
LOSP SHORT DESCRIPTION

William Bricken

January 1987

We have developed a comprehensive computational approach to real-time

parallel inference, called Losp.

Losp is based on boundary mathematics, a relatively unknown formalism that

simplifies deduction via a representational transformation that decreases

both the size of a logical language and the number of axioms or rules that

are needed to implement the proof techniques. One logical operator/constant,

the boundary, replaces the former minimum of three tokens required in

traditional propositional calculus (or, not, and true). The primary

computational technique that achieves deductive simplification is erasure,

which replaces the traditional approach of rearrangement of tokens in the

syntactic representation of the problem. This approach has been shown to be

at least five times faster than the Boyer-Moore theorem-prover for problems

in propositional calculus, without relying on parallelism. Memory is

released as the computation proceeds toward a solution.

Boundary mathematics provides a natural form of parallelism. Logical

structure is expressed by a single operator that is implicitly associative

and commutative. As a consequence, all composition of boundary operators can

be implemented in parallel. The parallel implementation of Losp is a network

formalism in which local evaluation of connectivity determines the global

result. This strong form of parallelism relies on a distributed

representation of the problem in which no objects are represented more than

once. We are able to parse Pure LISP code into Losp networks, permitting

transparent conversion of linear code into a functionally invariant parallel

model.

We have extended Losp to predicate calculus. The system combines the

functional advantages of Scheme with the declarative advantages of Prolog,

within a single boundary formalism. Knowledge about the function and

behavior of defined predicates is expressed locally within each predicate,

partitioning logical control information from control of predicates, such as

transitivity rules, database instantiation, and partial evaluation. The key

to this approach is a highly efficient implementation of terms as

computational systems, each containing its own agenda mechanisms, memory, and

context.

