KAUFFMAN'S SINGLE AXIOM AND ITS VARIETIES William Bricken March 2001

Kauffman's single axiom is formatted as a tableau (after Kauffman), and manipulated to show symmetries.

Theorem(s) **CANCELLATION**

1	(A	B)(A (B))	=	(A)
2	((A)	B)((A)(B))	=	Α
3	((A	B)(A (B)))	=	Α
4	(((A)	B)((A)(B)))	=	(A)

I'll standardize each equation, using [] to highlight

 $X = Y \implies [X Y] [[X][Y]]$ Standardization

 $\begin{bmatrix} (A B)(A (B)) (A) \end{bmatrix} \begin{bmatrix} [(A B)(A (B))] [(A)] \end{bmatrix} \\ \begin{bmatrix} ((A) B)((A)(B)) & A \end{bmatrix} \begin{bmatrix} [((A) B)((A)(B))] & [A] \end{bmatrix} \\ \begin{bmatrix} ((A B)(A (B))) & A \end{bmatrix} \begin{bmatrix} [((A B)(A (B)))] & [A] \end{bmatrix} \\ \begin{bmatrix} (((A) B)((A)(B))) & (A) \end{bmatrix} \begin{bmatrix} [(((A B)(A (B)))] & [A] \end{bmatrix} \\ \end{bmatrix}$

Involution:

 $\begin{bmatrix} (A B)(A(B)) (A) \end{bmatrix} \begin{bmatrix} [(A B)(A(B))] A \end{bmatrix} \\ \begin{bmatrix} ((A) B)((A)(B)) & A \end{bmatrix} \begin{bmatrix} [((A) B)((A)(B))] & A \end{bmatrix} \\ \begin{bmatrix} ((A B)(A(B)) & A \end{bmatrix} \begin{bmatrix} ((A B)(A(B)) & [A] \end{bmatrix} \\ \begin{bmatrix} (((A) B)((A)(B)) & A \end{bmatrix} \begin{bmatrix} ((A B)(A(B)) & [A] \end{bmatrix} \\ \end{bmatrix}$

Literal Pervasion/subsumption by A:

Γ (A)] [[(B)((B))] Α] [(() B)(()(B)) A] [[((B))] [A]] B)((B))) A] [[A]] [((B)((B))) (A)] [(() B)(()(B)) Α [((B)(

Subsumption directly eliminates the B subforms two cases. All the rest simplify by Pervasion. Next apply Occlusion to eliminate two more B subforms.

Γ			(A)]		(B	3)((B))]	Α]
Γ			Α]	[[((B	3)((B))]	ΓA]]
[((B)((B)))	Α]	Ε					ΓA]]
[((B)((B)))	(A)]	Ε					Α]

The B subforms that remain each reduce via Pervasion, Involution, and Occlusion:

Γ	(A)] [A]
Γ	A] [[A]]
Γ	A] [[A]]
Ε	(A) [A]

Each remaining line, without B subforms, is identical.

Analysis

Working backwards, the four varieties of Kauffman's single axiom are all formed from the same base:

$$() \implies (A) () \implies (A) ((A))$$

The interior spaces of each A subform are enriched by three different voidequivalent B subforms:

I.	(())	==>	(B())		
II.	(())	==>	((B)())		
III.	(())	==>	((B)())	==>	((B)((B)))

The pattern is

1	[A	III]	[[A] X]
2	[A	I II]	[[A] III]
3	[A	III]	[[A] X]
4	[A	I II]	[[A] III]

X stands in place of the subforms that are subsumed, without an intermediate reduction step.

From this pattern, we see that varieties 1 and 3 are still identical, as are varieties 2 and 4.

1	(A	B)(A (B))	=	(A)
2	((A)	B)((A)(B))	=	Α
3	((A	B)(A (B)))	=	Α
4	(((A)	B)((A)(B)))	=	(A)

This highlights the inversion of each through bounding each side of the equations.

What is interesting is that the Robbins Problem highlights the differences between pair 1 and 2, which are subject to the Robbins question, and pair 3 and 4, which are conventional Boolean.

That is to say, the differences that the Robbins Problem highlight continue *not* to show up as relevant to Brownian analysis.