverters. Aside from the type of diagonal element and the doubling

of row counts caused by input inversion, AND and NOR are structurally

identical.

17

4-input AND

Parens: ((A)(B)(C)(D))

D

C

A

B
0

1

0

1

1

0

1

0

1

+

1

1

1

1

0

0

0

0

0

18

N-input AND

Parens: ((..N-1..) (N))

N
0

1

1

0

1

0

+

N-1 AND

C

C

19

1-input NAND

Parens: (A)

A
0

1

+

1

1

0

One-input NAND is a simple NOT, and is equivalent to a one-input NOR. This

is a formal representation of the transparency of pull-up columns.

2-input NAND

Parens: (A)(B)

A

B
0

1

0

1

0

0

1

1

1

+

The only difference between AND and NAND is that the final inverter of AND is

absent in NAND.

20

4-input NAND

Parens: (A)(B)(C)(D)

D

C

A

B
0

1

0

1

1

0

1

0

1

+

0

0

1

0

1

1

0

0

21

N-input NAND

Parens: (..N-1..)(N)

N
0

1

1

0

0

+

N-1 NAND

C

C

22

2-input XOR, Version I

Parens: ((A B)((A)(B)))

B

A

0

1

0

1

+

0

1

0

1

1

11

+

0

0

1

+

1

0

This XOR is the AND of NOR and NAND. The parens reads:

Both:

at least one of A or B

at least one of not-A or not-B

23

2-input XOR, Version II

Parens: ((A) B) (A (B))

B A

(B)

(A)

BA

A

B

A (B)

(A) B

((A) B)

(A (B))

((A) B) (A (B))

1

1

0
1

0
1

0

0

000

1

1

0

+

+

+

1

An alternative version of XOR has one less column so is slightly more

efficient. The parens reads:

One of two cases:

A does not imply B

B does not imply A

24

2-input XOR, composed of the AND of NOR and NAND

[[A B] [(A)(B)]]

(A)(B)

A B

AND

NAND

OR

A

B

[[A B] [(A)(B)]]

(A)(B)

A B

AND

NAND

OR

A

B

1 0 0 10 1

+

0
1

0
1

111

+

001

+

1 0

0 10 1

+

0
1

0
1

111

+

001

+

1 0

25

2to1 MULTIPLEXER (MUX)

Parens: (((A) B)(A C))

(((A) B) (A C))

((A) B) (A C)

((A) B)

(A C)

A C

(A) B

B

A

A

B

(A)

A

C

C

0

1

+

0

0
1

0
1

1

1

1

1

1

0

0

+

1

+

0
1

The parens reads:

Both:

A implies B

at least one of A or C

26

2/3 MAJORITY, Version I

Parens: ((A B)(A C)(B C))

((A B) (A C) (B C))

(A B) (A C) (B C)

(B C)

(A C)

B C

A C

A B

B

A

A

C

B

C

(A B)

1

1

+

0
1

0
1

1

1

0

1

0

1

0
1

0

0

0

+

+

+

2/3 MAJORITY combines all pairs of incoming rows into another row. The set

of connections in the three binary wire-OR columns requires a one-directional

flow of current (or may lead to conflict). The parens reads:

All of

at least one of each possible pair.

27

2/3 MAJORITY, Version II

Parens: ((A B)(C ((A)(B))))

C

B

C

A

A

B

A B

(A)(B)

(A)

(B)

((A)(B))

C ((A)(B))

(C ((A)(B)))

(A B) (C ((A)(B)))

((A B) (C ((A)(B))))

(A B)

BA

0

1

+

0
1

0
1

0

1

11

1

0

0
1

1 1

1

+

+

0

0

0

+

0

This 2/3 MAJORITY is the NXOR of A and B, partially distributed over C. The

parens reads:

Both

at least one of A or B

at least one of C or (both A and B)

28

2/3 MAJORITY, Version III

Parens: ((A)(B))((C)(A B))

C

B

C

A

A

B

A B

(A)(B)

(A)

(B)

(A B)

B

A

(C)

((A)(B))

(C)(A B)

((C)(A B))

((A)(B)) ((C) (A B))

0

0

+

0
1

0
1

1

1

1

1

1

1

0
1

1 1

+

+

0

0

0

+

0

1

+

This 2/3 MAJORITY is the Flex of Version II. Here the AND of A and B is

independent of the C value. The parens reads:

One of two cases:

both A and B

C and (at least one of A or B)

29

HALF-ADDER

Parens: sum = ((A B)((A)(B)))

 carry = ((A)(B))

((A B) ((A)(B)))

(A B) ((A)(B))

((A)(B))

(A)(B)

(A B)

(B)

(A)

A B

B

ABA

B

A

SUM ((A B) ((A)(B)))

CARRY ((A)(B))

0

1

1

0

+

0
1

0
1

0

00

+

1

1

0

+

0

1

A half-adder is XOR with two outputs. Here two separate functions (sum and

carry) are combined into one comesh. They happen also to share structure,

the carry output row branches to two rows.

30

2-bit TALLY

Parens: zero = (A B)

 one = ((A B)((A)(B)))

 two = ((A)(B))

((A B) ((A)(B)))

(A B) ((A)(B))

((A)(B))

(A)(B)

(A B)

(B)

(A)

A B

BABA

B

A

ZERO (A B)

ONE ((A B) ((A)(B)))

TWO ((A)(B))

0

1

0

1

+

0
1

0
1

1

11

+

0

0

1

+

1

0

The two-bit tally is similar to a half-adder, except three structure-sharing

functions are combined. The half-adder sum also means exactly one of A or B.

The new zero output is neither A or B.

31

1to4 DEMULTIPLEXER

Parens: out1 = ((D) S0 S1)

 out2 = ((D) S0 (S1))

 out3 = ((D)(S0) S1)

 out4 = ((D)(S0)(S1))

(D)

(D) S0 S1

(D) S0 (S1)

(D) (S0) S1

(D) (S0)(S1)

((D) (S0)(S1))

((D) (S0) S1)

((D) S0 (S1))

((D) S0 S1)

Select1

Select0

Data

D S0 S1

(S0)

(S1)

S0 S1

0
1

0
1

C 0

X

1

0
1

1

0

+

X

0

0

0

+

+

+

0 C

1

1

1

C

The four possible values of two select rows each combine with the data D.

Each configuration of select values voids three of the four output lines. If

D is False, all output lines will be 0.

32

4to1 MULTIPLEXER

Parens: ((S0 S1 (D0)) (S0 (S1)(D1)) ((S0) S1 (D2)) ((S0)(S1)(D3)))

(S0 (S1) (D1))

S0 (S1) (D1)

((S0) S1 (D2))

(S0) S1 (D2)

D3D2D1D0

(D0)

(D1)

(D2)

(D3)

Data0

Data1

Data2

Data3

S1

S0

(S1)

(S0)

S1

S0

Select0

Select1

S0 S1 (D0)

(S0) (S1) (D3)

(S0 S1 (D0))

((S0) (S1) (D3))

0
1

0
1

0 0

0

0

0
1

0

0

+

1

0

0

0

+

+

+

0 0

1

1

1

0
1

0
1

0
1

0

0

1

1

1

1

1

1

1

+

The four combinations of 2 select rows associate uniquely with one of four

input rows. The active input row becomes output.

33

2to4 DECODER

Parens: out0 = ((E) D0 D1)

 out1 = ((E) D0 (D1))

 out2 = ((E)(D0) D1)

 out3 = ((E)(D0)(D1))

Enable

Data1

Data0

((E) (D0) (D1))

(E) (D0) (D1)

(E) D0 (D1)

(E) (D0) D1

(E) D0 D1

((E) D0 (D1))

((E) (D0) D1)

((E) D0 D1)

(E)

E D0 D1

(D1)

(D0)

D0 D1

+

0

0
1

0
1

1

0

0

11

0

+

0
1

0

0

0

+

+

1 1

1

1

1

1

All outputs are 0 when Enable is 0. When Enable is 1, the one output that

corresponds to the four possible configurations of two data rows is high.

This circuit is identical to the 1to4 demultiplexer, except that input rows

have different names.

