
1

Heuristics in ILOC

William Bricken

September 2001

Almost all problems in Boolean minimization and circuit optimization are

exponentially complex. Thus, ILOC relies on heuristics to manage resources

and computational effort.

LOSP Heuristics

Losp reduces parens forms. It incorporates only one heuristic, level of

effort. The level of effort parameter limits the amount of computational

effort used to minimize a parens form. Each of the seven levels of the

effort hierarchy applies all previous levels to the problem at hand.

1. Transcribe Convert logic to parens

2. Clean and sort Remove redundant boundaries;

put in canonical ordering

3. Extract Literals Extract literals for all deeper spaces

4. Extract Bounds Extract compound bounds from deeper spaces

5. Cancel Bounds Cancel structures at different depths

6. Insert Bounds Insert bounds for virtual extraction

7. Minimize Apply the above rules recursively until stable

Examples:

Transcribe (and a b) ==> ((a)(b))

Clean (((a)) (b ())) ==> (a)

Sort ((b a) d c) ==> (c d (a b))

Extract Literals (a (b (a c))) ==> (a (b (c)))

Extract Bounds ((a b) (c (a b))) ==> ((c) (a b))

Cancel Bounds ((a b) (a (b))) ==> a

Insert Bounds ((a b) (c (a (d (b)))) ==> ((a b) (c (a (d))))

Minimize ((a b)(a (b))((a) b)((a)(b))) ==> ()

In addition, the application of Distribution can be controlled at two levels,

full distribution and partial distribution. Full distribution would make no

changes to the second example below:

Full distribution ((a b) (a c) (a d)) ==> a ((b)(c)(d))

Partial distribution ((a b) (a c) (b d)) ==> ((a ((b)(c))) (b d))

2

Pun Heuristics

Pun manages and minimizes circuit structures. It calls Losp to reduce parens

forms, which may be seen as subgraphs of a circuit. As well, Pun rearranges

circuit structure to meet technology mapping objectives.

In the pun format, the circuit body consists of cells. Each cell is an id

and a parens form. When each parens form can be logically interpreted as a

gate, the circuit has been technology mapped.

Pun's primary responsibility is managing the expansion of parens forms across

cells. This is equivalent to adding and removing internal wires in a

conventional circuit, with the added flexibility that the parens form can

express an arbitrary logic function. Some architectures, such as a systolic

array, cannot be fully expanded into a parens representation; the internal

branchiness is exponential.

In addition to managing exponential growth in parens forms in cells, Pun

manages the size of parens form sent to Losp. Pun can call Losp with a

parametric level-of-effort, and/or it can elect to give Losp a parens

reduction problem of a certain size.

It is always desirable to fully expand circuits when possible, since Losp

would have the full functionality as a reduction context. In converting

between parens and pun, the amount of expansion and partitioning of parens

forms is controlled by several parameters, including the following:

maximum number of variables in a parens form

maximum depth of nesting of a parens form

maximum size of a parens form which can be substituted

maximum depth of a parens form which can be substituted

maximum number of replicated variable references in a parens form

maximum number of variable references within the entire Pun body

amount of redundancy of all variable references in a parens form

maximum size of a parens form substituted into

maximum depth of a parens form substituted into

maximum number of occurrences of a substituted form in the entire body

These and other constraints can be combined functionally under the parameter

definition-of-too-big. Some examples of these combinations:

literals-by-occurrences

depth-by-size

depth-by-occurrences-by-size

depth-by-size-by-redundancy

totaloccurs-by-size

3

Technology Mapping

Pun forms can be configured to meet structural constraints. These include

maximum fanout from a cell

maximum fanin to a cell

XOR and MUX abstraction

library abstraction

spatial OR expansion

coalesce cells

Other technology mapping options include:

distinction network

specific gate combinations

AND-OR-NOT

NOR

NAND

AND-OR-NOT-XOR-MUX

NOR-XOR-MUX

XLCB

critical path length

Sorting

Putting each parens form in Losp in canonical order reduces the effort of all

pattern-matching algorithms. Ordering is perhaps the most powerful tool for

reducing computational effort.

Cells in Pun are also ordered, permitting efficient pattern matching and

technology mapping across cells.

4

Filters

Internal loops in Losp are guarded by input filters intended to reduce

computational effort. The cost of a filter is always less than the cost of

the guarded process. In many cases of void-based programming, identifying a

structure and reducing it require the same amount of effort, so that search

for candidate structures is wasteful.

In rarer cases, the code following a filter involves many smaller tests of

equal cost as the filter. Here filters as used to simplify traces and calls.

All filters in Losp use simple structural information about a parens form.

Some of these filters and their uses follow:

• no-duplicate-variables

suppress bound operations (extract, cancel, insert)

• unate-or-binate-variable

select for insertion, for case analysis

• most-common-variable

select for case analysis, for partial distribution

• shallowest-variable

select for case analysis

Filters in Pun use structural information about the parens form in each cell:

• fully-expanded

no substitutions are possible

• special structures

treat as special:

XOR, MUX patterns

OR patterns

coalesced cells

registers

