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STRUCTURAL VARIETIES

Optimization

•  SCHEMATIC   1:  Two-level Logic (PLD)

•  SCHEMATIC   2:  Multilevel Benchmark Circuit (cm85a)

•  SCHEMATIC   3:  Suppress Inverters

•  SCHEMATIC   4:  Remove Redundancy

•  SCHEMATIC   5:  Reduce Reconvergence

•  SCHEMATIC  6a:  Increase Fanin (poor choice)

•  SCHEMATIC  6b:  Increase Fanin (good choice)

•  SCHEMATIC  7a:  Enhance Testability (poor choice)

•  SCHEMATIC  7b:  Enhance Testability (good choice)

Design Constraints

•  SCHEMATIC   8:  Reduce Critical Path (6 gates)

•  SCHEMATIC   9:  Pipeline (3 two-input gates)

•  SCHEMATIC 10a:  Map to Specific Library (poor choice)

•  SCHEMATIC 10b:  Map to Specific Library (good choice)

•  SCHEMATIC  11:  Three-level Logic

•  SCHEMATIC  12:  Map to NAND Gates

•  SCHEMATIC  13:  Map to FPGA (4-LUTs)

•  SCHEMATIC  14:  Binary Decision Diagram

Hierarchical Abstraction

•  SCHEMATIC  15:  Abstract Low-level Components

•  SCHEMATIC  16:  Abstract for Component Connectivity

•  SCHEMATIC  17:  Abstract for Sequential Structure

•  SCHEMATIC  18:  Abstract for Parallel Structure

•  SCHEMATIC  19:  Abstract for Output Structure

•  SCHEMATIC 20a:  Abstract Bit-width (recursive)

•  SCHEMATIC 20b:  Abstract Bit-width (enables)

•  SCHEMATIC 20c:  Abstract Bit-width (enables, recursive)

BTC Hardware Models

•  SCHEMATIC  21:  Distinction Network I

•  SCHEMATIC  22:  Distinction Network II

•  SCHEMATIC 23a:  Occlusion Array (Dnet 21)

•  SCHEMATIC 23b:  Occlusion Array (Dnet 22)

•  SCHEMATIC 23c:  Occlusion Array (two-level Dnet)

•  SCHEMATIC 23d:  Occlusion Array (raw multilevel benchmark)

•  SCHEMATIC 24a:  Comesh (multilevel)

•  SCHEMATIC 24b:  Comesh (two-level)

•  SCHEMATIC  25:  Bit-stream Simulator
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DESCRIPTION OF THE SCHEMATICS (BULLETS)

Optimization

•  SCHEMATIC  1:  Two-level Logic

optimized product-of-sums form

two-level logic (c. 1970)

three gate types (AND2, OR2, NOT)

no visual information, hard to read

a look-up table model

exponential in number of inputs

•  SCHEMATIC  2:  Multilevel Benchmark Circuit

not optimized

a literal transcription of the benchmark netlist

multi-level logic network (c 1980)

three gate types (AND2, OR2, NOT)

hard to read

•  SCHEMATIC  3:  Suppress Inverters

collapse inverters into adjacent logic gates

additional gate types (AND2, OR2, NOT + NOR2, NAND2)

hard to read, some structure is visible

complexity hidden in new gates does not help

•  SCHEMATIC  4:  Remove Redundancy

minimize logical structure with Losp

add new gate type (AND2, OR2, NOT, NOR2 + OR3)

structure is beginning to appear

do not identify patterns yet

size, wiring and performance improvement

•  SCHEMATIC  5:  Reduce Reconvergence

reconvergent loops are not testable

fewer wires, fewer gates

increased fault-tolerance

•  SCHEMATIC  6a:  Collect Signals, poor

condense gates by increasing arity

add new gate types (AND2, NOT, NOR2, OR3 + OR4, NOR3, NOR4)

can build 2-input trees after optimization

gate diversity obscures structure

finding best design is interactive exploration
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•  SCHEMATIC  6b:  Collect Signals, good

condense gates by increasing arity

add new gate types (AND2, NOT, NOR2, OR3 + OR5)

visual structure is apparent

easy to identify hierarchical components

best optimization metrics

improved transistor network

•  SCHEMATIC  7a:  Increase Testability

restructure to homogeneous NOR-gates (NOT, OR2, NOR2, NOR9)

no reconvergent paths

most fault tolerant, best for testability

longer critical path

•  SCHEMATIC  7b:  Increase Testability, optimize

restructure to NOR-gates (NOT, OR2, NOR2, NOR3, NOR5, XOR)

fewest gates

no reconvergent paths

most fault tolerant, best for testability

longer critical path

Design Constraints

•  SCHEMATIC  8:  Arbitrary Constraint:  Depth = 6

example of critical path reduction

illustrates CDE parametric constraint

uses simple gate library

•  SCHEMATIC  9:  Pipelining Constraint:  Delay chunks = 3

•  SCHEMATIC 10a:  Specific Library, poor

example of technology mapping

illustrates CDE parametric constraint

uses pre-specified gate library (NOT, OR2, NOR2, AND2, XOR2)

poor choice, still need to explore

•  SCHEMATIC 10b:  Specific Library, good

pre-specified library (AND2, NAND2, OR2, NOR2, XOR2)

no inverters

clear structure is maintained

•  SCHEMATIC 10c [NO LONGER INCLUDED]:  Arbitrary Constraint:  Mixed

maximum fan-in = 3

maximum-fan-out = 2

wire count = low   

fault-tolerant = yes

gate library = {AND, OR, NOT, MUX, XOR}

delay = 7
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•  SCHEMATIC 11: Three-level Logic

no maximum fan-in

no maximum-fan-out

wire count = high

gate library = {AND, OR, NOT, XOR}

delay = 3

•  SCHEMATIC 12:  Map to NAND Gates

one homogeneous gate type (NOT, NAND2)

appears complex, but is simplest at transistor level

•  SCHEMATIC 13:  Map to FPGA (4-LUTs)

technology mapping into four-input look-up tables

illustrates partitioning by different criteria

clusters of variables rather than logic gates

partitioning approach doesn't matter to Losp

•  SCHEMATIC 14:  Map to Binary Decision Diagram

dominant technology in EDA tools

one-way tool, circuitry to BDD, not BDD to circuit

does not indicate structure of circuit

answers yes/no questions

does not identify location of faults

Hierarchical Abstraction

•  SCHEMATIC 15:  Low-level Hierarchical Abstraction

identify intermediate patterns in circuit

XOR group depth=1

OR3-INV group depth=1

OR5-AND group depth=2

enhance readability

identify space/time design trade-offs

prepare for high-level abstraction

provides abstraction choices

wiring tangle due to no input swapping

•  SCHEMATIC 16:  Emphasize Wiring

identify patterns that minimize wire tangling

XOR-OR3 group  depth=2

AND-INV group depth=1

don't force input swapping

tangle is in splitting AND-INV output to both OR5 gates



6

•  SCHEMATIC 17:  Emphasize Sequential Structure

identify largest patterns in circuit (alternative 1)

XOR-OR3-INV group depth=2

OR5-AND group depth=2

merge prior abstractions hierarchically

isolate critical path

•  SCHEMATIC 18:  Emphasize Parallel Structure

identify largest patterns in circuit (alternative 2)

XOR group depth=1

OR3-INV-OR5-AND group depth=8

abstracted from fault tolerant configuration

isolate critical path in a hierarchical component

•  SCHEMATIC 19:  Emphasize Output Structure

identify pattern of entire subcircuit

OUTPUT group depth=9

only original inputs to OUTPUT group

•  SCHEMATIC 20a-b-c:  Abstract Bit-width

BTC Hardware Models

•  SCHEMATIC 21:  Distinction Network I

homogeneous logic components

least complex wiring

propagates disconnects rather than signals

asynchronous

•  SCHEMATIC 22:  Distinction Network II

homogeneous logic components

long path but less wiring

propagates disconnects rather than signals

asynchronous

•  SCHEMATIC 23a:  Occlusion Array, optimized

homogeneous hardware substrate, a modified memory

optimized circuit expressed as a software array

functionality of circuit is expressed in memory

clocking and wiring are in the substrate not in the design

marks in array represent and abstract wires

nearly constant time performance

performance largely independent of complexity of circuit

different arrays correspond to different circuit structures
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•  SCHEMATIC 23b:  Occlusion Array, testable

homogeneous hardware substrate, a modified memory

testable circuit expressed as a software array

hardware testability is not a relevant concept

identical performance to other arrays

•  SCHEMATIC 23c:  Occlusion Array, 2-level

homogeneous hardware substrate, a modified memory

2-level circuit expressed as a software array

2-level shifts array marks to edges

constant performance over all inputs guaranteed

array empty space can be reclaimed, not wasted

•  SCHEMATIC 23d:  Occlusion Array, benchmark

homogeneous hardware substrate, a modified memory

benchmark circuit expressed as a software array

poor design and lack of optimization make array larger

poor design does not effect processing time of array

•  SCHEMATIC 24a:  Comesh

multilevel

•  SCHEMATIC 24b:  Comesh

two-level

•  SCHEMATIC 25:  Binary Bit-Stream

uses conventional Pentium-class processor and memory

functionality of circuit is expressed in software

circuit with inputs is a bit-stream

evaluation of bit-stream is a single-pass algorithm
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DISCUSSION OF THE SCHEMATICS (NARRATIVE)

The Losp/Pun transformation strategy is chronicled by thirty-one circuit

structures, all with identical functionality.  These schematics have been

arranged on the page by hand, in order to emphasize visible structure.  The

layout of all schematics has been equally careful, so that presentation

clarity is not a biasing factor.  That some versions are in fact clearer and

simpler than others illustrates two important points about circuit design:

1)  The space of possible structures for a single circuit is huge and

difficult to explore.  Those structures with desirable behavioral properties

(fast, small, testable, etc.) are in quite different locations in the design

space.  Compare:

S1  -- designed using a look-up table         (fast, non-scalable)

S2  -- designed using a logic network         (slow, scalable)

S6b -- designed using Losp reduction          (best overall)

S7b -- designed for testability               (slow, fault-tolerant)

S12 -- designed to minimize CMOS transistors  (best performance)

S13 -- designed for an FPGA architecture      (reconfigurable)

2)  Better designs do exist, however they do not necessarily align with the

way a designer may conceptualize the functionality of the circuit.  Thus, the

way we specify the functionality of a circuit does not necessarily lead to

optimal designs.  Logic synthesis is a necessary step in the design process.

Optimization

"Compared to two-level logic synthesis, the problem of optimum

multilevel logic synthesis is an impossible dream."  

[Hachtel, Logic Synthesis and Verification Algorithms, 1996, p. 407]

The first nine schematics are sequential steps in the CDE optimization

process.

S1 is the two-level logic representation.  This form was used extensively

during the early development of EDA tools in the 1970s.  It works only for

small circuits, increasing exponentially in size as the number of inputs and

registers increase.  Two-level circuits are essentially look-up tables.

Visually we can see that, like large look-up tables, the structure of a two-

level circuit provides no clues as to its functionality.  Two-level circuits

remove design information from hardware design.

Even today, a two-level representation is required for many EDA tools, such

as all known exact techniques for Boolean minimization.  The patented

Stalmark method (sold by Formal Inc), for example, is very efficient at



9

processing two-level forms that contain literally millions of terms.

However, this is a software analysis process, it is not possible to actually

build two-level circuits that large.  This means that Formal can answer

yes/no questions about the integrity of a design, but it cannot identify

which components of the design are in error, nor can it propose hardware

solutions.   

The CDE uses the opposite of two-level circuits, it uses multilevel versions

which are as deeply nested as possible.  Deep multilevel circuits are

considered to be a disadvantage, since they are the slowest.  Worse, no tools

exist (other then Losp/Pun) for optimizing multilevel circuits.  These

circuits are also the simplest and easiest to understand, and thus the best

place to begin an optimization process.  Delay (depth) can be reduced after

the redundant and reconvergent aspects of a design have been removed.  Two-

level approaches confuse optimization with efficiency.  More importantly, the

design criteria for today's deep sub-micron circuits are substantively

different than those for semiconductor technologies of thirty years ago.

S2 is the ISCAS'91 multilevel benchmark circuit (cm85a) used for all

schematics in this paper.  It is small, so two-level techniques will work for

it, and it is limited to a small library of two-input gates (AND, OR, NOT).

However, this design is also complex and confused with respect to the actual

functionality it represents.  The following CDE transformations remove this

unnecessary complexity.

S3 simply increases the types of two-input gates (AND, OR, NOT, NAND, NOR),

making the design appear less cluttered at the cost of more effort to

understand what each gate does.  This process does not improve the circuit,

since gate representations are all homogenized at the transistor level.  It

also hides unnecessary structure and available abstraction by placing

processing boundaries in undesirable places.  These boundaries become

accepted by a designer, effectively freezing the grain-size of the design

elements.  What is gained in visibility is lost in inflexibility.

S4 is the result of the CDE redundancy removal process.  Since no other

effective multilevel tools are available, this type of result is unique for

EDA tools.  We can see structure beginning to emerge.   

The clutter of gates at the input have become four highly regular modules.

This regularity provides a designer with the capability to trade-off circuit

speed and area.  Here, the four modules are instantiated with an area of 16

gates, in order to achieve maximum performance speed.  Alternatively, when

space is at a premium (such as the case of a design being slightly larger

than the available area on a chip), four sets of signals can be feed
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sequentially into one module, reducing the area to four gates while

increasing the processing time fourfold.

The diagonal structure of four 3-input OR gates is also suggestive.  This

emerging structure was achieved by permitting a greater fanin, here three

input OR gates rather than only two-input gates.  Gates with higher input are

inherently slower, and thus are avoided in some designs.  Here again is an

example of confusing functional design with efficiency.  In effect, multi-

input gates are a design expedient which can be removed without cost when the

design is completed.

The four clusters of OR/AND gates at the bottom of the schematic provide

another example of emergent structure.  These clusters embody a horrible

design characteristic, they have reconvergent signals which split to enter

two OR gates, and then recombine in the AND gate.  In this schematic, the

reconvergence is simple and clear;  however, the same problem existed in SS2,

where it was not as visible.  This is an example of redundancy removal

exposing poor design.

S5 is the result of the CDE reconvergence removal process.  Ordinarily,

redundancy and reconvergence (and other undesirable structures) are removed

all at once during CDE optimization.  Here, we have interrupted the

optimization process in order to show desirable intermediate results.

Again we see more 3-input OR gates and a simpler suggestive structure.

Further releasing the multiple input constraint will again clarify the

circuit structure.

S6a is intended to be the final result of minimization.  However, it contains

several design flaws.  In particular, the 4-input OR gates are still too

constrained in the number of inputs.  Second, and worse, the circuit has been

configured using a diversity of gate types.  This effectively destroys the

visual and functional symmetries of the circuit.  

S6b is the final result of CDE optimization.  It provides the best overall

functional design metrics.  The two 5-input OR gates provide structural

organization.  The wires entering the eight AND gates are not tangled in a

maze (compare SS17).  We can see the gate level circuit structure clearly.

There are essentially three types of modules, the four at input, the four 3-

input OR gates followed by inverters, and the two 5-input OR-AND clusters.

With effort, it is now possible to reverse-engineer the circuit, to identify

the functionality solely from the structure.  SS17 abstracts these components

into hierarchical library modules.  SS21 converts this circuit into a

distinction network.
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S7a is a design generated by the CDE which emphasizes testability.  A

testable circuit has no reconvergent paths.  The cost is a longer path delay.

The design is achieved by reducing the circuit to a distinction network, then

manipulating it to contain fewest wires.

This example illustrates the substantial differences between designs with

different design objectives.  The CDE can generate designs which meet pre-

specified criteria, moving freely around the design space in order to

identify structures which achieve desirable performance characteristics.

S7b is the fault tolerant design optimized for gate count.  This circuit has

the fewest gates all.

Design Constraints

"Given a set of transformations, it is difficult, if not impossible, to

claim that all equivalent network configurations can be reached by some

sequence of transformations....Different sequences of transformations

lead to different results that may correspond to different local points

of optimality."

[DeMicheli, Synthesis and Optimization of Digital Circuits, p.356]

The next eight schematics illustrate a diversity of design constraints

asserted as parameters in the CDE.  All constraints are applied to the

reduced circuit (SS6b and SS7b).  The CDE generates functionally equivalent

designs based on values of pre-specified parameters.  At the moment these

parameters include:

•  signal propagation delay

the length of longest path through the circuit

•  silicon area

count of the number of logic gates in the design

•  wiring

count of the number of nets connecting circuit gates

•  generic quality of design

a composite metric,

the sum of gates and wires, multiplied by the delay

•  fanin and fanout

limits on the number of inputs and outputs for a logic gate
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With slight modifications, the following metrics can be added to the CDE

parametric space:

•  power consumption

count of the number of gates transitioning for an exhaustive set

of input vectors

•  transistor area

count of transistors specific to each gate type, modified by

the transistor width required to maintain signal strength

•  noise

count of the number of concurrent gate transitions

•  pipelining

subdivision of the circuit into equal delay segments

•  N-input look-up tables

partitioning into tables with limited inputs

The EDA industry has built elaborate models of physical circuitry in order to

better estimate design performance prior to the costly fabrication process.

The CDE does not include these models, however, the minimization architecture

is easily modified to accommodate different semiconductor models.  The CDE

has the capability for highly accurate modeling, but it does not have the

actual models, which tend to be trade secrets.

S8 illustrates design changes when the CDE delay parameter is fixed.  One

complexity is that different types of gates have different delays, so that an

accurate estimate of delay must take into account the transistor network

rather than the bulkier logic gate model.  Suppose for compatibility with

other board components, the circuit delay must be 6 gates.     

One approach to reducing delay would be to begin with SS6b, which has a delay

of 8.  Changing the 3-input OR along the critical path is, however, a bulky

solution.  As well, SS6b uses several different types of gates, so that the

accuracy of a gate count model is suspect.

In contrast, the fault-tolerant structure SS7b has a maximal path length

(propagation delay) of 11 gates.  Beginning with the more homogeneous

structure may imply a greater number of changes, however each change is

modular and simple to implement.  As well, the 2-input NOR gates are easy to

modify, and maintaining the testability of the resultant circuit would be

desirable.

The CDE includes incremental transformations which allow specific trade-offs

between circuit complexity (area) and delay.  These incremental changes can

be applied and evaluated one at a time.  This process is probably best seen

as an interaction between the CDE and a designer.  The designer would first

ask for the current critical path to be identified, then s/he would identify

a particular part of that path to reduce, and this process would iterate
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until the desired structure is generated.  Alternatively, a simple rule-based

automated implementation may be sufficient for most design problems.

When the critical path is expressed as a nested parens form, delay is simply

the maximum depth of the nesting.  As in S1, application of distribution in

the distribute direction will successively reduce the length of the path

(i.e. the depth of nesting).

S9 illustrates pipelining.  Here, the objective is to identify modular delay

components of the same length, so that signals can be processed in waves.

This constraint is simply a multiple application of delay shortening.

Specifying the maximum delay for the entire circuit becomes specifying the

maximum delay for components along the critical path.   

With the pun form, pipelining is easy to achieve.  Cells are expanded until a

pre-specified depth is reached.  When all cells have the same depth of

nesting, pipelining partitions have been identified.

S10a is a different type of design constraint, that of phrasing the circuit

structure using a pre-specified set of gate types.  Specific gate libraries

may be an enforced limitation of the design environment, they may be

associated with limited fanin and fanout in order to manage power

consumption, they may be a preference of the designer in order to better

understand the circuit, or they may be associated with other performance

characteristics of the target technology.  This example is one of technology

mapping as well as design constraint.

As with all circuit transformations, the number and variety of possible

structures are huge.  The cell library in this circuit is {NOT, OR2, AND2,

NOR2, NAND2, XOR}.  Although appearing to be reasonable, this selection

permits too much gate diversity, in effect undermining the symmetric

structures in the circuit.

S10b uses a slightly different library, {OR2, AND2, NOR2, NAND2, XOR}.

Simply by suppressing the inverter gates, the symmetric structure of the

circuit is maintained.  The selection of library components is an interactive

exploration.
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S10c [NO LONGER INCLUDED IN COLLECTION] provides a complex example of

parametric design.  Here, a circuit structure is requested by setting the CDE

parameters to the following values:

•  maximum fan-in = 3

•  maximum-fan-out = 2

•  wire count = low   

•  fault-tolerant = yes

•  gate library = {AND, OR, NOT, MUX, XOR}

•  delay = 7

•  design quality = not important

The schematic shows that the CDE parameters are all interactive and can be

set concurrently.  This does not imply that there exists a circuit

configuration which meets these constraints.  For example, if a delay of 2 is

requested, then a two-level circuit similar to SS1 is generated.  There is no

flexibility in this structure for other considerations.

The CDE interface provides ranges which establish the relative importance of

a particular constraint.  Some parameters, such as delay, do not require a

range, since maximal path length is always best for achieving other design

constraints.  Some parameters, such as wire count, are only roughly

quantifiable.  Some, like gate type, fanin and fanout, are strict

limitations.  The interactive values of most interest to a designer are not

at this time known.

In general, a set of constraints falls into one of three categories:

•  significantly underspecified

•  significantly overspecified

•  tightly specified

The meaning of the types of specification (under, over, and tight) depend on

the specific circuit, since some functional designs permit a wide diversity

of structural solutions, and some, such as a systolic array multiplier, do

not.  Within the space of possible structures for a specific functionality,

significantly underspecified constraints mean that there are many potential

solutions.  In this case, the CDE can easily identify one.  The approach of

finding one possible solution when there are many is called satisficing, the

approach of finding one exact single solution is called optimization.  The

CDE is a satisficing system, since exact optimization has horrendous

computational complexity.

Significantly overspecified constraints are also computationally easy, it is

easy to determine that there are no possible solutions.  In the case of a

tight specification, logic synthesis systems have a choice between very long

processing times, or rapid achieved close but not optimal solutions.  The CDE

is of the second type.
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S11 is a mapping to 3-level logic.

S12 provides a solution to the constraint that all gates be two-input NAND

gates or INVERTERS.  This particular constraint is reasonable since the

transistor count and the computational effort for NAND gates is minimal.

Although this circuit has more gates than others, when NAND2 gates are

converted into a transistor network, they are optimal.  thus this circuit is

best from a hardware performance perspective.

S13 provides a mapping to a radically different type of architecture, that of

FPGA reconfigurable look-up tables.  Instead of logic gates, the CDE has

generated a circuit decomposition composed of tables which are constrained to

take up to four inputs.  FPGA architectures vary widely in types of

reconfigurable components.  Four-input look-up tables is a common simple

case.

Designers have learned to think in terms of logic gate networks.  The design

qualities of a circuit are hidden when look-up tables are used, the two-level

design SS1 being an extreme example of one look-up table for the entire

circuit.  (In fact, if the interior of the four-input look-up tables were

exposed, they would look like smaller versions of SS1.)  Thus, there is no

structural information in this schematic, a design trade-off in order to

achieve reconfigurability.

Partitioning by number of different variables is again easy for Pun.  The

fully expanded circuit can be chunked from the deepest space outward simply

by counting the number of variables.  When four (or N) is reached, a new cell

is constructed and labeled.  The partitioning process then iterates with the

new 4-input cell locked.

S14 is not a circuit, but a binary decision diagram (BDD).  Almost all

current EDA tools use the BDD as a primary data-structure.  This example

visually illustrates the primary difficulty with BDDs:  they provide yes/no

answers to functional questions about a circuit (such as:  Are two structures

functionally identical?) but they do not provide information about the

structure of a circuit.  BDDs are one-way streets, you can turn a circuit

design into a BDD, but you cannot turn a BDD into a circuit design.  The BDD

technology is pervasive simply because better methods are not known.  All

problems in circuit minimization are exponentially complex, which means that

they do not scale as the circuit becomes larger.  Thus, in an era of million

gate structures, current EDA tools have reached a breaking point.  The

generally espoused solution is formal verification, using theorem proving

techniques to address families of circuit structures.
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The CDE uses a representation which maintains a close fidelity to logic

gates, is scalable, and as well provides formal verification.  It is the

first known fully functional tool for multilevel circuit optimization.

Hierarchical Abstraction

"Library binding is the key link between logic synthesis and the

physical design of semicustom circuits."

[DeMicheli, Synthesis and Optimization of Digital Circuits, p.546]

The next eight schematics are examples of hierarchical abstraction.

Abstraction is mandatory as designs grow large, since human designers find it

exceedingly difficult to extract information from logic networks containing

tens of thousands (or more) of gates.  To accommodate this restriction,

design itself has embodied modular principles.  A primary example of this is

bit-width:  an 8-bit adder differs little from a 16 or 32-bit adder, except

for duplication of components.  Thus modular abstraction already exists as a

top-down design practice.

What current tools do not provide is bottom-up abstraction, the ability to

identify modular patterns in a circuit which have not necessarily been put

there during design.  The primary advantage of bottom-up abstraction is that

designers can identify available trade-offs between circuit area and circuit

delay.

Another (currently unavailable) advantage of bottom-up abstraction is that

modular components can be partitioned parametrically.  Circuits can be sliced

up in different ways, some of which may be more desirable for a particular

design context.  Not only does the CDE identify available modular components,

it can move across different modular groupings, customizing the level and

degree of abstraction.

S15 abstracts the low-level components which can be seen by visual inspection

of SS6b.  The CDE builds customized library elements which have the

functionality of each component, and can be reused as modular components.

Here, all gates have been encapsulated in hierarchical modules.

S16 abstracts different components in order to avoid the tangle of wires

generated by SS17.  This tangle is an artifact of abstracting the two OR-AND

groups.  Each group has nine inputs.  In order to maintain structural

similarity within the OR-AND groups, inputs must be similarly sequenced for

each.  Often designers permit input rearrangement.  This removes the tangle

of wires, but makes the two modules into different subcircuits.  Thus the

abstraction is lost.  The CDE simply partitions the circuit elements to

reduce the ordering of inputs.  Here, each module has only three inputs.
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S17 illustrates an abstract view of the circuit which highlights the critical

path and suppresses other detail.  A designer can consider these intermediate

modules to be encapsulated mini-circuits composed solely of logic gates.

Alternatively the intermediate components can be treated as hierarchical

abstractions composed of circuit elements and other lower-level abstractions.

S18 illustrates an abstract view which highlights the parallel portion of the

circuit.  Sequential paths are encapsulated inside modular components,

exposing that portion of the circuit which propagates signals in parallel.

The ability to partition sequential and parallel components of a logic

structure is unique to the CDE.

S19 continues to emphasize parallel components, but it forms modules which

encapsulate an entire output tree.  Thus, the inputs to the InputChain

modules are all primary inputs.  What is then isolated is the third output.

S20a-b-c illustrates a common abstraction across bit-width.  This provides

the capability of designing generic components which can be generated to fit

any width of parallel binary inputs.  An N-bit adder, for example, can be

instantiated in one part of a circuit which uses only 4-bit data as a 4-bit

adder, while being instantiated as a 16-bit adder in other parts which use

16-bit information.  Since the CDE can generate parameterized components,

designs can be customized for particular uses, and even for particular input

configurations.

An example of bit-width configuration combined with other CDE parameters is a

decimal-to-binary converter.  In order to accommodate decimals with 10 input

varieties, a binary system needs 4 bits which can be configured into 16 (2^4)

varieties.  However, 6 of these binary configurations (which would represent

the decimal numbers 10 through 15) are never used.  Thus the input to a

binary-to-decimal converter is biased.  The lowest bits occur

probabilistically 50% as 0 and 50% as 1.  The highest bit, which covers the

decimals numbers 8 through 15 when set to 1, is most often a 0 (specifically

four times out of five a decimal number will be 0 through 7, and one time out

of five it will be 8 or 9).  Thus the circuit can be optimized to take this

biasing into account.  Biased input is quite common in many applications,

however current design tools enforce a 50/50 expectation for input values.

BTC Hardware Models

The remaining nine schematics show BTC hardware designs.  These designs are

provided for contrast.  They are not part of the CDE functionality, rather

they illustrate radically different hardware architectures which embody the

software innovations within the CDE.  This approach is of obvious advantage:
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rather than using the CDE to improve existing circuit designs, a designer can

configure existing designs for hardware which performs the circuit

functionality at hardware processing speeds while including all of the design

advantages of the CDE's unique approach.  BTC hardware can be contrasted with

other architectures generated by the CDE tools:

•  SS1  -- two-level look-up table architecture

•  SS6  -- optimized multilevel logic network (ASIC) architecture

•  SS7b -- fault-tolerant architectural variation of ASICs

•  SS13 -- FPGA reconfigurable architecture

S21 is the distinction network version of SS6b.  The unique circular "gates"

are distinction nodes.  They do not act like normal gates in that they do not

propagate signals.  Internally each dnode processes by disconnection.

S22 is a variant distinction network structure which mimics the fault-

tolerant architecture of SS7 (although the concept of fault-tolerance which

applies to ASICs is quite different than distinction network fault-

tolerance).

S23a is an Occlusion Array, BTC's FPGA-like reconfigurable architecture.  The

circuit expressed within the array is SS6b.

S23b is the Occlusion Array for SS7a.

S23c is the Occlusion Array for SS1.

S23d is the Occlusion Array for SS2.

Although the array configuration is recognizably different for each of these

four circuits, the functioning of the array is the same.  Occlusion arrays

process in almost constant time, regardless of array configuration.  thus the

design differences over these four circuits are irrelevant to the efficiency

of the array operation.  Bad design uses a larger array area (SS23d), but does

not effect either the timing or the wiring complexity, since Occlusion Arrays

abstract both timing and wiring into spatial configurations of marked memory

locations.

S24a-b are CoMesh architecture mappings;  SS24a to SS1, and SS24b to SS7.

S25 is a Bit-stream software architecture which represents the functionality

of a circuit as a software bit-stream.  This approach simulates the circuit

functionality in software, using conventional Pentium-class processors.

Circuit elements are bond to input values and then transcribed into a bit-

stream.  The bit-stream is evaluated in a one-pass operation.
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METRICS FOR THE STRUCTURAL VARIETIES

Six simple metrics were used to calibrate the effect of each transformation:

•  Devices:  the number of gates and i/o ports

•  Wires:    the number of wires, both internal and external

•  Pins:     the number of pins, in and out, connected to devices

•  Area:     the sum of device and pin count

•  Delay:    the length of the longest path through the circuit

•  AxT:      a compound measure, the product of the area by delay.

The Devices metric gives a rough indication of circuit area.  In sub-micron

technologies, wire count is a more accurate measure.  Area, the sum of gates

and pins, is a slightly more robust measure.

Delay is a critical metric independent of circuit complexity.  It measures

how many clock ticks are required to evaluate an input.  A lower delay means

fast circuit.  Pipelining obviates this measure.

The compound measure AxT is preferred by experienced engineers, since it

balances design trade-offs between speed and area.

The transformations and their accompanying statistics are charted below.   

The amount of removable redundancy in the original circuit specification is

rather typical of quickly designed circuitry.  Even circuits of this size are

a challenge for CAD tools, primarily because they uniformly lack Boolean

transformation algorithms.  Current commercial systems have weaker tools

which reduce simple special cases of redundancy, but cannot handle the sheer

diversity of logic network structures for the same functionality.

4-LUT and abstraction transformations, as well as alternative architectures

such as the occlusion array (S13-24, excepting S21 and S22), are not

comparable on these metrics.  
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circuit parts wires pins area delay A*T gate2

1 two-level logic 67 69 294 361 2 722 174

2 multilevel benchmark 90 87 210 300 8 2400 44

3 suppress inverters 69 66 168 237 8 1896 44

4 remove redundancy 59 56 140 199 7 1393 36

5 reduce reconvergence 51 48 120 171 6 1026 32

6a increase fanin, poor 49 47 116 165 6 990 35

6b increase fanin, good 49 46 116 165 6 990 32

7a increase testability 50 48 114 164 9 1476 32

7b testable, optimized 50 48 118 168 9 1512 32

8 delay, depth=6 0 0 0

9 pipeline, delay=3 0 0 0

10a specific library, poor 53 50 124 177 10 1770 32

10b specific library, good 46 43 110 156 8 1248 32

11 three-level logic 0 0 0

12 nand gates 78 76 174 252 9 2268 32

13 4luts 25 29 62 87 4 348 0

14 bdd 0 0 0

15 low-level abstraction 24 34 74 98 5 490 0

16 emphasize wiring 26 35 74 100 6 600 0

17 emphasize sequential 20 26 58 78 5 390 0

18 emphasize parallel 22 24 62 84 2 168 0

19 emphasize output 34 31 88 122 3 366 0

20 bit-width abstraction 0 0 0

21 dnet 50 46 126 176 11 1936 40

22 dnet, less wiring 51 48 122 173 11 1903 34

23a occ array, optimized 0 0 0

23b occ array, testable 0 0 0

23c occ array, two-level 0 0 0

23d occ array, benchmark 0 0 0

25 bit-stream simulator 0 0 0
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Comments below are constrained to Schematics  S1-12, S21-22.  For

convenience, the table is repeated with relevant items only:

circuit parts wires pins area delay A*T gate2

1 two-level logic 67 69 294 361 2 722 174

2 multilevel benchmark 90 87 210 300 8 2400 44

3 suppress inverters 69 66 168 237 8 1896 44

4 remove redundancy 59 56 140 199 7 1393 36

5 reduce reconvergence 51 48 120 171 6 1026 32

6a increase fanin, poor 49 47 116 165 6 990 35

6b increase fanin, good 49 46 116 165 6 990 32

7 increase testability 50 48 114 164 9 1476 32

10a specific lib, poor 53 50 124 177 10 1770 32

10b specific lib, good 46 43 110 156 8 1248 32

12 nand gates 78 76 174 252 9 2268 32

21 dnet 50 46 126 176 6 1936 40

22 dnet, less wiring 51 48 122 173 9 1903 34

Discussion

All metrics are intended as rough approximations which allow comparison

across the different versions.  They are not intended to be accurate physical

models.

Parts:  Includes 14 i/o pins and counts inverters.  

Gates2:  A better indicator of logic complexity, this counts only logic

gates, with all gates having only two inputs.  S10a and S10b use a more

complex XOR gate, so they should have 4 added to their gate2 count for

comparison.

Wires:  The number of nets does not reflect the wiring complexity since it

does not count extra for fanout.   

Pins:  A better wiring metric than wires.  The quantity (pins - wires) is an

indicator of the fanout in the design.  Unused pins in S13 were not counted.

Area:  Devices plus pins estimate the silicon area of the design.

Delay:  The longest topological path in optimized designs is also the

critical path.  In poorly optimized designs, false paths, those that never

contribute to the output, may make the actual critical path shorter than the

longest topological path.  Counting gates to measure delay is very crude.

The many factors which contribute to delay (type of gate, fanin, fanout,

driving voltages) require a more complex propagation model.  As well, the
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transistor network itself most be modeled.  Inverters were not included in

delay counts.

Area * Delay:  This is an ad hoc composite measure which balances relative

importance of delay and topological complexity.

Ranges

Range Best Worst

Devices:  46 -  90 S10b  S2

Wires:  43 -  87 S10b  S2

Pins: 110 - 294 S10b  S1

Area: 156 - 361 S10b  S1

Delay:   2 -  10 S1  S10a

A*T: 722 -2400 S1  S2

Gates2:  32 - 174 many  S1

many=(5,6b,7,10a,10b,12)
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CONSTRUCTIVE ANALYSIS OF CM85A

S1, two-level logic, is obviously in an unreadable form.  Similarly, SS2, the

raw multilevel benchmark, poses difficulties for analysis, even with its

small size and underlying structure.  We can see that the signals cluster in

four groups of two {<a,b>, <c,d>, <e,f>, <g,h>}.  Inputs {i, j, k} are less

interpretable.

S6b and SS7a both provide a clearer picture of the functionality of this

circuit.   

Examining SS7a:  CM85A is a four-bit processor, with three auxiliary inputs.

Signals {i,k} go directly to an output OR gate.  Thus they will dominate the

results when hi, and have no influence when low.  This indicates that they

permit ganging of the functionality, perhaps with other identical four-input

processors.  Signal j serves the same purpose for the third output.  Since j

is inverted prior to the NOR9, when j enters low, it determines the value of

out1 as low.  As well, j effects out2 and out3.  When j is low, the last

gates of the NOR-chain will be low, leaving the results of out2 and out3 to

depend only on i and k.

Thus we have the following table:

Signal Effect

  i=low none

   =hi out2=hi

  k=low none

   =hi out3=hi

  j=low out1=low, out2=i, out3=k

   =hi none

The four groups of two signals are all symmetric, call them <X,Y>.  Each XOR

group produces low signals on both lines whenever X=Y.  The only situation in

which a positive signal comes from an XOR NOR gate is when the accompanying X

is low and Y is hi,  Thus, positive signals indicate a comparison, a

difference between X and Y.  Any such positive signal will make the connected

NOR in the NOR chain low.  When any pair is the same, the connected NOR will

ignore it, checking if any other pairs are the same.  The NOR chain returns

low only when all signal pairs match.

Examining SS6b:  whenever a pair is different, one line will be hi, making the

OR3 gate hi.  This is then inverted to low and sent to an AND gate, which

returns low.  The AND result s are accumulated by the final OR5; a low signal

from the AND is ignored.  The XOR paired wires also go directly to the AND

gates.  Whenever X is hi and Y is low, out2 will be hi and out3 will be low.

And symmetrically when X is low and Y is hi.  Thus out2 collectively

indicates that at least one X is different than Y and is hi.
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The table for this:

Signals Effect

  X=low   Y=hi out2=low, out3=hi

  X=hi    Y=low out2=hi, out3=low

  X=Y none;  when all X=Y, out2=low, out3=low

We can now summarize:  CM85A is a four-bit comparator.  When all four bits

are equal (and when the ganging signals are low), out1=hi, out2-low out3=low.

When any pair does not match, if the higher bit is hi and the lower bit is

low, then out2=hi and out3=lo.  Reversed otherwise.

Out1 is four-bit equality.

Out2 is four-bit greater-than.

Out3 is four-bit less-than.



25

COMPARISON TO PUBLISHED RESULTS (DATED)

In comparison with recent (1996) published results for the CM85A circuit, our

techniques performed well.  [Reference:  Tsai (Mentor Graphics) and Marek-

Sadowska (UCSB),  Multilevel Logic Synthesis for Arithmetic Functions, DAC'96

p242].  Three different systems are compared below.

•  SIS:   UC Berkeley optimizing tool used by many CAD companies

•  DAC:   1996 academic research results

•  Losp:  void-based techniques

METRIC: number of wires

Wire count indirectly measures circuit complexity, since the dominant

fabrication problem is connecting functional gates.  In deep sub-micron

technologies, wire count rather than transistor count measures chip area as

well.

The first set of results is after logic synthesis but before physical layout.

Thus the first results are mathematical and independent of semiconductor

technology.  This measurement technique assumes that the results of logic

synthesis are not deconstructed when the abstract functionality is laid out

on a physical substrate.  Most CAD tools do deconstruct the logic

optimization because synthesis and layout have traditionally been seen as

independent sequential tasks often done by different engineers.

source wire-count CPU time

SIS   80 1.7 sec in C on Sparc 5

DAC   84 1.48 sec

Losp   64 0.52 sec in LISP on PowerPC 8100

The second set of results is after layout, and is more pragmatically based.

Losp result reflect an integrated synthesis and technology mapping strategy,

since both are achieved by the same transformation algorithms.

source gate-count wire-count  

SIS 33 77

DAC 41 84

Losp 23 47
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COMMENTS ON ALGORITHMS

SCHEMATIC 1:  Two-level Logic

The distribution theorem is

A ((B)(C)) = ((A B)(A C)) collect <==> distribute

Continuing application of Distribute will convert a parens form to two-level
logic.

Example:
((a) ((b) ((c) (d)))) 3 levels
((a) ( ((c (b)) (d (b))))) distribute (b)
((a) (c (b)) (d (b))) clarify,  2 levels

SCHEMATIC 2:  Multilevel Benchmark Circuit

This circuit is a direct parse from EDIF to pun format.  The standard
conversion table is used:

FALSE <void>
TRUE ( )
(NOT a) (a)
(a OR b) ((a b))
(a AND b) ((a)(b))
(IF a b) (((a) b))
(IF a THEN b ELSE c) (((a) b)(a c))
(a XOR b) ((a b)((a)(b)))

SCHEMATIC 3:  Suppress Inverters

A cell in a pun file consists of

(id parens-form)

Expanding a pun file consists of substituting the parens-form for the id
wherever it occurs within the rest of the pun body.  Example using a circuit
fragment:

(~1  (a) )
(~2  (b ~1) )

Expand ~1:

(~2 (b (a)) )

For this circuit, all of the inverters have been expanded into the cells
which call them.
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SCHEMATIC 4:  Remove Redundancy

Each cell is handed to the Losp minimization engine, after being fully
expanded.  This circuit represents a part of Losp functionality, that of
using the theorems Dominion, Involution, and Pervasion to minimize a parens
form.  PF-REDUCE accesses the Losp minimization functionality.

SCHEMATIC 5:  Reduce Reconvergence

The distribution theorem is applied to all cells, in the Collect direction.
This is equivalent to factoring the Boolean expression.

((a b)(a c)) ==>  a ((b)(c)) DISTRIBUTION

Factoring Pass 1:

  ((~29    (H G (j) (F))   )
   (~28    (H G (j) (E))   )
   (~31    ((k ((j) (H))))   )
   (~30    ((i ((j) (G))))   )
   (~10    (E F A B H D G C (j))   )
   (~40    ((~28 ~30 (E F H D G C (j) (A)) ((C) E F H G (j)))) )
   (~41    ((~29 ~31 (E F H D G C (j) (B)) ((D) E F H G (j)))) ) )

Factoring Pass 2:

  ((~10  (A B C D E F G H (j))   )
   (~40  ((i ((G)(j)) (G H (E)(j)) (C D E F G H (A)(j)) (E F G H (C)(j)))) )
   (~41  ((k ((H)(j)) (G H (F)(j)) (C D E F G H (B)(j)) (E F G H (D)(j))))) )

  ((~10  (A B C D E F G H (j))   )
   (~40  ((i ((j) (G (H (E)) (F H (C (D (A)))))))) )
   (~41  ((k ((j) (H (G (F)) (E G (D (C (B)))))))) ) )

  ((~10  (A B C D E F G H (j))   )
   (~40  ((i ((j) (G (H (E (F (C (D (A)))))))))) )
   (~41  ((k ((j) (H (G (F (E (D (C (B)))))))))) ) )

SCHEMATIC 6a:  Collect Signals, poor choice

Cells are expanded in order to create gates with a greater fanin.  Example:

(~1 ((a)(b)) )
(~2 ((c)(d)) )
(~3 (( ~1 ~2 ((e)(f)) )) )

~3 has an irregular form.  Expanding ~1 and ~2 into it produces a collection
(OR) of three ands:

(~3 (( ((a)(b)) ((c)(d)) ((e)(f)) )) )

In this circuit, three 4 input NOR gates are created.
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SCHEMATIC 6b:  Collect Signals, good choice

Cells can be expanded in many ways.  Some choice of expansion are poor,
others are good, with respect to the simplicity of the entire circuit.  Here,
two 5-input NORs are created, leading to a more elegant circuit.

In general, what cells are expanded and when is an interactive design choice.

SCHEMATIC 7:  Increase Testability

The fully expanded version of this circuit is given to the function BUILD-
DISTINCTION-NET, which creates a structure composed solely of NOR gates.
This has the effect of removing reconvergent paths and thus enhancing
testability.

SCHEMATIC 8:  Specific Delay  (6 gates)

no comment

SCHEMATIC 9:  Pipeline  (3 gates)

no comment

SCHEMATIC 10a:  Specific Library, poor choice

Cells can be manipulated to be composed of specific collection of gate types.
Here, these gates are used:  NOT, NOR2, AND2, OR2, XOR2.  This collection
produces a clumsy circuit.

SCHEMATIC 10b:  Specific Library, good choice

Here the circuit is mapped to this collection:  NAND2, NOR2, AND2, OR2,
NXOR2.  This collection produces a circuit with nice structure.

SCHEMATIC 10c:  Arbitrary Mapping

no comment, no longer in collection

SCHEMATIC 11:  Three-level Logic

no comment

SCHEMATIC 12:  Map to NAND Gates

Here the circuit is mapped to the cell library:  NOT, NAND2.  NAND2 gates are
very efficient wrt transistor usage.  Thus this circuit is best for saving
area on a chip.
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SCHEMATIC 13:  Map to FPGA (4-LUTs)

Some FPGA architectures have lookup tables rather than logic gates.  A lookup
table with N inputs can simulate the functionality of any collection of logic
gates for those inputs.  Here the circuit is partitioned not by type of logic
gate, but by groups of 4 inputs.

Assignment Sequence (bottom up condensation):

Pass 1:
 #1= (C (D (A)))
 #2= (D (C (B)))
 #9= A B C D
#10= E F G H

  ((~10  (#9 #10 (j))   )
   (~40  ((i ((j) (G (H (E (F #1))))))) )
   (~41  ((k ((j) (H (G (F (E #2))))))) ) )

Pass 2:
 #3= (E (F #1))           3-var
 #4= (F (E #2))           3-var
#11= ((j) #9 #10)         3-var

  ((~10  #11   )
   (~40  ((i ((j) (G (H #3)))) )
   (~41  ((k ((j) (H (G #4)))) ) )

Pass 3:
 #5= ((j) (G (H #3)))
 #6= ((j) (H (G #4)))

  ((~10  #11   )
   (~40  ((i #5)) )
   (~41  ((k #6)) ) )

Pass 4:
 #7= (( i #5 ))           2-var
 #8= (( k #6 ))           2-var

  ((~10  #11   )
   (~40  #7 )
   (~41  #8 ) )
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Final LUT Assignment:

 #1= (C (D (A)))
 #2= (D (C (B)))
 #3= (E (F #1))           3-var
 #4= (F (E #2))           3-var
 #5= ((j) (G (H #3)))
 #6= ((j) (H (G #4)))
 #7= (( i #5 ))           2-var
 #8= (( k #6 ))           2-var
 #9= A B C D
#10= E F G H
#11= ((j) #9 #10)         3-var

SCHEMATIC 14:  Binary Decision Diagram

BDDs do not represent circuits, although they can answer come questions about
circuits.  The function BDD builds BDDs from circuits.  These in turn can be
used to generate an exhaustive set of test vectors for a circuit.

SCHEMATIC 15:  Low-level Abstraction

Hierarchical clustering, or library abstraction, permits a designer to
control complexity by grouping circuit portions with similar logical
structure.  Pattern-matching across parens in cells identifies abstract
patterns for hierarchical abstraction.  Examples follow

SCHEMATIC 16:  Emphasize Wiring

A different set of patterns emphasizes wiring.

SCHEMATIC 17:  Emphasize Sequential Structure

Different patterns identify different circuit characteristics.  This
partition emphasizes the critical path through the circuit.

SCHEMATIC 18:  Emphasize Parallel Structure

A different set of patterns emphasizes components which trigger in parallel.

SCHEMATIC 19:  Emphasize Output Structure

Here the patterns isolate entire subcircuits connected to each output.
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SCHEMATIC 20:  Abstract Bit Width

no comment

SCHEMATIC 21:  Distinction Network I

BUILD-DISTINCTION-NETWORK is called on circuit 6b, creating a structure
composed solely of NOR gates.

SCHEMATIC 22:  Distinction Network II, less wiring

BUILD-DISTINCTION-NETWORK is called on circuit 7, creating a structure
composed solely of NOR gates.

SCHEMATIC 23a:  Occlusion Array, optimized circuit

The Occlusion Array is a hardware architecture based on boundary logic.  It
displays circuit functionality as a pattern in memory.  The occlusion logic
reads this memory, returning the functional evaluation (the output) of the
circuit (rather than returning literally what is in memory).  This array is
of circuit 6b.

SCHEMATIC 23b:  Occlusion Array, testable circuit

Occlusion arrays are built from distinction networks.  Different networks
produce different occlusion arrays.  This array is of circuit 7.

SCHEMATIC 23c:  Occlusion Array, 2-level circuit

 This array is of circuit 1.

SCHEMATIC 23d:  Occlusion Array, multilevel benchmark

 This array is of circuit 2.

SCHEMATIC 23e:  Occlusion Array, clean multilevel benchmark

no comment

SCHEMATIC 24a:  Comesh (multilevel)

no comment

SCHEMATIC 24b:  Comesh (two-level)

no comment
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SCHEMATIC 25:  Bit Stream Simulator

Bindings and Conversion to Bit-stream:

Each output consists of a fully expanded parens form.  Full expansion means
no internal cell names, only inputs and parens in the form.  Input variables
are bound to their values.  This translates into a pure parens form, only
nested parentheses.  Using the encoding (=1 and )=0, these can be converted
into bit-streams.  The function PROCESS-BITPF evaluates these bit-streams in
a single pass, thus simulating the circuit functionality on conventional
hardware.

Stack process:

(BITPF "111001100110011011000110110001101001110001101001110000")
(BITPF "1            110    0110    011  001    011  001    00")
(BITPF "1                                  1    0      1    00")
(BITPF "1                                  1                00")
(BITPF "                                                      ")
(VALUE= FALSE TICKS= 4 ENTROPY= 27)

(BITPF "1111100111010011110001110100111100011101100011011011000000000000")
(BITPF "111    111  0011    0111  0011    01110    0110110    0000000000")
(BITPF "111    1      11    01      11    01        110        000000000")
(BITPF "111    1      11    01      11    01                    00000000")
(BITPF "111    1      11    01      11                          00000000")
(BITPF "111    1      11    01                                    000000")
(BITPF "111    1      11                                          000000")
(BITPF "111    1                                                    0000")
(BITPF "11                                                            00")
(BITPF "                                                                ")
(VALUE= FALSE TICKS= 9 ENTROPY= 32)

(BITPF "1111100111100011101001111000111010011101100011011011000000000000")
(BITPF "111    11    0111  0011    0111  001110    0110110    0000000000")
(BITPF "111    11    01      11    01      1        110        000000000")
(BITPF "111    11    01      11    01      1                    00000000")
(BITPF "111    11    01      11    0                              000000")
(BITPF "111    11    01                                            00000")
(BITPF "111    11                                                  00000")
(BITPF "111                                                          000")
(BITPF "1                                                              0")
(VALUE= TRUE TICKS= 8 ENTROPY= 31)
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LOSP GENERATED STATISTICS FOR CM85A EXAMPLES

Optimization

• SCHEMATIC   1:  Two-level Logic (PLD)

(cm85a ((i-o 11-03)(cell 52)(lits 226)(nets 63)(path 2))

 ((inv 11)(or 38)(and 1)(nor 0)(nand 2)(eq 0)(xor 0)(lib 0)(mix 0)(gates 41)))

• SCHEMATIC   2:  Multilevel Benchmark Circuit (cm85a)

(cm85a ((i-o 11-03)(cell 76)(lits 120)(nets 87)(path 8))

 ((inv 32)(or 18)(and 26)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 44)))

• SCHEMATIC   3:  Suppress Inverters

(cm85a ((i-o 11-03)(cell 55)(lits 99)(nets 66)(path 8))

 ((inv 11)(or 2)(and 21)(nor 16)(nand 5)(eq 0)(xor 0)(lib 0)(mix 0)(gates 44)))

• SCHEMATIC   4:  Remove Redundancy

(cm85a ((i-o 11-03)(cell 45)(lits 81)(nets 56)(path 7))

 ((inv 13)(or 16)(and 8)(nor 8)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 32)))

• SCHEMATIC   5:  Reduce Reconvergence

(cm85a ((i-o 11-03)(cell 37)(lits 69)(nets 48)(path 6))

 ((inv 13)(or 8)(and 8)(nor 8)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 24)))

• SCHEMATIC  6a:  Increase Fanin     

(cm85a ((i-o 11-03)(cell 35)(lits 67)(nets 46)(path 6))

 ((inv 11)(or 3)(and 6)(nor 15)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 24)))

• SCHEMATIC  6b:  Increase Fanin     

(cm85a ((i-o 11-03)(cell 35)(lits 67)(nets 46)(path 6))

 ((inv 13)(or 6)(and 8)(nor 8)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 22)))

• SCHEMATIC  7a:  Enhance Testability    

(cm85a ((i-o 11-03)(cell 40)(lits 72)(nets 51)(path 9))

 ((inv 13)(or 2)(and 0)(nor 21)(nand 0)(eq 4)(xor 0)(lib 0)(mix 0)(gates 27)))

• SCHEMATIC  7b:  Enhance Testability      

(cm85a ((i-o 11-03)(cell 36)(lits 68)(nets 47)(path 9))

 ((inv 11)(or 2)(and 0)(nor 23)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 25)))
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Design Constraints

• SCHEMATIC   8:  Reduce Critical Path (6 gates)     

(cm85a ((i-o 11-03)(cell 40)(lits 80)(nets 51)(path 6))

 ((inv 15)(or 4)(and 0)(nor 21)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 25)))

• SCHEMATIC   9:  Pipeline (3 two-input gates)    

(cm85a ((i-o 11-03)(cell 43)(lits 75)(nets 54)(path 9))

 ((inv 11)(or 9)(and 0)(nor 23)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 32)))

• SCHEMATIC 10a:  Map to Specific Library    

(cm85a ((i-o 11-03)(cell 39)(lits 79)(nets 50)(path 10))

 ((inv 7)(or 10)(and 9)(nor 8)(nand 1)(eq 0)(xor 4)(lib 0)(mix 0)(gates 32)))

• SCHEMATIC 10b:  Map to Specific Library    

(cm85a ((i-o 11-03)(cell 32)(lits 64)(nets 43)(path 9))

 ((inv 0)(or 2)(and 4)(nor 12)(nand 10)(eq 4)(xor 0)(lib 0)(mix 0)(gates 32)))

• SCHEMATIC  11:  Three-level Logic     

(cm85a ((i-o 11-03)(cell 23)(lits 67)(nets 34)(path 4))

 ((inv 8)(or 2)(and 9)(nor 0)(nand 0)(eq 4)(xor 0)(lib 0)(mix 0)(gates 15)))

• SCHEMATIC  12:  Map to NAND Gates     

(cm85a ((i-o 11-03)(cell 64)(lits 96)(nets 75)(path 9))

 ((inv 32)(or 0)(and 0)(nor 0)(nand 32)(eq 0)(xor 0)(lib 0)(mix 0)(gates 32)))

• SCHEMATIC  13:  Map to FPGA (4-LUTs)    

(cm85a ((i-o 11-03)(cell 11)(lits 57)(nets 77)(path 9))

 ((inv 0)(or 2)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 9)(gates 2)))

• SCHEMATIC  14:  Binary Decision Diagram    

(cm85a ((i-o 11-03)(cell 3)(lits 49)(nets 75)(path 9))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))
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Hierarchical Abstraction

• SCHEMATIC  15:  Abstract Low-level Components    

(cm85a ((i-o 11-03)(cell 10)(lits 0)(nets 0)(path 0))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 10)(mix 0)(gates 0)))

• SCHEMATIC  16:  Abstract for Component Connectivity    

(cm85a ((i-o 11-03)(cell 12)(lits 12)(nets 0)(path 0))

 ((inv 2)(or 2)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 8)(mix 0)(gates 2)))

• SCHEMATIC  17:  Abstract for Sequential Structure    

(cm85a ((i-o 11-03)(cell 6)(lits 0)(nets 0)(path 0))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 6)(mix 0)(gates 0)))

• SCHEMATIC  18:  Abstract for Parallel Structure    

(cm85a ((i-o 11-03)(cell 7)(lits 9)(nets 0)(path 0))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 6)(mix 1)(gates 0)))

• SCHEMATIC  19:  Abstract for Output Structure    

(cm85a ((i-o 11-03)(cell 3)(lits 17)(nets 0)(path 0))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 2)(mix 1)(gates 0)))

• SCHEMATIC 20a:  Abstract Bit-width (recursive)    

(1bit-magcomp ((i-o 02-03)(cell 3)(lits 8)(nets 14)(path 2))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))

(nbit-magcomp-recursive ((i-o 02-03)(cell 3)(lits 15)(nets 20)(path 3))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))

• SCHEMATIC 20b:  Abstract Bit-width (enables)    

(0bit-magcomp-enable ((i-o 03-03)(cell 3)(lits 4)(nets 6)(path 1))

 ((inv 0)(or 2)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 2)))

(1bit-magcomp-enable ((i-o 05-03)(cell 3)(lits 13)(nets 25)(path 2))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))

(nbit-magcomp-enable ((i-o 05-03)(cell 3)(lits 8)(nets 15)(path 3))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))
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• SCHEMATIC 20c:  Abstract Bit-width (enables, recursive)    

(nbit-magcomp-enable-recursive ((i-o 05-03)(cell 3)(lits 20)(nets 31)(path 5))

 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))

Novel Hardware Models

• SCHEMATIC  21:  Distinction Network I     

(cm85a ((i-o 11-03)(cell 36)(lits 76)(nets 47)(path 6))

 ((inv 14)(or 0)(and 0)(nor 22)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 22)))

• SCHEMATIC  22:  Distinction Network II     

(cm85a ((i-o 11-03)(cell 36)(lits 70)(nets 47)(path 9))

 ((inv 11)(or 0)(and 0)(nor 25)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 25)))

• SCHEMATIC 23a:  Occlusion Array (Dnet 21)     

(cm85a ((i-o 11-03)(cell 36)(lits 76)(nets 47)(path 6))

 ((inv 14)(or 0)(and 0)(nor 22)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 22)))

• SCHEMATIC 23b:  Occlusion Array (Dnet 22)     

(cm85a ((i-o 11-03)(cell 36)(lits 70)(nets 47)(path 9))

 ((inv 11)(or 0)(and 0)(nor 25)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 25)))

• SCHEMATIC 23c:  Occlusion Array (two-level Dnet)     

(cm85a ((i-o 11-03)(cell 52)(lits 226)(nets 63)(path 2))

 ((inv 11)(or 0)(and 0)(nor 41)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 41)))

• SCHEMATIC 23d:  Occlusion Array (raw multilevel benchmark)    

(cm85a ((i-o 11-03)(cell 120)(lits 164)(nets 131)(path 8))

 ((inv 76)(or 0)(and 0)(nor 44)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 44)))

• SCHEMATIC 23e:  Occlusion Array (clean multilevel benchmark)    

(cm85a ((i-o 11-03)(cell 62)(lits 102)(nets 73)(path 8))

 ((inv 22)(or 0)(and 0)(nor 40)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 40)))
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• SCHEMATIC 24a:  Comesh (multilevel)    

(4bit-magnitude-comparator-with-enables

 ((i-o 11-03)(cell 36)(lits 70)(nets 47)(path 9))

 ((inv 11)(or 0)(and 0)(nor 25)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 25)))

• SCHEMATIC 24b:  Comesh (two-level)    

(cm85a ((i-o 11-03)(cell 52)(lits 226)(nets 63)(path 2))

 ((inv 11)(or 0)(and 0)(nor 41)(nand 0)(eq 0)(xor 0)(lib 0)(mix 0)(gates 41)))

• SCHEMATIC  25:  Bit-stream Simulator    

(cm85a ((i-o 11-03)(cell 3)(lits 49)(nets 75)(path 9))
 ((inv 0)(or 0)(and 0)(nor 0)(nand 0)(eq 0)(xor 0)(lib 0)(mix 3)(gates 0)))


