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The behavior of circuits can be visualized as the propagation of logical

values (binary states) through a network of gates that change those logic

values either by inverting them (single-input not gates) or by combining them

(multiple-input or/and gates).  This viewpoint uses an external, objective

metaphor, watching how the propagation of apparent objects (bits) effects

their state (high/low).

Alternatively, a circuit can be seen as a constraint system imposed on the

freedom of the input.  A simple not-gate enforces that its input contradict

itself, imposing absolute limits on a signal's choice of self-expression.

(The freedom of a binary signal is quite limited, to be in one of two states.)

An or-gate enforces a form of joint cooperation, either signal can dominate

the outcome of their meeting.

A yet deeper subjective perspective is available from the viewpoint of each

gate.  Gates see incoming states and act as the environment for those states,

effecting their interaction absolutely.  A combinatorial gate however, has no

access to the working of its neighbors, it is a purely local, parallel agent.

Consider now a different type of thing being propagated.  Instead of a

specific logical value, either-high-or-low, let the information be a space of

possibilities, both-high-and-low.  We can no longer watch the behavior of

values.  We can only know the specific state of a location when there is no

choice (freedom) for that state.  But we can still do computation on the

functionality of the circuit, including minimization, diagnostics, and timing

analysis.

A not-gate now no longer sees or acts on a signal-state to absolutely change

it.  An incoming signal (both-high-and-low) provides nothing to invert.

However, the gate can function on other operators, in an algebraic manner.

Not-gates can cross-communicate and perform useful computation merely by

indicating their presence.  When both-high-and-low arrive at a gate, the gate

examines the signal for markings of another inverter, and either adds a mark

if none is found or removes a mark if it is found.  Combining gates no longer

determine the dominant signal, they separate and combine redundancies.  This

change in perspective is perhaps the most unfamiliar, since algebraic gates

see as input the entire subgraph below.  An or-gate essentially asks if the

incoming signal-histories are identical.  It so one is superfluous, if not

then both signals are passed on.  Algebraic circuits thus expand rather than

contract the signal propagating through them.

The antecedents-of-modus-ponens circuit

(((a) ((a) b))



propagates two "a" signals through different inverters which mark each as

"(a)".  The or-space "(a) b" passes its entire space as its expanding value.

The or-space "(a) ((a) b)" does not because of the interacting identical

subnets "(a)" and "(a)".

We can view the space interaction of identical structures as an interference

pattern, not between the values of each structure but between the

identicalness of the named patterns.  It is the naming of different input

signals which determines the rigidities of the system, not the concrete state

a particular name is in at a particular time.  Traditionally, signals are not

named, but envisioned as path (wire) between gates.  Gates are named and

process signals which vary over time determined by a clock.  In this

computational model, the effect of the entire circuit is spread over time and

required to converge to an instance.  Other instances are then pumped through

the circuit by the clock, providing a sequence of events (011010010...) which

is read out into parallel spatial form for our comprehension.

Consider an algebraic circuit resonating its possibilities/constraints,

independent of time.  Rather than changing states, its changes constraints as

its self-minimizes.  When a input-name is bound to a value (either-high-or-

low), that concrete intrusion into the possibility harmonic is immediately

removed, resulting in a smaller possibility space, since one degree of freedom

has been totally removed.

Such a circuit is not constrained by linear propagation of things/values, and

will self-modify at any point of grounding, whether it be inputs, "outputs",

or internal gates.  When all inputs are bound concurrently, the algebraic

circuit looses all constraints which hold it up, and it collapses to a single

value by the fastest possible path.  In contrast, propagating circuits

evaluate by their slowest possible path.

Each explicit gate in an algebraic circuit summarizes the subcircuit below it.

The possibility space represented by a subcircuit can itself be seen to

propagate. Instead of specific states (logic values), an algebraic gate

outputs its entire subcircuitry possibility space, as a possibility wave.

These waves interact at gates to produce algebraic minimization rather than

arithmetical evaluation.

By tracing the propagation of possibility waves from concurrent free inputs up

through the circuit on clock tick at a time, we see the dynamic interaction of

possibility spaces as they pass through each gate.  An optimized algebraic

circuit is one in which no interaction between waves occurs.  In the above

example,

(a) ((a) b)

generates a harmonic interaction, the identical (a) waves interfere.  The

interference rules are logical/symbolic rather than light/photonic.



(( ) a) ==> Absorption

Any constants are immediately inverted/absorbed by their environment.

(a a) ==> (a) Coalesce

Any identical signals are redundant, one absorbs the other.

This basis provides a wave-like model in which identicality reinforces the

same signal without value.  Call this pervasive interference.  (Recall that
the variable name "a" represents a named signal source propagating the

superimposed value both-high-and-low)

Coalesce is independent of environmental inversions, but not symmetrical, in

that the outermost signal is dominant.

(a ((((a))))) ==> (a (((( )))))

(a (a ((a (a))))) ==> (a (  ((  ( )))))

When multiple named signals are propagated through an algebraic circuit, the

circuit minimizes its possibility space by eliminating identical possibility

waves through pervasive interference.

((a) ((a) b)) ==> ((a) (    b))

Thus any (poorly designed) circuit can be logically optimized by treating it

as an algebraic circuit and propagating possibility waves through it.  Eg:

((a) (a b))

Possibility wave analysis:

  a   a b

 (a) (a b)

((a)      )

  a

ISSUE:  What is the possibility evolution of difficult to reduce circuits?


