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Abstraction is mandatory as designs grow large, since human designers find it

exceedingly difficult to extract information from logic networks containing

tens of thousands (or more) of gates.  To accommodate this restriction,

design itself has embodied modular principles.  A primary example of this is

bit-width:  an 8-bit adder differs little from a 16 or 32-bit adder, except

for replication of components.  Thus modular abstraction already exists as a

top-down design practice.

Top-down Abstraction

Nested modules provide an unlimited capacity for hierarchical abstraction and

organization of a circuit design.  By defining module templates in a top-down

manner, a designer can rough-out the architecture of a design without having

to specify the details.  This is common practice during the specification

phases of design.  By assembling existing functional modules for specific

behavioral components such as adders, comparators, buffers, counters, and the

like, a designer can fill in certain aspects of an evolving design while

leaving other aspects for later refinement.  Thus nested modules provide

valuable design tools that assist and facilitate designers during the

conceptualization and specification phases of design, they provide

organizational tools for the management of complexity of designs, and they

enable to modular composition and reuse of design elements.

Figure I shows three stages in the top-down specification of a

microprocessor.  This figure serves as an example of the design process, and

is not intended to illustrate a new design.  At first, a designer may draw a

very abstract functional block diagram, indicating the highest level units

and the channels of communication flow.  These functional blocks may then be

articulated with some important concepts, such as bit-widths and types of

data flow.  As the design elaborates, more and more information may be filled

in, some of it just placeholders, some it well understood, and perhaps some

of it experimental, awaiting more information.

Similarly, Figure II shows that the ERD format can begin is a quite rough

form, with details lacking and only functional modules present. Given

sufficient guidance, the system can generate the abstract templates

automatically and interactively, serving as a design drawing board, very much

like software coding environments provide both templates and management of

ideas.  Figure III shows more detail of the ERD format being filled in,

corresponding to the middle diagram in Figure I.  Here emphasis is on the

control cycles and steps of the FSM component, and the communication between

the components.  Functionality (here, CPU instructions) is expressed in

module cells, while data paths are expressed in the input and output binding
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of the modules.  Figure IV shows yet another level of top-down refinement,

specifying more details about the data flow and instructions between the

modules.

This example is not one of hardware design since it illustrates using the

system capabilities for design prior to hardware specification.  After the

functionality has been defined at the conceptual and functional levels, a

hardware engineer would then ask how to achieve this functionality in

silicon.  Figure V shows the ERD modular format for the cell-level hardware

description of a functional microprocessor, for comparison.  The

microprocessor description is annotated by the number of each module type is

incorporates when expanded.  Thus the system can provide methods and support

for the initial stages of the design cycle, as well as logic synthesis after

the gate-level design is complete.  

Bottom-Up Abstraction

The methods of abstraction applied to parens forms generally apply to ERD-

body format as well.  The ERD format, however, allows more diverse types of

symmetries to be abstracted than do parens forms.  In particular, structural

symmetries within parens forms must also be logical symmetries, since parens

patterns are logic patterns.  In the ERD-body two cell-forms can be

symmetrical but not connected logically.  Patterns across cells can identify

functional equivalence that can be put into ERD module format, they can

identify vectors of signals that travel together between logical structures,

they can identify opportunities for structure sharing within the circuit, and

they can identify glue logic subcircuits with no inherent structure.  Each

use is described herein.

Current EDA tools do not provide bottom-up abstraction, the ability to

identify modular patterns in a circuit that have not necessarily been put

there during design.  The primary advantage of bottom-up abstraction is that

designers can identify available trade-offs between circuit area and circuit

delay.  Another advantage of bottom-up abstraction is that modular components

can be partitioned parametrically.  Circuits can be sliced up in different

ways, some of which may be more desirable for a particular design context.

Not only does abstraction identify available modular components, it can move

across different modular groupings, customizing the level and degree of

abstraction.

Although many tools can take a hierarchical design top-down and expand it

into more fine-grain elements, the top-down design must first be defined and

provided by a designer.  The system can take netlist descriptions and

construct bottom-up the abstract modules that form the circuit.  This

enhances ease of maintenance and of redesign.  As well, poorly optimized

circuits can be decomposed, re-optimized and reorganized automatically.

Further, as illustrated by the following figures, the system can provide a
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diversity of decomposition and abstraction perspectives that permit a

designer to explore specific aspects of the circuit structure such as

logically necessary paths, wiring and routing demands, critical paths, and

other design criteria.  It should be noted that the small circuits used in

these examples do not imply a limitation to the scalability of the

techniques, methods, or processes incorporated in the system.
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Figure I:  An Example of a Top-down Design
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Figure II:  An Example of a Module Template for the Top-down Design in

Figure I, Rough Block Diagram

((design)

 ((main from-the-perspective-of-the-memory))

 ((proc-in unk)(exe-in1..32 unk)))

 ((proc-out 2)(exe-out 3))

 ((1-  control

         (())

         ((proc-out <?>)(exe-out <?>))   )

  (2-  processor

         ((control-in <?>)(memory-in <?>))

         ((memory-out <?>))   )

  (3-  execution-unit

         ((control-in <?>)(memory-in <?>))

         ((memory-out <?>))   )

((FSM-control)

 (())

 ((proc-out 0)(exe-out 1))

 ((0   <?>)

  (1   <?>  )  )  )

((ALU-processing)

 ((control-in unk)(memory-in <?>))

 ((memory-out 0))

 ((0 <?>)   )

((execution-unit)

 ((control-in unk)(memory-in <?>))

 ((memory-out 0))

 ((0 <?>)   )
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Figure III:  An Example of a Module Template for the Top-down Design in

Figure I, More Details 1

((design)

 ((main from-the-perspective-of-the-memory))

 ((READ-address1..16 unk)(STORE-in1..32 unk)))

 ((INSTRUCTION-out1..16 READ)(LOAD-out1..32 READ))

 ((1FSM-  FSM-control

         ((RESETin unk)(new-instruction INSTRUCTION-out1..16))

         ((FETCH)(EXECUTE))   )

  (2ALU-  ALU-processing

         ((Ain  2ALU-cout1.32)(Bin  LOAD-out1)(OPin  INSTRUCTION-out1..16))

         ((Cout  2ALU-Ain1.32)(Aout STORE-in1..32))   )

  (3EXU-  execution-unit

         ((rin1..16  INSTRUCTION-out1..16))

         ((rout1..16  READ-address1..16)   )

((FSM-control)

 ((RESETin unk)(new-instruction unk))

 ((FETCH 2)(EXECUTE 7))

 ((0   RESETin)

  (1   RESET:  when 0 do 2 )

  (2   FETCH:  read-memory)

  (3   when READ do 4)

  (4   EXECUTE:  <op> -> ALU   )  )  )

((ALU-processing)

 ((Ain unk)(Bin unk)(OPin unk))

 ((Cout 0)(Aout ?))

 ((0 <A OPin B>)   )

((execution-unit)

 ((rin1..16 unk))

 ((rout1..16 0)(mout1..16 ?))

 ((0 rin1..16   )  )  )
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Figure IV:  An Example of a Module Template for the Top-down Design in

Figure I, More Details 2

((design)

 ((main from-the-perspective-of-the-memory))

 ((READ-address1..16 unk)(STORE-in1..32 unk)))

 ((INSTRUCTION-out1..16 READ)(LOAD-out1..32 READ))

 ((1FSM-  FSM-control

         ((RESETin unk)(new-instruction INSTRUCTION-out1..16))

         ((FETCH)(EXECUTE))   )

  (2ALU-  ALU-processing

         ((Ain  6AC-rout1..32)(Bin  LOAD-out1)(OPin  INSTRUCTION-out1..16))

         ((Cout  6AC-rin1..32))   )

  (3IR-  16-bit-register

         ((rin1..16  INSTRUCTION-out1..16))

         ((rout1..16  4PCrin1..16)(rout1..16  5MR-rin1..16))   )

  (4PC-  16-bit-register

         ((rin1..16  3IR-rout1..16))

         ((rout1..16  5MR-rin1..16))   )

  (5MR-  16-bit-register

         ((rin1..16  3IR-rout1..16)(rin1..16 4PC-rout1..16)

         ((rout1..16  READ-address1..16))   )

  (6AC-  32-bit-register

         ((rin1..32  2ALU-Cout))

         ((rout1.32  2ALU-Ain)(rout1.32  STORE-in1..32))   )  ))

((FSM-control)

 ((RESETin unk)(new-instruction unk))

 ((FETCH 2)(FETCH 3)(FETCH 5)

  (EXECUTE 7)(EXECUTE 8)(EXECUTE 10)(EXECUTE 11)

  (EXECUTE 12)(EXECUTE 13)(EXECUTE 14))

 ((0   RESETin)

  (1   RESET:  when 0 do 2 then 3 then 4)

  (2   FETCH:  PC -> MR)

  (3   FETCH:  read-memory)

  (4   when READ do 5)

  (5   FETCH:  memory -> IR)

  (6   DECODE:  if 5 do 7 then 8)

  (7   EXECUTE:  IR -> MR)

  (8   EXECUTE:  read-memory)

  (9   when READ do 10 then 11 then 12 then 13 then 14 then 2)

  (10  EXECUTE:  LOAD -> Bin)

  (11  EXECUTE:  AC -> Ain)

  (12  EXECUTE:  <op> -> ALU)

  (13  EXECUTE:  Cout -> AC)

  (14  EXECUTE:  PC + 1)   )  )

((ALU-processing)

 ((Ain unk)(Bin unk)(OPin unk))

 ((Cout 0))

 ((0 <A OPin B>)   )

((16-bit-register) ((32-bit-register)

 ((rin1..16 unk))  ((rin1..32 unk))

 ((rout1..16 0))  ((rout1..32 0))

 ((0  rin1..16))   )  ((0  rin1..32))   )
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Figure V:  Hierarchical Modularization of a CPU

           instances  total

((main)                                             --   1

 <input/output>

 (<registers>

  (23-..46-    aluslice  <bindings>)        -- 24

  (47-..62-    pcslice   <bindings>)        -- 16

  (63-..64-    decoder   <bindings>)        --  2

  (65-         encoder <bindings>)          --  1

  <main-functionality>))

 ((pcslice)                                         --  16

  <input/output>

  (<register>

   (21-..22-   m2        <bindings>)        --  2

   <pcslice-functionality>))

 ((aluslice)                                        --  24

  <input/output>

  (<register>

   (3-..13-    m2        <bindings>)        -- 11

   (14-..20-   regcell   <bindings>)        --  7

   <aluslice-functionality>)))

 ((regcell)                                         -- 168

  <input/output>

  (<register>

   (1-..2-     m2        <bindings>))       --  2

 ((m2)                                              -- 662

  <input/output>

  (<m2-functionality>))

 ((encoder)                                         --   1

  <input/output>

  (<encoder-functionality>))

 ((decoder)                                         --   2

  <input/output>

   (<decoder-functionality>))


