
1

PUN FORMAT

William Bricken

August 2003

CONTENTS

ILOC

Models

Modeling Circuits

The Advantage of Boundary Logic

Representations

Parens Notation

Parens Semantics

Pun Notation

Majority Example

Dnets

Extruded Parens Form

Parens-Pun Form

MAJORITY in the One-Bit Adder

ILOC Patterns

DMC54 Patterns

ILOC

ILOC is a suite of three hierarchical software tools. At the core, the

Boundary Logic Engine (Losp) provides Boolean minimization of logic function

graphs. The Circuit Graph Engine (CDE) manipulates circuitry-specific

transformations on structure, such as structure sharing and technology

library mapping. The outer layer of functionality, the Application

Interface, admits and generates EDIF specifications, provides batch-mode

processing, test-vector verification, statistical analysis, and interfaces to

CAD and other interactive systems.

ILOC calls Losp for minimization, then applies structural rearrangement

algorithms to the minimized parens forms. Due to the homogeneity of parens

notation, patterns in the circuit can be easily identified. ILOC identifies

common gate patterns (XOR, MUX), common structures that can be combined by

increasing fanout (structure sharing), and common patterns found in

technology libraries (technology mapping).

The Circuit Design Engine (aka Circuit Design Explorer), is a stand-alone

application of Losp/ILOC as an EDA product prototype. The CDE generates

candidate circuits within a parameterized design space. Candidates are

structural variations of the same functionality. The designer specifies a

configuration of behavioral, topological, and technology mapping parameters

and provides a description of functionality (reference netlist, set of logic

equations, HDL behavioral specification, FSM, etc.). When feasible, the CDE

produces a circuit which satisfies the specified structural constraints.

2

MODELS

Boundary logic algorithms can be expressed using many different data

structures, such as

• Parens Notation

• Pun Notation

• Adjacency lists

• Relations

• Object-oriented

• Bit-stream

Each of these may come with a specific mode of processing and set of

algorithmic clichés (list, logic, set, relational, object, and bit-stream

processing metaphors).

Pun notation is native to ILOC, while parens notation is native to Losp. Pun

expresses the structure of circuits as a partitioned graph. It uses multiple

data structures internally, as an artifact of experimental development.

Modeling Circuits

The relationship of containment is sufficient for the expression and

transformation of Boolean logic and for the gate-and-wire components of a

circuit. Formally, there is a morphism between the inside/outside

distinction of containers, the antecedent/consequent distinction of logical

implication, the input/output relation of variary NOR gates, and the

parent/child distinction of directed graphs.

Registers and feedback in circuits are simply principled and choreographed

breaking of containment; the state contained inside a register is

transferred to the outside of the register (into the circuit as a whole) at

specified locations and times.

The Advantage of Boundary Logic

In all representations, boundaries serve both to define objects and patterns,

and as the connection between objects. (Boundaries both separate and

connect.) In a circuit, each boundary is both a variary NOR gate and the

wire exiting that gate. Connectivity and logical functionality are

confounded in the Pun representation. The motivation for changing structure

can be either behavioral (grouping logic) or topological (eliminating wires).

The identicality of wires and gates in a distinction network circuit permits

both wiring and logic to be minimized concurrently.

3

REPRESENTATIONS

Examples of several varieties of representation of boundary logic follow.

All are for the same logical form.

LOGIC: (a AND (a OR b))

PARENS with NUMBERED SPACES: ((a) (a b))

 0 1 2 3

EXTRUDED PARENS: () 1

 () () 2 3

 a a b

IS-CONTAINED-BY PAIRS: {<a 2>,<b 3>,<2 1>,<3 1>,<1 0>}

GENERALIZED NOR TREE:

 |

 ()

 / \

() ()

 | / \

 a a b

For notational convenience, we can use labels for the internal tree nodes.

These nodes are called distinction nodes, or dnodes for short. Dnode labels

identify the space contained by the dnode, the subgraph for which they are

root. Rotating the NOR tree clockwise by 90 degrees yields a circuit

schematic-like representation:

DNODE TREE:

a----2|---

 \

a--- 1|---

 \ /

 3|---

 /

b---

When a node is inside more than one container, the tree becomes a graph, and

nodes fanout to multiple containers. The containment relation is now many to

many.

4

DISTINCTION NETWORK:

 2|---

 / \

a-- 1|---

 \ /

 3|---

 /

b--

PARENS NOTATION

Containers can be represented in linear text by well-formed parentheses

(WFP), called parens. A parens expression makes containment visually

obvious: each parens contains other parens forms, grounding in either an

empty parens or a label. The varieties of WFPs are countable with the

Catalan numbers, and are studied under the technical name of Dyke languages.

A parens form represents a set of containment relations. This set also

defines a graph, with spaces as nodes and distinctions as links. In the

parens form below, the inside space of each delineated boundary is labeled

with a unique integer; variables are their own labels and by convention

their own container boundaries.

 ((a) (b))

 0 1 2 3

The outermost boundary, labeled 0, is the edge of the typographical space.

This boundary is conventionally not represented for text, and commonly

represented as a line frame for diagrams. In the above example, the

outermost boundary is implicit in the whitespace which defines the page

formatting.

The example has six containment pairs. These containment relations can be

more conventionally represented as a set of ordered pairs:

x CONTAINS y: {<0 1>,<1 2>,<1 3>,<2 a>,<3 b>}

Similarly, these pairs could be ordered by the is-contained-by relation:

x IS-CONTAINED-BY y: {<1 0>,<2 1>,<3 1>,<a 2>,<b 3>}

5

PARENS SEMANTICS

The table of correspondence between logic and parens forms follows:

Logical Operators Parens Configurations

FALSE <void>

TRUE ()

NOT a (a)

a OR b a b

a AND b ((a)(b))

a IMPLIES b (a) b

IF a THEN b ELSE c (((a) b)(a c))

a XOR b ((a) b)(a (b))

a IFF b (((a) b)(a (b)))

The transformation rules for Boundary logic are

(() A) = Occlusion

((A)) = A Involution

{A} {B {A}} = {A} {B} Pervasion

Occlusion indicates the ending condition of a reduction, when a forms is

completely erased. Involution removes redundant forms. Pervasion is the

workhorse of the system.

Capital letters stand in place of any parens forms. The curly braces are not

normal parens; they indicate the that Pervasion rule applies at any depth of

nesting, as if intervening parens were transparent.

PUN NOTATION

EDIF netlists specify timed logic networks. These netlists can be transcribed

without reconfiguration into a raw Pun format. The Pun format can then be

converted directly into a network of distinctions, or it can be optimized

using the Losp reduction engine.

Pun notation is the graph version of parens notation, and is necessary to

express general graphs as opposed to trees. Pun notation maps one-to-one

onto simple netlist specifications using solely the variary NOR gate.

By convention, in Pun notation all graph nodes have an outer container.

Multiple forms sharing a space are grouped by double containment:

6

a (b) (c d) ==> ((a (b) (c d)))

Double containment maintains the logical semantics of each form.

Majority Example

Pun forms are illustrated by a simple, one-output combinational circuit, 2/3

MAJORITY. Semantically MAJORITY returns True whenever two or three inputs

out of three are positive.

The functionality and representation of the circuit can be captured using a

look-up table:

 a b c fn conventional clauses parens clauses

 0 0 0 0

 0 0 1 0

 0 1 0 0

 0 1 1 1 (and (not a) b c) (a (b)(c))

 1 0 0 0

 1 0 1 1 (and a (not b) c) ((a) b (c))

 1 1 0 1 (and a b (not c)) ((a)(b) c)

 1 1 1 1 (and a b c) ((a)(b)(c))

The set of inputs is {a, b, c}. The table represents all possible

combinations of values for these inputs. The function column (fn) is marked

whenever the input values meet the semantic specifications, in this case,

two-out-of-three inputs are positive.

A clause is a conjunction of literals. A literal is a positive or negative

atom, where atoms identify inputs. Each line of the look-up table can be

converted into a clause by forming the conjunction of the three variables,

with zero-valued variables negated. The total function specified by ones in

the function column is represented by the disjunction of all indicated

clauses. This is disjunctive normal form (DNF), also know as the sum of

products form (SOP).

The complete DNF form, often used in logic, consists of all clauses (lines in

the look-up table) joined by disjunction. The reduced DNF consists of only

those lines marked in the function column. The complete DNF for XOR is:

7

XOR: a b fn conventional clauses parens clauses

| 0 0 0 (and (not a)(not b)) = false (a b) =

 OR 0 1 1 (and (not a) b) = true (a (b)) = ()

| 1 0 1 (and a (not b)) = true ((a) b) = ()

| 1 1 0 (and a b) = false ((a)(b)) =

 -AND-

Complete DNF

((not (and (not a)(not b))) OR

 (and (not a) b) OR

 (and a (not b)) OR

 (not (and a b)))

Parens form of complete DNF

[[((a b))] [(a (b))] [((a) b)] [(((a)(b)))]]

The square brackets above are exactly the same as normal parens, but as

highlighted by their shape. Here, the conjunction (AND form) of clauses is

highlighted.

In the MAJORITY example, the reduced DNF for the function is:

 (or (and (not a) b c) (and a (not b) c) (and a b (not c)) (and a b c))

In parens notation:

 (((a (b)(c)) ((a) b (c)) ((a)(b) c) ((a)(b)(c))))

Note that boundary disjunction is spatial collection, with the collection

contained by the double boundary, ((...)).

The representation of the clausal parens form in Pun notation follows:

 ((majority)

 ((main)

 ((a unk) (b unk) (c unk))

 ((oa ~5))

 ((~1 (a (b)(c)))

 (~2 ((a) b (c)))

 (~3 ((a)(b) c))

 (~4 ((a)(b)(c)))

 (~5 ((~1 ~2 ~3 ~4)))

)))

8

The initial fields identify the circuit (majority), the library module

(main), the inputs ((a unk)(b unk)(c unk)), and the outputs ((oa 0)). The

body of the Pun form is the functional circuit:

 ((~1 (a (b)(c)))

 (~2 ((a) b (c)))

 (~3 ((a)(b) c))

 (~4 ((a)(b)(c)))

 (~5 ((~1 ~2 ~3 ~4))))

Each row of the pun-body identifies a cell, a labeled logic subgraph.

 (~<label> <parens>)

Cells are labeled with integers; variables with letters. Labels within

parens identify links in the network. Each cell can contain an arbitrary

amount of logical structure, as determined by the accompanying parens form.

The cell label can also be red as the name of a node in the logic graph.

Dnets

The above pun-body can readily be converted into a distinction network, for

which each labeled node identifies a set of atoms bounded by a single

distinction:

 ((majority)

 ((main)

 ((a unk) (b unk) (c unk))

 ((oa ~9))

 ((~9 (~8))

 (~1 (a))

 (~2 (b))

 (~3 (c))

 (~4 (a ~2 ~3))

 (~5 (~1 b ~3))

 (~6 (~1 ~2 c))

 (~7 (~1 ~2 ~3))

 (~8 (~4 ~5 ~6 ~7))

)))

Here each label represents a link in the distinction network. Although

labels identify the dnode they are paired with, they can also be thought of

as wires connecting the labeled dnode with its occurrences within other

dnodes. That is, labels identify the output wires from each dnode. Multiple

occurrences of a label denote fanout.

9

The Pun form of a distinction network is also an adjacency list for a

directed acyclic graph (DAG) in the case of combinational circuits, and a

directed cyclic graph in the case of sequential circuits.

Since the connectivity of a distinction network is confounded with its

logical functionality, the "logic" can be seen to reside in the nodes

themselves (as generalized nor gates which transform signals), or in the

links (as connectivity transforms).

Extruded Parens Form

The dnodes in the Pun body of a distinction network are easily identified

using the extruded parens form:

 (((a (b)(c)) ((a) b (c)) ((a)(b) c) ((a)(b)(c)))) parens

 () 9

 () 8

 () () () () 4 5 6 7

 a ()() () b () ()() c ()()() 2 3 1 3 1 2 1 2 3

 b c a c a b a b c

Numbers in the right-hand tree refer to cells in the above circuit. The

redundancy of numbered containers with single variables {1,2,3} has been

eliminated by structure sharing. Here, literals are unique.

Parens-Pun Form

The following distinction network, generated by Pun reduction, is a

functionally equivalent representation of MAJORITY:

 ((oa ~4))

 ((~1 (a b))

 (~2 (a c))

 (~3 (b c))

 (~4 (~1 ~2 ~3)))

Below, the Pun-body is expressed as a single parens form, the parens-pun

form.

 ((majority)

 ((main)

 ((a unk) (b unk) (c unk))

 ((oa ~1))

 ((~1 ((a b) (a c) (b c))))))

10

This representation obviates the need for a circuitry frame, and can be

expressed as a parens expression directly

((a b) (a c) (b c))

Interpreted for logic, this reads:

((a OR b) AND (a OR c) AND (b OR c))

An equivalent parens expression is more deeply nested:

((((b) (a c)) ((c) (a b))))

Interpreted for logic, this reads:

((b AND (a OR c)) OR (c AND (a OR b)))

For comparison, the parens-pun for this equivalent logical expression

follows:

 ((majority)

 ((main)

 ((a unk) (b unk) (c unk))

 ((oa ~1))

 ((~1 ((((b) (a c)) ((c) (a b))))))))

As a dnet, this Pun-body is:

 ((oa ~8))

 ((~8 (~7))

 (~1 (b))

 (~2 (c))

 (~3 (a b))

 (~4 (a c))

 (~5 (~1 ~4))

 (~6 (~2 ~3))

 (~7 (~5 ~6)))

MAJORITY in the One-Bit Adder

Yet another form of the majority circuit is presented in the chart of spatial

representations defined by the function look-up table.

((((a)(b)) ((a)(c)) ((b)(c))))

This can be read for logic as

((a AND b) OR (a AND c) OR (b AND c))

11

The Pun circuit would be:

 ((majority)

 ((main)

 ((a unk) (b unk) (c unk))

 ((oa ~4))

 ((~1 ((a)(b)))

 (~2 ((a)(c)))

 (~3 ((b)(c)))

 (~4 ((~1 ~2 ~3))))))

The accompanying dnet body is:

 ((oa ~8))

 ((~1 (a))

 (~2 (b))

 (~3 (c))

 (~4 (~1 ~2))

 (~5 (~1 ~3))

 (~6 (~2 ~3))

 (~7 (~4 ~5 ~6))

 (~8 (~7)))

PATTERNS

One advantage of Pun notation is that repetitive logic (such as bit-width

operations and cascaded operators) becomes clearly visible as aligned

boundary forms. The standard canonical form of a parens expression can be

constructed solely by sorting the parens expression by depth and breadth of

nesting, while sorting node labels alphanumerically. Below some patterns

from the DMC54 circuit are exhibited as examples of ILOC structural

organization.

DMC54 Patterns

Example input structures:

NOR2:

 (~0002 (ai cj))

 (~0003 (ck cl))

 (~0004 (cm cn))

 (~0005 (co cp))

 (~0006 (cq cr))

 (~0007 (cs ct))

 (~0008 (cu cv))

 (~0009 (cw cx))

12

AND3B (not part of the TSMC library):

 (~3597 (cn (cm) (co)))

 (~3598 (cp (co) (cq)))

 (~3599 (cr (cq) (cs)))

 (~3600 (ct (cs) (cu)))

 (~3601 (cv (cu) (cw)))

 (~3602 (cx (cw) (cy)))

AOI2BB1 with one node fanout:

 (~0768 (~0564 (aw ~3815)))

 (~0769 (~0565 (ax ~3815)))

 (~0770 (~0566 (ay ~3815)))

 (~0771 (~0567 (az ~3815)))

 (~0772 (~0568 (ba ~3815)))

 (~0773 (~0569 (bb ~3815)))

 (~0774 (~0570 (bc ~3815)))

 (~0775 (~0571 (bd ~3815)))

 (~0776 (~0572 (be ~3815)))

 (~0777 (~0573 (bf ~3815)))

 (~0778 (~0574 (bg ~3815)))

 (~0779 (~0575 (bh ~3815)))

 (~0780 (~0576 (bi ~3815)))

Sequential MUX structure with three single node fanouts (non-TSMC)

 (~3632 (~3815 ((af) (~3039)) ((ag) (~0217))))

 (~3633 (~3815 ((ag) (~3039)) ((ah) (~0217))))

 (~3634 (~3815 ((ah) (~3039)) ((ai) (~0217))))

 (~3635 (~3815 ((ai) (~3039)) ((aj) (~0217))))

 (~3636 (~3815 ((aj) (~3039)) ((ak) (~0217))))

 (~3637 (~3815 ((ak) (~3039)) ((al) (~0217))))

 (~3638 (~3815 ((an) (~3039)) ((ao) (~0217))))

 (~3639 (~3815 ((ao) (~3039)) ((ap) (~0217))))

 (~3640 (~3815 ((ap) (~3039)) ((aq) (~0217))))

 (~3641 (~3815 ((aq) (~3039)) ((ar) (~0217))))

 (~3642 (~3815 ((ar) (~3039)) ((as) (~0217))))

 (~3643 (~3815 ((as) (~3039)) ((at) (~0217))))

XOR of ORs (non-TSMC)

 (~2227 ((~1824 ~2770 ~3334 ~3802) ((~1824 ~3334) (~2770 ~3802))))

 (~2249 ((~2136 ~2926 ~3519 ~3555) ((~2136 ~3519) (~2926 ~3555))))

 (~2261 ((~2141 ~2915 ~3520 ~3524) ((~2141 ~3524) (~2915 ~3520))))

 (~2244 ((~2559 ~2565 ~2796 ~3037) ((~2559 ~2565) (~2796 ~3037))))

