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Well-formed parentheses have been extensively studied, although usually as a

trivial introduction to more useful systems, and never with the semantics of

logic and circuits.

Kleene's 1952 Introduction to Meta-Mathematics [Kleene, p.23] provides some

elementary theorems that one set of parentheses is sufficient to

unambiguously fix the order of operations in a mathematical expression.  His

three lemmas proof that

1.  Well-formed parentheses have an innermost pair,

2.  There is only one proper pairing for well-formed parentheses, and

3.  Subsets of well-formed parentheses are well-formed.

Languages composed solely of nested and concatenated parentheses are called

both Dyck languages and separator languages.  Thus, Kleene's properties are

for Dyck languages.  Separator languages permit any number of uniquely

identified types of parentheses, but here we use only the simplest Dyck

language with one type of parenthesis.

Perhaps the most relevant application of separator languages to date is to

define the difference between context-free and context-sensitive languages in

theoretical computer science [Davis, p.307].  The Chomsky-Schutzenberger

representation theorem first constructs a language L consisting of a regular

language combined with a separator language.  L is context-free if and only

if the separator language can be erased without creating an invalid word in

L.  This theorem can equivalently be stated that a language is context-free

if all members of the alphabet of the regular language can be erased without

creating a invalid word in the separator language.  This theorem is important

because it assures that parentheses can be added freely to establish operator

precedence.

Separator languages are fundamental to the control of a pushdown automata,

since the parentheses define which arguments go with which functions, and

thus when a stack is needed to store temporary results.  When reading a

string, it is straight-forward for a compiler to interpret "(" as push, and

")" as pop, in the control of the stack.

Although these theorems and programming techniques of computer science were

not derived with a logical interpretation in mind, they do however provide

explicit information about how to implement boundary logic.  We know, for

instance, that a boundary logic form with no variables is both a circuit with

bound inputs and a Dyke language.  When the parens circuit is represented as

a bit string, it can be processed in one pass, that is, without having to

back-up the input, or process it again.
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Encodings

Encoding "(" as 1 and ")" as 0 creates an appropriate bit-string, but is not

optimal for bit-string processing.  The production rules for such an encoding

would be:

Meaning Parens form Bit-string

TRUE ( ) 10

FALSE void empty

CALLING ( )( ) = ( ) 1010 => 10

CROSSING ( ( ) ) = 1100 => void

Another parsing technique comes directly from the LISP programming language.

LISP uses parentheses exclusively to identify the order of evaluation and the

assignment of arguments to functions.  In the following encoding, parentheses

are treated as binary trees.   

PARENTHESIS TREES

( )  is valid, representing a leaf

(( )( ))  is valid, representing a node with left and right branches

If  P is valid, then so is (( ) P) and ((( )( )) P)

This encoding comfortably bridges the gap between graphs, logic, and integers

[Jones].  The encoding of integers is:

Meaning Parens form

   0 ( )

   1 (( )( ))

   2 (( ) (( )( )))

   3 (( ) (( ) (( )( ))))
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The conversion to bit-strings is

BIT-STRING PARENTHESIS TREES

Bracket token Bit-string token

( 1

) void

() 0

Thus the number 3 would have the bit-string encoding: 1010100.

Although the bit-string tree is not interpreted as logic, it is a small step

to do so.  The transformation rules below are expressed algebraically.

Meaning Parens form     Bit-string

TRUE ( ) 0

FALSE void void

VOID OCCLUSION (( ) A ) = 10A    =>  void

INVOLUTION ((A)) = A 11A    =>  A

PERVASION A (((A)) B) = A (B) A111AB =>  A1B

Above, Pervasion requires an Enfolding of the inner A since this encoding

does not distinguish subforms sharing the same space.  Thus, without

ambiguity, we can express a circuit as a bit-string.  For example, the simple

ITE circuit, (((a) b)(((a)) c)) would encode as 111AB111AC, where inputs

{a, b, c} would be bound to 0 if TRUE, and be erased if FALSE.

Another benefit of the computational use of separator languages, is that it

gives us a direct measure of the complexity of processing parens strings as

circuit simulations.  Two approaches are possible.  We could calculate the

number of processor steps required for a stack-based implementation to

process a bit-string representation of a circuit.  Alternatively, we could

use results from the implementation efficiency of LISP to compute the time

required to process a parens tree.


