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A significant issue for the simplification and optimization of digital

circuitry is the efficient processing of very large circuits with tens of

thousands of gates.  The size of EDIF (Electronic Design Interchange Format)

files describing the netlist of large circuits is often several megabytes.

Boundary mathematics provides an elegant and easy to process representation of

both the behavior and the structure of digital circuitry in the form of

distinction graphs (Dgraphs).  One strength of this representation is that

logical boundaries, as opposed to the traditional logical gates, permit deep

algebraic transformations of a circuit.  A deep transformation is one that

simplifies distant parts of the circuit while keeping behavior invariant.  The

Losp implementation of Dgraph reduction has been demonstrated to be efficient

in both memory and processing time, relative to traditional circuit

minimization algorithms.  However Dgraphs represent the circuit at a very fine

grain of detail.  As a consequence, Dgraphs need abstraction transformations

which support a larger grain-size for processing.

Since the behavior preserving transformations of boundary mathematics are

algebraic, they apply equally well at all grain-sizes.  This paper describes

several hierarchical abstraction mechanisms which have been developed to

provide form abstraction of circuitry.  Most of these mechanisms are

implemented in versions of the Losp code.

The motivation for Dgraph abstraction is not entirely straightforward, since

the goals of circuit minimization are highly dependent on target technology

and on the context of available hardware resources.  The space of behavior

invariant circuit representations is very large, and many abstraction

techniques are mutually exclusive.  Thus the objectives of the Losp engine

interface are to provide the circuit designer with a variety of

transformations to choose from, and to construct an initial implementation

suggestion based on designer selected parameters.  Thus the Losp engine is

intended to provide quick and efficient exploration of the design space for

circuit synthesis.

In previous years, the Losp implementation has emphasized removal of logical

redundancy and manipulation of critical path length.  This research focuses on

hierarchical abstraction of Dgraphs, and includes the following techniques:



Structural

Coalesce

graphs with identical structure

Grouping

multiple subgraphs with identical structure

Distribute

graphs with identical behavior but multiple reference

Pivot

graphs with identical behavior but different structure

Functional

Abstraction

abstraction of identical functions

Equivalence

identical functionality over various inputs

Symmetry Groups

group theoretic signatures

Partitioning

graphs with separable inputs

Our approaches to the logic synthesis abstractions cited by Sangiovanni-

Vincentelli follow:

1.  Graph abstraction

All of our abstraction operations are on a graph data structure, so our

approach is fundamentally that of a graph transformation system.

2.  Functional abstraction

We map logical functional onto graph representation using BM.  Thus we do not

treat logical abstraction as different from graph abstraction.  Every subgraph

of a Dgraph can be interpreted as an unambiguous logical function.

3.  Synchronous abstraction

By attaching a time index to each Dgraph between registers, we develop a timed

Boolean calculus that permits the same approach to equational transformation

of sequential circuits as we currently have for combinational circuits.  The

timing graph is independent of the logic graph.

4.  Quantification

We retain the quantifiers of Predicate Calculus (forall, exists) since we use

an equational model.  All input variables are universally quantified over

their domain.  Existential variables are abstracted via Skolemization.

5.  Cyclic time

Harmonics in the time indices of Dgraph cycles an be used to build a

dependency abstraction over timed signals.



6.  Power abstraction

Although we have not addressed power directly, we do have tools to analyze the

average-case gate utilization of a circuit, and the gate utilization under

specific distributions of input values.

7.  Similarity abstraction

This memo describes several techniques (coalesce, group symmetry) which

implement abstraction over similar circuitry.

Each of these abstractions must be reversible, that is, each abstraction

"level" is itself a composition in another abstraction, so it can be analyzed

as well as constructed.

The Losp engine is the only research tool which combines the efficiency of

boundary representation with the above breadth of abstraction techniques.  It

should also be noted that all the following techniques generalize in a

straightforward manner to timed Boolean functions and thus to sequential

circuits, although at a cost of considerable computational effort.

The following assumes that the reader has some familiarity with parens

notation, a typographical form of representation of Dgraphs.

STRUCTURAL TECHNIQUES

Structural techniques provide a variety of design choices which influence

layout parameters such as circuit area (gate count), critical path timing, and

wiring.  These abstraction tools are grouping and rearrangement techniques

rather than hierarchical techniques.

Coalesce

The Coalesce algorithm implements graph structure sharing.  The algebraic rule

is

A  A = A COALESCE

Coalesce can be applied to any identical graph structure, regardless of depth.

As an example, in the following graph

( (A B) (C (D (A E))) (F (A G)) )

the three occurrences of the subgraph A can all share common circuitry through

the Coalesce algorithm.

Coalesce is useful for both database reference sharing and for structure

sharing in hardware.  The hardware design tradeoff is between a reduced gate



count when sharing is on or a decoupled propagation path when sharing is off.

Thus, in the Dgraph

A (B C) (B D)

when the two occurrences of subgraph B share structure, the signals from (B C)

and (B D) to A are coupled by the timing of B, even if the signal from C (or

from D) is available.   Without structure sharing, the signals from (B C) and

from (B D) can propagate to A independently.

Grouping

When more than one subgraph can be coalesced, there is a design tradeoff

between path length and connectivity.  This choice is manifested by the

Clarify rule applied to more than one subgraph:

A B = ((A B)) CLARIFY

In the following example,

( (A C D E) (B C D E) )

the subgraphs C, D, and E can each be coalesced separately.  They can also be

coalesced together, forming a single grouping:

( (A ((C D E))) (B ((C D E))) )

The double distinction is necessary in order to combine the three signals, but

it introduces a delay of two distinctions along the propagation path.  In

general, when m subgraphs are grouped and coalesced n times, m+n+1 wires are

required.  When not grouped, m*n wires are needed while the path is two nodes

shorter.  In actual hardware, wires represent fan-out and thus power

consumption.

Distribute

The Distribute algorithm permits a tradeoff between circuit area and signal

propagation time.  The transformation is:

((A B) (A C)) = A ((B)(C)) DISTRIBUTE

This logical transformation differs from the structural transformation of

Coalesce in that the duplicate reference is logically redundant and not

contextual.  Thus the design choice is purely one of the timing:  whether or

not it is desirable to have the signals from B and C coupled to that of A.

Note that when A is referenced twice (as on the left side of the equality), it

can still be subject to the structure sharing induced by Coalesce.



Pivot

The Pivot algorithm identifies subgraphs which are behaviorally identical but

structurally different.  Its form is:

( (A B) ((A) C ) ) = (A (B)) ((A)(C)) PIVOT

Pivoting identifies a difficult to detect form of behavioral redundancy, and

occurs in its most elementary form as the two different structures of Xor:

( (A B) ((A)(B)) ) = (A (B)) ((A) B )

In general it is desirable to standardize on one form of a pivotable circuit

and to eliminate the other form, since this permits the Coalesce option.

FUNCTIONAL TECHNIQUES

Functional techniques provide hierarchical abstractions which simplify the

behavioral description and representation of a circuit.  They provide a

courser grain size for circuit manipulation.  All structural abstraction

techniques also apply to functionally abstracted units.

Traditional Functional Techniques

The traditional techniques for manipulation of logical functions are all

subsumed by our techniques.  As well, the boundary techniques, being deep, are

much stronger and more general than those in the literature.

Decomposition  (same as Coalesce)

Identical subgraphs are identified in a single graph:

F = (A B C) (A B D)

yields

F = (X C) (X D)

X = A B

Extraction  (same as Coalesce)

Identical subgraphs are identified in more than one graph:



F = (A B C)

G = (A B D)

yields

F = (X C)

G = (X D)

X = A B

Factoring  (same as Distribute)

A graph is distributed:

F = ((A B) (A C))

yields

F = A ((B)(C))

Substitution  (same as Functional Abstraction, see below)

A graph is identified within another graph and a labeled substitution is made:

G = (A B)

into

F = (A B) C

yields

F = G C

Elimination  (inverse of Functional Abstraction)

Flattening by eliminating a substitution:

F = G C

G = (A B)

yields

F = (A B) C



Functional Abstraction

Standardized Dgraphs make pattern matching for functional abstraction fairly

easy.  For instance, the canonical pattern for logical equality of A and B is

A=B  ==  (A B) ((A)(B)) EQUALITY

Any graph which matches the general pattern

(1 2) ((1)(2))

in which numbers stand in place of arbitrary subgraphs, can be abstracted to a

single labeled graph node 1=2 and two annotated pointers 1 and 2 which

identify the particular subgraph which are equal.  (Note that this is not an

assertion of equality, it represents the behavior that the subgraph returns a

true or high signal whenever the two subgraph signals do evaluate to be the

same, and a low signal otherwise.)

Should another complex graph component abstract to the same two subgraphs,

then Coalesce and the other structural rules can be applied to the node

labeled A=B.  It should be recognized, however, that functional abstraction

loses the homogeneity of the Dgraph by introducing different types of nodes.

Thus a theory of types must be introduced into the reduction engine.  This

theory does not differ from the standard theory of distinction reduction when

applied to identical types of nodes.

In order for different types of nodes to interact during circuit manipulation,

a set of rules (a cross-domain theory) must be introduced into the

transformation engine.  Other researchers (for example Middlehoek at the

University of Twente) have found that this generalization quickly explodes

into an unmanageable transformation system.  Thus, 1) it is desirable to

introduce functional abstraction only when necessary, and 2) it is highly

desirable to provide a cross domain theory.

We have implemented functional abstraction for equality (and its negation Xor)

and for if-then-else, and have developed cross domain theories for both.

Fortunately, such theories are easy to develop between distinctions and an

arbitrary function.  For example, the rules for combining equality and

distinctions are:

(A)=B  ==  A=(B)  ==  (A=B)

The Extract algorithm, which is the workhorse of the Losp engine, can also be

generalized to apply over equality nodes:

 A  A=B ==>   A   void=B   ==>   A (B)

(A) A=B ==>  (A)  (  )=B   ==>  (A) B

 A (A=B) ==>   A  (void=B)  ==>   A  B



These theorems can also be verified by reintroducing the distinction

definition of equality and reducing via the distinction calculus.

For generic functional abstraction, a pattern matching language (not yet

implemented) could provide arbitrary specification and control.  Such a

language would allow the user to specify any specific subgraph, for example

(1 (2 (3 4)))

which would then be algorithmically abstracted from the circuit.

Functional Equivalence

In identifying functions for abstraction, it can be useful to select subgraphs

which have the same functional behavior but have different input subgraphs.

The functional abstraction algorithm can be weakened to include all

structurally identical subgraphs regardless of inputs.  For example,

(A (B)) is functionally equivalent to (C (D))

but not behaviorally identical.  This technique is useful when further

transformation on the input subgraphs may establish a relationship between the

inputs.  It also serves as a basis for a further generalization to symmetry

group identification.

Symmetry Groups

Symmetry groups show up quite often in circuit specifications, and are a

generalization of many common logical functions.  For example, the majority

function for three inputs can be expressed as

((1 2) (1 3) (2 3))

The structural symmetry is apparent.  Often very large circuits can be

abstracted to recursive applied symmetry groups, thus greatly simplifying the

description of the circuit's functionality.  As well, by identifying

mathematical symmetry patterns, all possible structure sharing relationships

within a circuit are also identified.  The general technique is to search for

functional equivalences in a Dgraph representation, and the to further

identify permutation groups among the input labels.

Symmetry abstraction can be provided semantically in the description of the

circuit's functionality, such as in a 16-bit adder which repeats the symmetry

of a 1-bit adder sixteen times.  Or it can be recovered from the netlist by

pattern matching search.  Bit-width plays an central role in inducing massive

symmetry repetition in netlists.  Most importantly, a circuit can be optimized

at selected occurrences of a symmetry group rather than at *every* occurrence.



Thus, for example, in a 16-bit adder, it is possible to apply one adder layout

to the top four bits, a different layout to the next four bits, and a third

configuration the lower eight bits, should the design benefit from such a

strategy. (This is a multi-level carry-skip approach for adders.)

To date we have not implemented a general symmetry abstraction capability, but

we have applied specific symmetry abstractions from the bottom up to benchmark

circuits with excellent results in reducing the size of the circuit

specification.

Partitioning

Again, the Dgraph approach provides efficient algorithmic tools for

partitioning algorithms such as k-LUT mapping.  The general technique is that

labeled subgraphs under different distinction nodes are independent.

Let <> represent subgraph clusters that are partitionable.  In the example

((A)(B)) (C (D)) (E F)

the following partitions are readily identified:

AB <> CD <> EF

Partitioning by boundary identification is also a deep (i.e. hierarchical)

operation.  Thus, the graph

(A) ((B C (D E F)) G)

has the permitted partitions

A <> ((BC <> DEF) <> G)

and the graph

((A B) (C D)) ((A (B)) (C E))

permits the partitions

AB <> CD   in one subgraph, and

AB <> CE   in the other.

Graph partitioning across distinction nodes can be applied to any component

subgraph, and can be freely combined with structural transformations during

search.  These approaches have not yet been automated.


