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In its simplest form, the domain addressed by Boundary Logic (BL) is the set

of possible ways to nest and share containers.  In typographical format, this

is the set of well-balanced parens (WFP).  In logical format, it is the set

of possible inferences about propositions bound to a truth value {T.F}.  In

the language of circuitry, the domain addressed by BL is the set of all

possible branching circuits with active inputs.  As a data-structure, it is

the set of trees.  In decision theory, it is all possible sequences of yes/no

decisions.  Mathematically, it is the Catalan numbers.

DISCIPLINE DOMAIN

boundary math ways to nest and share

typographical well-formed delimiter strings

logic implications over bound propositions

circuitry branching circuits with active input

computer science set of trees

decision theory possible sequences of binary decisions

mathematics Catalan numbers

Catalan numbers are well-studied, mathematicians know of many abstract

applications and visualizations of the fundamental concept of containment.

These tools assist the conceptualization and design of new software and

hardware architectures based in BL.

We will use the model of circuitry to describe to choices provides by

mathematical models of Catalan numbers.  Typographically, we will illustrate

with WFPs.

Treating inputs abstractly is to provide variable labels which may be

interspersed through a WFP.  Each variable stands in place of a final branch,

the evaluation of the variable as 0 or 1
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( (( a)) (b ()()) )

( ((  )) (  ()()) ) a=<void>  b=<void>

( ((())) (  ()()) ) a=()      b=<void>

( ((  )) (()()()) ) a=<void>  b=()

( ((())) (()()()) ) a=()      b=()

Visualizing the mark () as an atomic unit, as in

( ((  )) (  ()()) )

((*)(**))

provides a representation of a particular circuit with all inputs positive.

This is the set set as all possible circuits.  Again, by turning on and off

these stars, we can simulate a circuit with each star is a variable input.

In the above example

((a)(bc))

By starring a WFP with variables (VWFP), we convert the set of algebraic

circuits (in particular, those with one output and without internal reentry)

into a set of functioning circuits with all inputs bound to 1.

The effect of this manipulation is to identify as set of directed acyclic

graphs (DAG) with one source and one sink.  When variables are used, we have

multiple bottom nodes;  when star is used there is one bottom.  As a single

output circuits, there is also one top.

We have converted the set of trees into a subset of DAGs in the process of

binding variables.

CATALAN NUMBERS

Consider the generalized binomial series,

Bt(z) = SUM[k >=0]   (tk)^(k-1) * (z^k)/k!

                (2k)

B2(z) = SUM[k]  ( k) * (z^k)/(1+k)

Catalan numbers are B2 coefficients

(2n)

( n) * 1/(n+1)
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n 0     1     2     3     4     5     6     7     8     9   10

Cn 1     1     2     5    14    42   132   429  1430  4862 16796

Catalan numbers are defined by a convolution:

C[n] = C[0]*C[n-1] + C[1]*C[n-2] + ... + C[n-1]*C[0]

This can be converted into a generator function:

C[z+1] = C[z]*zC[z] + 1

PARENS

<void>

()

()()

(())

()()()     

()(())     (())()

(()())     ((()))

()()()()     

()()(())    ()(())()    (())()()   (()()())   (()())()   ()(()())

()((()))    ((()))()     (())(())   (()(()))   ((())())  ((()()))

(((())))

BINARY SEQUENCES

<void>

10

1010      1100

101010     101100     110010     110100     111000

10101010

10101100    10110010    11001010    11010100    11010010    10110100

10111000    11100010    11001100    11011000    11100100    11101000

11110000
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PARENS WITH STARS

<void>

*

** (*)

*** *(*) (*)* (**)

((*))

****

**(*)

*(*)*

(*)**

(***)

(**)*

*(**)

(*)(*)

*((*))

((*))*

(*(*))

((*)*)

((**))

(((*)))
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1

*****     => []

10

***(*)    => []

**(*)*    => []

*(*)**    => []

(*)***    => []

**(**)    => []

*(**)*    => []

(**)**    => []

*(***)    => []

(***)*    => []

(****)    => <>

20

*(*)(*)   => []

(*)*(*)   => []

(*)(*)*   => []

**((*))   => []

*((*))*   => []

((*))**   => []

*(*(*))   => []

*((*)*)   => []

(*(*))*   => []

((*)*)*   => []

*((**))   => []

((**))*   => []

(*)(**)   => <><>

(**)(*)   => <><>

(**(*))   => <>

(*(*)*)   => <>

((*)**)   => <>

(*(**))   => <>

((**)*)   => <>

((***))   => ()

10

*(((*)))  => []

(((*)))*  => []

(*)((*))  => <>()

((*))(*)  => ()<>

(*((*)))  => <>

(((*))*)  => <>

((*)(*))  => ()

((*(*)))  => ((()    )) => ()

(((*)*))  => ((    ())) => ()

(((**)))  => ((      )) => <>

1

((((*)))) => (((    ))) => ()
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MOUNTAIN RANGES

a1 + a2 + ... + a2n = 0 a = {-1,1}

such that all partial sums are nonnegative

a1

a1 + a2

...

a1 + a2 + ... + a2n

When a=1,  draw     / When a=-1, draw       \

Depth of nesting = height of mountain

  /\  /\/\

 /  \/    \

/          \

((())(()()))

.

/\

           /\

/\/\     /  \

               /\

/\/\/\      /\/  \   

/\/\/\/\

     /\        /\        /\          /\/\/\      /\/\          /\/\

/\/\/  \    /\/  \/\    /  \/\/\    /      \    /    \/\    /\/    \

    /\        /\            /\        /\          /\/\   

   /  \      /  \        /\/  \      /  \/\      /    \      /\  /\

/\/    \    /    \/\    /      \    /      \    /      \    /  \/  \

   /\

  /  \

 /    \

/      \
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THE COUNTING LOGIC

Sequences of +1s and -1s whose partial sums are always positive.  For

computational convenience initial all sequence with 1.

(2n+1)

(  n )  sequences of  n  occurrences of -1 and

                     n+1 occurrences of +1

exactly 1/(2n+1) has positive partial sums (Raney)

       (2n+1)                (2n)

C[n] = (  n ) * 1/(2n+1)  =  ( n) * 1/(n+1)

DISECTING POLYGONS

Given an (n+2)-sided polygon

n ways name

0 1 line

1 1 triangle

2 2 square

3 5 pentagon

BIFURCATING TREES

/

      /

     /\

      /      /

     /\     /\

    /\       /\

      /        /        /        /        /

     /\       /\       /\       /\       /\

    /\       /\       /\/\       /\       /\

   /\         /\                /\         /\
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ROOTED PLANAR BUSHES

o

      |

      o

               |

     \ /       |

      o        o

                                          |

             \            /     \ /       |

     \|/      \ /      \ /       |        |

      o        o        o        o        o

BINOMIAL COEFFICIENTS

                1

              1

            1   2

          1   3

        1   4   6

      1   5  10

    1   6  15  20

  1   7  21  35

1   8  28  56  70

The middle sequence of binomial coefficients, divided by the place

1     2     6    20    70   252   924  3432 12870 48620

1     2     3     4     5     6     7     8     9    10

=C 1     1     2     5    14    42   132   429  1430  4862
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OCCLUSION

Assume an outer container

grounds: <void> ()

elementary ()() (())

[()()] => []

(())   => <>

()()() => []

()(()) => []

(())() => []

(()()) => <>

((())) => ()

()()()() => []

()()(()) => []

()(())() => []

(())()() => []

(()()()) => <>

(()())() => []

()(()()) => []

()((())) => []

((()))() => []

(())(()) => <><>

(()(())) => <>

((())()) => <>

((()())) => ()

(((()))) => ((    )) => <>

()()()()() => []

()()()(()) => []

()()(())() => []

()(())()() => []

(())()()() => []

()()(()()) => []

()(()())() => []
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(()())()() => []

()(()()()) => []

(()()())() => []

(()()()()) => <>

()()((())) => []

()((()))() => []

((()))()() => []

()(())(()) => []

(())()(()) => []

(())(())() => []

()(()(())) => []

()((())()) => []

(()(()))() => []

((())())() => []

()((()())) => []

((()()))() => []

(())(()()) => <><>

(()())(()) => <><>

(()()(())) => <>

(()(())()) => <>

((())()()) => <>

(()(()())) => <>

((()())()) => <>

((()()())) => (        )

()(((()))) => []

(((())))() => []

(())((())) => <>()

((()))(()) => ()<>

(()((()))) => <>

(((()))()) => <>

((())(())) => ()

((()(()))) => ((()    )) => ()

(((())())) => ((    ())) => ()

(((()()))) => ((      )) => <>

((((())))) => (((    ))) => ()
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ORDER INDEPENDENT

<void>

*

**

(*)

***

*(*)     (*)*

(**)

((*))

****

**(*)     *(*)*     (*)**

(***)

(**)*     *(**)

(*)(*)

*((*))    ((*))*

(*(*))    ((*)*)

((**))

(((*)))

*****

***(*)     **(*)*     *(*)**     (*)***

**(**)     *(**)*     (**)**

*(***)     (***)*

(****)

*(*)(*)     (*)*(*)     (*)(*)*

**((*))     *((*))*     ((*))**

*(*(*))     *((*)*)     (*(*))*     ((*)*)*

*((**))     ((**))*

(*)(**)     (**)(*)

(**(*))     (*(*)*)     ((*)**)

(*(**))     ((**)*)

((***))

*(((*)))     (((*)))*

(*)((*))     ((*))(*)

(*((*)))     (((*))*)

((*)(*))

((*(*)))     (((*)*))

(((**)))

((((*))))
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REDUCED OCCLUSIONS

parens [] () <> steps sum no-order

  1  1  0  0 0   1  1

  2  1  0  1 1   2  2

  3  3  1  1 1   5  4

  4  8  1  5 2(1)  14  9

  5 24  7 11 2(4)  42 20

  6 132

VARIETIES

parens stars no-order = depth

1  2  3  4  5  6 1  2  3  4  5  6

  1 1 1

  2 1  1 1  1

  3 1  3  1 1  2  1

  4 1  6  6  1 1  4  3  1

  5 1 10 20 10 1 1  6  8  4  1

  6 1              1 1              1


