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The ILOC tools for abstraction of netlists into arbitrary bit-width vectors

and into repeated functional modules are briefly described.  Vectorization

and modularization are combined to reduce a substantive circuit design,

including the use of higher rank vectors in matrix abstraction.

Vectorization

The ILOC vectorization tools permit wires of varying bit-widths to be

abstracted into a single N-bit wire.  The modularization tools permit

functional modules (library components and macros) to be automatically

defined and constructed bottom-up from recurrent logic patterns within a

netlist.  The function generation tools permit modules to be defined and

automatically constructed top-down from functional and behavioral

specifications

Combining the modularization tools, the vectorization tools and the function

generation tools creates a set of design tools with which a designer can

compose, analyze, and explore a complete circuit abstractly, without regard

to specific bit-widths or functional replication.  

One important aspect of the ILOC abstraction tools is that all boundary logic

deletion-reduction and rearrangement transformations can be applied directly

to the entire abstract form, thus changing all instances of a module or a

vector at one time.  This permits efficient transformation of groups of

signals over a given functionality, as well as automated generation of

functionality to any bit-width.

Function modularization and vectorization are similar tools that achieve

similar results.  Fundamentally they differ in the way abstracted forms are

stored and accessed.  In modularization, the function template (i.e. library

component or macro) serves as an abstracted module that can be referenced

with particular bindings any number of times.  Thus functional abstraction is

useful when a fixed functional structure is mapped during technology mapping,

and when a stable modular component has been identified.  Functional

modularization reifies a functional form while keeping i/o bindings flexible.

In contrast, vectorization applies to a particular set of matching patterns

and usually is not extended when other pattern instances are identified.

Thus vectorization applies to a fixed number of instances.  In vector

abstraction, an input/output template serves as the abstracted component that

is referenced by a given functional structure a specific number of times.

Thus vector abstraction is useful when the same functionality is applied to a
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collection of inputs and results in an aligned collection of outputs.  It is

useful when a stable i/o bundle can be identified.  Instances of a vector

output can be referenced independently, in effect decomposing the vector

after a function is applied.  Vector abstraction reifies an i/o structure

while keeping functional form flexible.

Example, the I7 Design

Vectorization is of particular value whenever the same vector occurs in

different functional relations throughout the circuit.  Figures I through V

show a substantive design, I7 from the MCNC benchmarks, that has 199 inputs

and 67 outputs.  I7 is composed of 331 conventional gates, most of them

having 4 and 5 inputs, an equivalent of just over 900 conventional two-input

gates.

The ILOC internal form condenses to 31 vectors of size 2, 4, and 28.  Figure

I shows the internal ILOC netlist in vector form.  It clearly shows that the

design consists of six separable subcircuits.  The first subcircuit is a one-

bit combination of various enable signals, and fourth subcircuit is a two-bit

combination of enables.  The other four subcircuits are quite similar,

differing primarily in bit-widths of 4 and 28 bits.  Figure II shows the set

of vectors that constitute the entire design, including i/o and all internal

wires.

Vector Modularization

One important aspect of management of circuit size and complexity is to be

able to express the circuit functionality succinctly.  I7 requires over 100

pages to describe in EDIF 2 0 0 format.  ILOC achieves a factor of 100

reduction over conventional formats, requiring a single page to describe the

functionality of the I7 circuit.  Additionally, substantive replication of

structure is still observable in Figure I.  Figure III shows the application

of functional modularization to the ILOC vector body for I7.  Use of a single

vector module reduces the functional body to six lines, one line for each

independent output.  In the vector modularization, vectors are bound to the

module input labels, and to the four module binding cells.  These vectors are

all of the same size for a particular module cell, but do not have to be of a

particular size across module cells.  In the example, both 4-bit and 28-bit

vectors bind to the same module structure.  Thus modularization not only

applies to vectors as well as to cells, it also is insensitive to the size of

the vectors bound to the module input and output.  Transformation can be

applied to the module body, even though different bindings may be to

different vector lengths.  
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Technical Details of Functionality

Figure III shows the application of cell abstraction to the vector cells with

the vector module.  In particular, one XNOR structure and two MUX structures

are identified and abstracted into patterns.  Since these are vector

patterns, they require care in interpretation.  For example, ==2 refers to

four different sets of XOR gates, one for each index in the vector VVa.  The

size of the vector VVa is indeterminate when localized in the module, so that

its size is defined by the binding cells VV91- through VV94-.  In the case of

binding cell VV91-, VVa is bound to VVi11.  VVi11 is a vector that has 28

indices.  Thus, ==2 in the vector-module expansion of VV91- represents 28

separate XNOR gates, each receiving the same aac input, and one other input

from VVi11.  Succinctly, ==2 tests 28 inputs signals for equality to aac.  The

rest of the module is also easy to read.  For binding cell VV91-, cell >>3 is

28 MUX gates, all using the aac input as a selector between 28 pairs of input

signals.  Cell >>1 uses the aad input to steer to output either the vector of

equality comparisons, or the vector of selected inputs from cell >>3.  

Summarizing, the module selects one of two inputs, tests a different input

against the same selector, and then selects one of those results using a

second selector.  This is replicated for 28 inputs sets of three.  Note that

the MUX cell structures that were lost when the circuit was expanded to

vector format in Figure I are regained in the modularization in Figure III.

Matrix Abstraction

Since vector cells can be converted into modules, they can also be converted

into higher rank vectors, in effect constructing a matrix abstraction of the

design.  Figure IV shows the matrix abstraction of I7.  Each new vector

consists of other lower rank vectors.  Here the vector components of a matrix

cell are not the same size, they are merely an ordered list of ordered lists.

Consistency of size is maintained by each cell in the ILOC internal netlist

form.  Compatibility of vector sizes is assured during the construction

phases of vectorization.  In the matrix abstraction of I7 shown in Figure IV,

the ILOC netlist reduces to seven cells, each consisting of a one line parens

cell-form.  Six cells provide output in the form of enable signals combined

with the central functionality of I7, while one single matrix parens form

consisting of 11 containers and 5 different atoms describes the entire

central functionality of the circuit.  This matrix cell can be transformed

using any applicable ILOC deletion-reduction rules, parens rearrangement

rules, or restructuring rules.

Similar to Figure III, the matrix body of Figure IV is further abstracted

using cell abstraction on matrix cells.  The two MUX structures and the one

XNOR structure are again identified, this time referring to a 4x28 matrix of

single MUX and XNOR gates.   
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Advantages for Layout

These abstraction capabilities do more that make large circuits tractable for

human designers, they also specify quite exactly how placement and routing

can be optimized, since the abstractions show exactly how much fan-out and

distance there is between signal bundles, as well identifying the places that

the circuit can be most economically partitioned for resource mapping.

To illustrate the placement and routing information, Figure V shows an

abstract matrix schematic of the I7 circuit.  The gates in this schematic

cannot be interpreted as conventional gates since some of their inputs are

vectors and vectors of vectors.  When a wide bit-width wire enters a gate in

this schematic, the gate would be replicated a number of times to match the

bit-width of the input.  Also, within the schematic, the M4 matrix is

decomposed into 4 vectors, indicating that the bit-line bundles split at that

point.  This succinct schematic represent the entire logic functionality of

the I7 circuit, while suppressing the repetitive details of hundreds of

conventional gates.  Thus the schematic is a hybrid of conventional logic

functionality and abstract functionality, while never loosing a precise

mapping to the physical circuit it represents.  The vector and matrix tools

provide top-down block-like abstraction without enforcing blocks that obscure

the actual logical transformations of the particular circuit.  These

capabilities also apply to automated partitioning, and to placing and routing

of logical functionality, addressing what is considered to be one of the most

difficult issues in design actualization.  

The EDIF specification of I7 requires 5577 lines.  The ILOC matrix

specification requires 27 lines, for a compression factor over 200 to 1.  The

size and complexity of the software programs required to expand each

representation into a form that is suitable for general transformation and

display is approximately the same for EDIF and ILOC formats.

An important feature of matrix abstraction is that is illustrates the general

capabilities of ILOC for hierarchical bottom-up abstraction.  Should

repetitive structure show up in the matrix format, it too could be vectorized

to form a rank three matrix.  Similarly, during top-down design, each

abstraction level can be articulated as an abstract vector slice, or as a

module component.  Thus ILOC contributes powerful tools for the abstraction

and abstract transformation of circuit designs, tools that can be applied to

accelerate synthesis and transformation of circuit structures, enhance design

capabilities, provide hierarchical top-down and bottom-up design

capabilities, and in general provide management of large, complex, and

difficult to understand circuit structures.
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Figure I:  MCNC Benchmark Circuit I7, Vector Expansion to ILOC Vector Format

ILOC vector body for the I7 benchmark circuit, expanded with vectors

Outputs

  ((oa 1)
   (Vout2 Vtop2)
   (Vout3 Vtop3)
   (Vout4 Vtop4)
   (Vout5 Vtop5)
   (Vout6 Vtop6))

Vector Body                                               Vector Sizes

  ((1
      (ad (ab)(ae))   )                                     --  1

   (Vtop2                                                   -- 28
      (((ad (ac Vi11) ((ac)(Vi11)))
        ((ad) (ac Vi41) ((ac) Vi42))))   )

   (Vtop3                                                   -- 28
      (((aa (ac))
        ((aa) ((ad (ac Vi10) ((ac)(Vi10)))
               ((ad) (ac Vi12) ((ac) Vi13))))))   )

   (Vtop4
      ((ac)(ad (ab)(Vi29)))     )                           --  2

   (Vtop5                                                   --  4
      (((ab) (ad (ac Vi9) ((ac)(Vi9)))
             ((ad) (ac Vi7) ((ac) Vi8))))   )

   (Vtop6                                                   --  4
       (((aa) (ad (ac Vi43) ((ac)(Vi43)))
              ((ad) (ac Vi39) ((ac) Vi40))))   )  )
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Figure II:  MCNC Benchmark Circuit I7, a Large XOR/MUX Circuit in ILOC Vector
Format, Primary and Internal Vector Components

    Vector IDs     Signal IDs                          Vector Sizes

   (Vo2-   Vout2   <pn..qo>   )                          -- 28
   (Vo3-   Vout3   <oh..pi>   )                          -- 28
   (Vo4-   Vout4   <ob oc>    )                          --  2
   (Vo5-   Vout5   <od..og>   )                          --  4
   (Vo6-   Vout6   <pj..pm>   )                          --  4

   (V2-    Vtop2   <1..28>   )                           -- 28
   (V32-   >V32    <>214..>241>   )                      -- 28
   (V33-   =V33    <=113.. =140>   )                     -- 28
   (V34-   >V34    <>173..>200>   )                      -- 28
   (V41-   Vi41    <gp..hq>   )                          -- 28
   (V42-   Vi42    <fj..gk>   )                          -- 28
   (V11-   Vi11    <dz..ec>   )                          -- 28

   (V3-    >Vtop3  <>33..>41 >46..>64>   )               -- 28
   (V31-   >V31    <>201..>209 >246..>264>   )           -- 28
   (V19-   =V19    <=81..=108>   )                       -- 28
   (V23-   >V23    <>141..>168>   )                      -- 28
   (V10-   Vi10    <al..bm>   )                          -- 28
   (V12-   Vi12    <cx..dy>   )                          -- 28
   (V13-   Vi13    <br..c2>   )                          -- 28

   (V4-    Vtop4   <65 66>   )                           --  2
   (V17-   =V17    <=75 =76>   )                         --  2
   (V29-   Vi29    <af ag>   )                           --  2

   (V5-    Vtop5   <67..70>   )                          --  4
   (V30-   >V30    <>242..>245>   )                      --  4
   (V16-   ^V16    <^71..^74>   )                        --  4
   (V18-   =V18    <=77..=80>   )                        --  4
   (V7-    Vi7     <ct..cw>   )                          --  4
   (V8-    Vi8     <bn..bq>   )                          --  4
   (V9-    Vi9     <ah..ak>   )                          --  4

   (V6-    >Vtop6  <>42..>45>   )                        --  4
   (V28-   >V28    <>210..>213>   )                      --  4
   (V35    =V35    <=109..=112>   )                      --  4
   (V25-   >V25    <>169..>172>   )                      --  4
   (V39-   Vi39    <gl..go>   )                          --  4
   (V40-   Vi40    <ff..fi>   )                          --  4
   (V43-   Vi43    <ed..fe>   )                          --  4
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Figure III:  MCNC Benchmark Circuit I7, Vector Modularization

Preparation

((oa 1)(Vout2 Vtop2)(Vout3 Vtop3)
 (Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

((1        (ad (ab)(ae))   )                                --  1
 (Vtop4    ((ac)(ad (ab)(Vi29)))     )                      --  2
 (Vtop2    (V91)   )                                        -- 28
 (Vtop3    (((aa (ac)) ((aa) V92)))   )                     -- 28
 (Vtop5    (((ab)(V93)))   )                                --  4
 (Vtop6    (((aa)(V94)))   )                                --  4

 (V91  ((ad (ac Vi11) ((ac)(Vi11))) ((ad) (ac Vi41) ((ac) Vi42)))   )
 (V92  ((ad (ac Vi10) ((ac)(Vi10))) ((ad) (ac Vi12) ((ac) Vi13)))   )
 (V93  ((ad (ac  Vi9) ((ac)( Vi9))) ((ad) (ac  Vi7) ((ac)  Vi8)))   )
 (V94  ((ad (ac Vi43) ((ac)(Vi43))) ((ad) (ac Vi39) ((ac) Vi40)))   )  )

Modularization

  ((oa 1)(Vout2 Vtop2)(Vout3 Vtop3)
   (Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

  ((1       (ad (ab)(ae))   )                               --  1
   (Vtop2   (V91-0)   )                                     -- 28
   (Vtop3   (((aa (ac)) ((aa) V92-0)))   )                  -- 28
   (Vtop4   ((ac)(ad (ab)(Vi29)))     )                     --  2
   (Vtop5   (((ab)(V93-0)))   )                             --  4
   (Vtop6   (((aa)(V94-0)))   )                             --  4

   (V91-  vector-module ((Va Vi11)(Vb Vi41)(Vc Vi42)) ((Vo V91-0))   )
   (V92-  vector-module ((Va Vi10)(Vb Vi12)(Vc Vi13)) ((Vo V92-0))   )
   (V93-  vector-module ((Va Vi9) (Vb Vi7) (Vc Vi8))  ((Vo V93-0))   )
   (V94-  vector-module ((Va Vi43)(Vb Vi39)(Vc Vi40)) ((Vo V94-0))   )  )

   ((vector-module)
    ((Va unk)(Vb unk)(Vc unk))
    ((Vo 1))
    ((1   ((ad (ac Va) ((ac)(Va))) ((ad) (ac Vb) ((ac) Vc)))   )  ))

Cell abstraction of the vector module body

        ((1   ((ad (ac Va) ((ac)(Va))) ((ad) (ac Vb) ((ac) Vc)))   )  )

  ==>   ((>1   ((ad =2) ((ad)(>3)))   )
         (=2   (((ac Va) ((ac)(Va))))   )
         (>3   ((ac Vb) ((ac) Vc))   )  )
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Figure IV:  MCNC Benchmark Circuit I7, Matrix Abstraction

Preparation

((oa 1)(Vout2 Vtop2)(Vout3 Vtop3)
 (Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

((1        (ad (ab)(ae))   )                                --  1
 (Vtop4    ((ac)(ad (ab)(Vi29)))     )                      --  2
 (Vtop2    (V91)   )                                        -- 28
 (Vtop3    (((aa (ac)) ((aa) V92)))   )                     -- 28
 (Vtop5    (((ab)(V93)))   )                                --  4
 (Vtop6    (((aa)(V94)))   )                                --  4

 (V91  ((ad (ac Vi11) ((ac)(Vi11))) ((ad) (ac Vi41) ((ac) Vi42)))   )
 (V92  ((ad (ac Vi10) ((ac)(Vi10))) ((ad) (ac Vi12) ((ac) Vi13)))   )
 (V93  ((ad (ac  Vi9) ((ac)( Vi9))) ((ad) (ac  Vi7) ((ac)  Vi8)))   )
 (V94  ((ad (ac Vi43) ((ac)(Vi43))) ((ad) (ac Vi39) ((ac) Vi40)))   )  )

Matrix abstraction

((M1-    M1  <Vi11 Vi10 Vi9 Vi43>   )                       -- 28
 (M2-    M2  <Vi41 Vi12 Vi7 Vi39>   )                       -- 28
 (M3-    M3  <Vi42 Vi13 Vi8 Vi40>   )                       -- 28
 (M4-    M4  <V91 V92 V93 V94>   )                          -- 28

((31       (ad (ab)(ae))   )                                          --  1
 (Vtop4    ((ac)(ad (ab)(Vi29)))     )                                --  2
 (Vtop2    (M4-1)   )                                                 -- 28
 (Vtop3    (((aa (ac)) ((aa) M4-2)))   )                              -- 28
 (Vtop5    (((ab)(M4-3)))   )                                         --  4
 (Vtop6    (((aa)(M4-4)))   )                                         --  4
 (M4       ((ad (ac M1) ((ac)(M1))) ((ad) (ac M2) ((ac) M3)))   )  )  -- 4x28

Cell abstraction of the ILOC matrix body

((31       (ad (ab)(ae))   )                                          --  1
 (Vtop4    ((ac)(ad (ab)(Vi29)))     )                                --  2
 (Vtop2    (M4-1)   )                                                 -- 28
 (Vtop5    (((ab)(M4-3)))   )                                         --  4
 (Vtop6    (((aa)(M4-4)))   )                                         --  4
 (>Vtop3   (((aa (ac)) ((aa) M4-2)))   )                              -- 28
 (>M4      ((ad =M5) ((ad)(>M6))   )                                  -- 4x28
 (=M5      (((ac M1) ((ac)(M1))))   )                                 -- 4x28
 (>M6      ((ac M2) ((ac) M3)))   )  )                                -- 4x28
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Figure V:  MCNC Benchmark Circuit I7, Matrix Abstraction Schematic

Matrix schematic for the I7 benchmark circuit,
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