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Interface as Overview

•  Input Logic

directory of files  (edif, pun)

filename

logic specification string  (symbolic logic notations)

table

propositional calculus

parens

state transition graph

active-graph  (highlighted circuit or subgraph)
subgraph  (schematic, dgraph)

library  (basic, custom)

•  Activate-circuit

test for equivalence, before-after

partial evaluation, what-if

•  Run-circuit

evaluate provided bindings

regression test with random bindings

generate test vector for subgraph

•  Transform-circuit

apply BM axioms and theorems individually

reduce active-graph with specified level of effort

•  Connectivity

coalesce pattern

group active-graph

•  Standardize form

canonical form

partition into independent sets-of-support

partition variables into groups of n
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•  Abstraction

make-cell using pattern

make-block using pattern

find and apply current abstraction to active-graph

abstract variable symmetry groups

•  Retiming

move register

make timing blocks

change critical path length

memoize

•  Layout

map to graph of target technology

rearrange graph display

•  Set performance parameters

packing (high level, # boards)

timing  (critical path, # of cycles)

development time  (degree of automation)

area

wires

fan-in/out

•  Statistics

nodes, wires, path length, fan-in/out

compare circuits

•  Make active objects (cells, blocks)

Losp Project Research History

Pure Boundary Math:

    •  distinction/void

    •  multiple representation, form diversity

    •  new proof techniques  (insertion, graph-coloring)

    •  spatial deduction, unification, and predicate calculus

Graph Modeling:

    •  wire-or, reversibility, information loss, equivalence

    •  graph representation, interaction languages

    •  hierarchy, abstraction
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Other:

    •  MCNC benchmarking

    •  forms of representation  (matrix, data structure, pun, array)

    •  imaginary logics

Technical Design Objectives

•  out-of-nothing, inevitably  (void-based BM)

•  look for big win, potential of a paradigm shift

as good as any published work

better technique        (traditional approaches are baroque)

wider expressibility    (size of problem is beyond comprehension)

•  interactive symbolic tool suite

seamless integration of design interactivity

IA not AI, but high-level automation tools

•  formal rigor is assumed

•  set parallelism

parallel model which gracefully degrades to software serialism

•  graph-based

homogeneous representation and transformation model

•  capitalize on strength of BM

logic synthesis  (boolean optimization, retiming)

•  hierarchically scaleable

seamless traversal of abstraction hierarchy

•  MCNC benchmarks

Technical Issues

High-level

•  all interesting transforms are NP

•  massive database

(20K gates = 2MB edif file)

•  many implementation levels

(hardware, compiled software, emulation, simulation)

•  unifying model

(circuit, logic, graph)
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Low-level

•  management of dynamic subgraphs

•  parens and graph traversal

•  canonical forms

•  subgraph abstraction

•  deep extract

Hardware Architecture

Graphs are specified by sets  of vertices.

Graph and set operations must be modeled for parallelism.

The circuit itself computes in parallel.

So the Losp implementation supports strong parallelism.

Grain size of hardware architectures:

•  very-fine-grain CAM mask

•  FPGA

•  fine-grain atomic threads (instruction sequences)

...

•  course-grain processor array

•  distributed processors

What's a Graph

Graph:

A set of (labels for) vertices

and a set of vertex pairs (edges between vertices)

Structure Sharing:

Graphs with multiple outputs

(and subgraphs with multiple upper connections)

can be seen as a collection of single output graphs

that have shared components.

Graph algorithms:

•  Traversal

connectedness, reachability, timing analysis, retiming

•  Covering

graph equivalence, library mapping, partitioning, coalesce

•  Coloring

structure of connectivity, deep extract
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What's Boundary Math

•  a calculus based on void, distinction (mark), imaginaries (i, j)

•  higher dimensional, spatial representation graph and container models

•  rewrite rules based on void-substitution

(absorb, clarify, extract, distribute)

•  models for logic, numbers, lambda calculus, graphics,

knot theory, imaginaries, others

What's Computational Logic

•  table lookup       (1940)

brute force, memory >> time, exponential space

•  natural deduction  (1950)

many rules, insightful proof paths, inefficient

•  resolution         (1970)

single rule, automated, exponential clauses, dominant technique

•  matrix logic       (1970)

similar to table lookup with function abstraction

•  boundary logic     (1990)

automated, efficient, minimalist

Boundary Logic Transforms

Axioms  (all are deep transforms)

Dominion: A ( ) = ( )

Involution: ((A)) = A

Pervasion:     A (A B) = A (B)
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Simple Theorems

Occlusion: (() A) = void

Subsumption:    (A) (A B) = (A)

Cancellation:    ((A B) (A (B))) =  A

Resolution:      ((A C)((A) B)(B C)) = ((A C)((A) B))

Distribution:      ((A B)((A C)) = A ((B)(C))

Insertion is a new approach to computational logic:

(a b) (a b c) -> (a b) ((a b) a b c)

(a b) ((   ) a b c)

(a b)

Boolean Complexity

  n     #fn = 2^2^n     abstracted

  0             2             1    {( )}

  1             4             1    {(x)}

  2            16             3    {(x), (:a :b), (((a b)((a)(b))))}

  3           256            13

  4         65000           221

  5          2^32       ~200000

...

400       2^2^400     <very large>    (function space of typical chip)

Abstraction operations:

•  function negation

•  combine literals

•  variable symmetry and permutations
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Pun Levels of Hierarchical Abstraction

•  different levels of abstraction

•  same transformation mechanism across levels

•  separate purely functional design from physical finetuning (layout)

Levels:

circuit

block

cell

parens

ground

bound-variables

Compare     cells              to        blocks

    strong intercell calculus no interblock calculus

    no functional reference strong embedded functional reference

    no binding mechanism environmental binding is expected

    no concept of i/o i/o driven evaluation and expansion

General Pun Form

    circuit =

((circuit-name)

 ((main) (main-bots) (main-tops) (main-body))

 ((library-name1)(local-bots1)(local-tops1)(local-body1))

   ...<as-many-other-blocks-as-desired> )

    block =

((block-name1)(local-bots1)(local-tops1)(local-body1))

    body =

((cell-id1  parens1)

 (cell-id2  parens2)

 (cell-id3  block-call1)

  ...)

    Block call =

(type-name <bot-bindings> <top-bindings>)
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Graph Partitioning

•  Logic (function) is independent of layout (functional invariance).

•  Cell and library forms convey design semantics.

•  Structure sharing is an implementation choice,

driven by available layout and routing resources.

•  Partitioning, coalescing, form abstraction,

and expansion of blocks and cells

all depend on the goals of

design,

implementation efficiency, and

technology mapping.

Semantics of Pun Hierarchy

•  Cell (dynamic changes)

logic optimization

variable abstraction

basis conversion

canonicalization

LUT partitioning

critical path optimization

temporary coalesce

fine-grained display

•  Block (long-term storage)

timing blocks

pipelining and synchronized components

longterm coalesce

function and partial function evaluation

what-if modeling

layout partitioning/memoizing

block design display

components for reuse

•  Circuit  (problem, model)

chip and board boundaries

design parameters



9

Cell Reduction Model

Expand cells into parens form whenever possible

  (more efficient, less memory, more modular)

Reduction Strategies:

•  grounds

(cell1  (( ) a))

(cell2  (1 3))            ==>  (cell2  (3))

•  literals

(cell1  (a))

(cell2  (1 3))            ==>  (cell2  ((a) 3))

•  single mention

(cell1  (2 3))

(cell2  (4 5))            ==>  (cell1  (3 (4 5)))

•  canonical standardization

(cell1  ((b 3 a) (1 c)))  ==>  (cell1  ((c 1)(a b 3)))

•  distribute out

(cell1  ((a b)(a c)))     ==>  (cell1  ((a ((b)(c)))))

•  function abstraction

<see handout>

•  variable symmetry abstraction

<see handout>

•  subgraph restructuring

(cell1  ((a b)((a) c)))   ==>  (cell1  ((a b)((a) c)(b c)))

Function Abstraction

When a function is abstracted from the parens form,  the behavior of the

function is differentiated from the behavior of the distinction.

An abstracted function must include both the form and the form's interaction

with boundaries and spaces.  Otherwise, the function will have to be

destructured into parens to participate in transformations.

Eg:  the interaction between distinctions and equality:

  (A)=B     <==>   A=(B)   <==>  (A=B)

   A  A=B   <==>   A (B)

  (A) A=B   <==>  (A) B
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Types of Abstraction

Structural

•  coalesce    (share identical circuit structure)

  A  A  =  A

•  grouping    (isolate collections of subgraphs)

(A B C) = (A ((B C)))

•  distribute  (factor, trade reference for depth)

  ((A B)(A C)) = A ((B)(C))

•  pivot       (standardize literal polarity)

((A B)((A) C)) = (A (B)) ((A) (C))

Functional  <see handout>

•  abstraction (make function into basis cell or block)

•  partial evaluation (expand function by a bound variable)

•  equivalence (test for tautology)

•  symmetry groups (embed relational constraints)

•  partitioning (specify subgraph based on set of support)

Defunfun

An essential premise of BM is that object and process

(form and function) are different views on the same thing.

Defunfun converts cell sets (and block sets) to active functions.

The circuit is a shared data structure for cell and block "active objects",
managed as a Linda object (get, put, copy)

The active-object model:

•  programming language debugger becomes a circuit analysis tool

(trace, step, etc.)

•  can configure objects by adding message-handlers to function body

•  function body becomes a site for hooking graphics actions

•  memoization:  functions with local store can retain previous results

•  autonomous parallelism

•  dynamic interactivity of dnodes eliminates search from evaluation

•  only necessary activities are cued, can be handled locally
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Implemented...mid-1997

•  edif2pun

file management

modular inclusion of new gate types, library elements

make-library

•  evaluate grounds

provided

random

propagated and trapped

•  parens reduce

grounds

                        (( ) a)  ==>  <void>

shallow-literal-extract

                      (a (a b))  ==>  (a (b))

deep-literal-extract

              (a (b (c (a d))))  ==>  (a (b (c (d))))

deep-recursive-literal-extract

                (a (b (a b c)))  ==>  (a (b (c)))

shallow-bounds-extract

               ((a b)(c (a b)))  ==>  ((a b) (c))

deep-bounds-extract

           ((a b)(c (d (a b))))  ==>  ((a b) (c (d)))

deep-recursive-bounds-extract

((a b) ((c d (a b)) (e (c d))))  ==>  ((a b) ((c d)(e)))
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Mostly Implemented...mid-1997

•  functional equivalence  (satisfiability checker)

•  partition and form abstraction

coalesce  (structure sharing)

set of support

n-lut-mapping

•  parametric circuit generation

number of dnodes = area of circuit

number of variable mentions = number of wires

number of specific variable mentions = fan-in and fan-out

longest path through subgraph = critical path time

•  display

circuit, bounds, dnet, parens

•  statistical-compare-files

regression to provided test vectors

comparative changes in

    tops, bots, cells, dnodes, vars, chars, max-depth, max-length

•  meta-reduce

apply a list of transformations to a set of circuits

•  generate-all-boolean-functions

•  make-bdd


