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ABSTRACT:  There is a common misconception that boundary algebra is isomorphic 
with two-element Boolean algebra.  The paper describes a dozen deep structural 
differences that are incompatible with isomorphism.  Boundary algebra does not 
support functional morphisms of any kind because it does not support functions.  
It does support a partial order relation.  A one-to-many mapping between 
boundary and Boolean algebras emphasizes the difference between the two systems.  
This mapping shows that boundary algebra subsumes Boolean algebra within a 
formally smaller structure.  Boundary algebra applies to n-element Boolean 
algebras, and does not have group theoretic structure.
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1  IS BOUNDARY BOOLEAN?

The Laws of Form (LoF) [Spencer-Brown(69)] has been identified as "a provocative 
and economical notation for two-element Boolean algebra" [Wikipedia topic: Laws 
of Form].  This is entirely correct, however LoF is not a Boolean algebra, it is 
a fundamentally different, formally smaller system.  LoF can be read as Boolean 
algebra through a one-to-many mapping, one form in LoF covers many forms in 
Boolean algebra and in propositional logic.  The economy of syntax comes from a 
deeper source, an economy of semantics.  Provocatively, a completely different 
mathematical system is needed to remove the functionally redundant structure and 
meaning within logic itself.

An antiquated but still unresolved mathematical claim is that LoF is just 
another notation for Boolean algebra, that the two systems are isomorphic 
[Orchard(1975), Banashuski(77), Cull and Frank(79), Kohout and Pinkava(80), 
Schwartz(81), Meguire(2003)].  Typical of this perspective is that LoF is "... 
simply another axiomatization of Boolean algebra" [Gould(77)].

Isomorphism means that the structures of LoF and of Boolean algebra are 
essentially the same, only the labels have been changed.  It invalidates any 
claim that LoF is mathematically interesting, and constrains the innovations 
within LoF to the trivial.  Another mathematically informed viewpoint exists, 
that LoF is "... not an arbitrary new calculus, but that particular calculus 
which can let us see deeper into the nature of mathematics" [Whyte(72)].

In the sequel, "simple logic", "propositional calculus", and "Boolean algebra" 
are used interchangeably, in recognition of the isomorphism between the three.  
In context, Boolean algebra also refers to the n-element algebra of subsets.  
"LoF" and "boundary algebra" are also used interchangeably, the former in 
recognition of Spencer-Brown's book, Laws of Form, that introduced some of the 
new mathematical concepts, and the latter as a somewhat appropriate name for the 
mathematical system.  The first publication of boundary forms used for logic was 
C. S. Peirce's "existential graphs" at the turn of the twentieth century [Peirce
(33), Roberts(73), Kauffman(2001)].

1.1  The Differentiator

A differentiator between boundary and Boolean algebra is needed, a clear 
difference that raises LoF to intrinsic value, an irrefutable identification of 
mathematical structure that is present in one system and absent in the other.  
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Without a differentiator, boundary algebra does not improve upon conventional 
Boolean techniques, it is of interest perhaps only as a new data structure for 
computation or as a unique metaphor for some cognitive perspectives.  Isomorphic 
systems can have notational but not conceptual novelty;  the differentiator must 
be semantic rather than syntactic.

Should the differentiator show that boundary algebra has more expressive power 
than simple logic, then LoF is an extension, an elaboration that may or may not 
be useful.  However, boundary algebra is equally as expressive as logic, while 
at the same time having intrinsically less structure than logic.  That is, logic 
contains superfluous structure, the same can be done with less. The embedded 
redundancy within logic is well known, and is the source of the plethora of 
transformation rules within logical systems.

1.2  The Message

The main message in this paper is that boundary algebra differs from Boolean 
algebra in fundamental semantic ways, offering new perspectives on many 
mathematical conventions and systems.  Boundary algebra excels at Occam's razor, 
it is mathematically more elegant than Boolean systems.  Should logic be 
considered as a mathematical foundation, boundary algebra is the foundation upon 
which that foundation is built.

Boundary algebra abandons most of the concepts of conventional algebra.  
Cardinality, associativity, commutativity, arity and functions are not within 
LoF;  imposing any one of them upon boundary algebra changes it into something 
else.  Imposing group theoretic concepts on boundary algebra converts it into a 
Boolean algebra, while eliminating the efficiency and beauty of LoF's spatial 
mathematics.

Section 2 presents a variety of new boundary algebra concepts and techniques 
that can enrich the mathematical enterprise.  

Section 3 identifies many differentiators -- semantic void/single constant, 
inside and outside of forms, non-linear notation, object/operator unification, 
semipermeable boundaries/operational transparency, void-equivalence -- and 
nominates a prime differentiator that is both simple and incisive:

        Boundary algebra has a one-to-many map to Boolean algebra.

Section 4 shows that boundary algebra is not restricted to two-element Boolean 
algebras, it applies to any finite Boolean algebra.  

Section 5 demonstrates that the structures within boundary algebra do not have 
the group theoretic structure of an algebraic group.
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In summary, Section 6 lists the essential differences between boundary and 
Boolean algebras.

1.3  Boolean Algebra

An algebraic system is a set of elements together with one or more operations on 
that set.  Arithmetic systems are based on a set of constants only, while 
algebraic systems add variables.

Systems usually incorporate specified axioms or rules for reducing expressions.  
These rules can contain variables that stand in place of arbitrary expressions.  
When the rules are formulated using equality relations that place constraints on 
the possible values of a variable, the algebra is universal.  An algebraic 
group, for example, is a specific type of system that meets group theoretic 
constraints of closure, associativity, identity and inverse.

An equation is a mathematical assertion that two expressions are equivalent in 
value, but not in form.  Expressions with the same form are identical; 
expressions with different forms but the same value belong to the same 
equivalence class.  Systems that are formulated using equations incorporate the 
powerful and familiar computational techniques of substitution of equals for 
equals and global replacement of forms.  Equations also provide the familiar 
proof techniques of transforming one side of the equation into the other, and 
transforming both sides into the same form.  

A Boolean algebra consists of a set, S, together with two binary functions, 
generically called meet and join, and one unary operation, the complement.

Boolean algebra is commonly characterized by ten constraint rules, not all of 
which are independent.  These rules include associativity, commutativity, 
distributivity, complement and zero/unit element constraints for each of the 
binary operators.

Propositional logic has two elements, called truth values (TRUE, FALSE).  
Boolean algebra, however, is not limited to two elements.  The representation 
theorem of finite Boolean algebras states that there is an isomorphism between 
any Boolean algebra and the algebra of subsets.  A set can have any number of 
elements.  The algebra of subsets is the canonical, so to speak, Boolean algebra 
of n elements.  Propositional logic is a special case of the algebra of subsets 
with two elements.
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2  BOUNDARY SYSTEMS

Boundary algebra is not a conventional algebra, although it does incorporate 
equations and variables.  As will be shown, boundary algebra lacks binary and 
unary functions.  "Boundary" refers to a unique type of element, one that has 
spatial extent.  Boundaries are enclosures that have an inside and an outside.  
But boundaries are not functions, they are relations between the inside and the 
outside of the boundary.  Boundary algebra, therefore, does not support many of 
characteristics of conventional algebras.

When parentheses are used typographically to represent boundaries, the forms of 
boundary algebra consist of all possible well-formed parentheses configurations.  
For example, some of these forms are:

        ( )        (( )( )( ))        (((( ))))        ((( ))(( )(( ))))
         
Other representations of the domain of boundary algebra include non-overlapping 
stacks of blocks, shapes of branching trees, node-and-link networks, topological 
maps, and branching paths that can cross and re-cross a closed loop.  These 
representations follow formal, mathematical transformation rules, even though 
they are very different than the words and tokens of conventional algebras. 

Surprising interpretations of boundary algebra include simple logic 
(propositional calculus), Boolean algebra, and combinational computer circuits.  
Since logic is so central to mathematics, to computation, and to rationality, a 
new formal method that redefines Boolean concepts is of intrinsic interest. 

2.1  A Boundary Arithmetic

In the book Laws of Form, G. Spencer-Brown presents an equational system that 
uses spatial enclosures as objects of computation.  Spencer-Brown's arithmetic 
is particularly succinct because there is only one constant, the enclosure or 
boundary ( ).  

The boundary arithmetic presented in Laws of Form consists of two initial 
equations relating replications of the one constant.  

                ( ) ( ) = ( )    CALLING

      (( ))  =     CROSSING
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The constant, called Mark, is a two-dimensional enclosure, ( ), that 
distinguishes the inside of a closed loop.

The left-hand-sides of Spencer-Brown's equations are quite natural, they 
identify the two configurations that are possible when a replicated Mark is 
drawn on the same page as the original Mark.  The replicate can be drawn outside 
of the original, in which case the two Marks are sharing space. The replicate 
can be drawn on the inside of the original, in which case the two Marks are 
nested, the inner Mark is bounded by the outer Mark.

Although the two configurations of replicates are structurally determined, the 
value of each configuration on the right-hand-side is a choice, defining a 
particular boundary arithmetic.  In Spencer-Brown's system, two Marks sharing 
space are equivalent to one Mark.  Two nested Marks are equivalent to no Marks.  
Thus the equations define two equivalence classes, those that reduce to Mark and 
those that reduce to nothing at all.

Different initial equations generate different types of boundary arithmetic.  
For example, the rule of CALLING can be omitted, leaving no mechanism to remove 
replicates sharing the same space.  Cardinality is thus introduced, since a 
specific number of identical forms can occupy a space.  The situation is 
analogous to standard and modular arithmetic;  the number of constants and the 
rules of addition differ in each.  The standard arithmetic of numbers does not 
have an upper limit to cardinality, while modular arithmetic sets a specific 
upper limit to the number of constants in the system.  Boundary arithmetic has a 
modulus of one.

2.1.1  Boundary Operations

CALLING and CROSSING identify two operations, SHARING and BOUNDING, that can be 
illustrated abstractly as:

                      •   •    SHARING

                    ( • ) •    BOUNDING

2.1.1.1  Sharing Space

SHARING is not a binary function, it is more like set membership.  Forms simply 
share the same unstructured space.  A space can accommodate any number of forms, 
a boundary can enclose any number of forms.  There is no ordering or grouping of 
forms in space, since the void-based space does not have properties.  

7



A rule of associativity is necessary when a function or relation has a specific 
arity, or number of arguments.  Associativity of SHARING operations is a 
meaningless concept, since the space of SHARING supports no grouping properties 
and the operation of SHARING applies to any number of contents in a space, 
including none.

A rule of commutativity is necessary when a function or relation has a specific 
metric, or location of arguments.  Commutativity of SHARING operations is a 
meaningless concept, since the space of SHARING supports no ordering or location 
properties.

2.1.1.2  Bounding Space

BOUNDING serves to contain forms within a closed boundary.  There is space 
inside a boundary, the same kind of space that is outside the boundary.  A 
boundary too is insensitive to the number and structure of forms inside it.  
Boundaries do support a type of grouping, they group by containment the forms 
that are their contents. 

Boundaries distinguish inside from outside.  Since there can be any number of 
forms on either side, BOUNDING does not have an arity.  Pictorially, the 
abstract dots below represent arbitrary configurations, their relative positions 
are defined only by the boundary.

       

Boundaries can contain other boundaries, forming a nested structure.  The 
nesting of boundaries is a semantic inclusion relation that is overtly visible 
within the syntax of the system.  Thus, the parenthesis structure

                            ( (( )) (( )( )( )) )
  
implies only a collection of nested boundaries, and should be read as a nested 
spatial structure:
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2.1.2  Nothing

Boundary systems permit semantic use of the absence of a Mark, called Void. The 
rule of CROSSING has an unusual right-hand-side; the left-hand configuration is 
equal to no configuration at all, it is Void.  CROSSING is applied to the nested 
form, (( )), by deleting or erasing it.  Technically CROSSING permits void-
substitution, nothing is substituted for something.

Void has no representation, but it does have a natural indicator:  Void is the 
inside of an empty Mark.  More fundamentally, Void is the substrate of all 
Marks, it is the blankness of the page underlying every form.  Void pervades all 
forms, it is both inside and outside of every Mark.  As a consequence, Void is 
unique and singular, there is only one.

2.1.3  Void-Substitution

Each boundary arithmetic equation identifies an available void-substitution; the 
right-hand-side is equal to the left-hand-side, but with some structure deleted.  
The deleted structure is equivalent to no structure at all.  Computation 
proceeds purely by void-substitution (i.e. by deletion or erasure); there are no 
concepts such as rearrangement of forms, look-up tables to determine values, 
binary functions that transform forms, right- and left-sided functions, 
cardinality, or truth values.  

Computational steps are determined by parallel pattern-matching or by parallel 
network reduction.  The sequence of rule application is irrelevant; convergence 
is assured by 

                     THE PRINCIPLE OF VOID-EQUIVALENCE

  Void-equivalent structure is syntactically irrelevant and semantically inert.

Thus, boundary representation is unconventional is several ways: a semantic 
void; a single constant with an outside and an inside; a unstructured 
representational space that can be shared by any number of forms; and a non-
linear, non-sequential notation.

2.2  A Boundary Algebra

The two equations of boundary arithmetic generalize quite naturally to 
accommodate variables, and thus to construct an algebra.  One convenient set of 
initials for boundary algebra consists of three equations, each identifying 
void-equivalent structure.
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                (( ) A)  =     OCCLUSION

                 ((A))   =  A                INVOLUTION

                A {A B}  =  A {B}   PERVASION

Capital letters refer to arbitrary boundary forms, which may include zero, one 
or more subforms.  OCCLUSION and INVOLUTION are generalizations of CROSSING, 
while PERVASION generalizes CALLING to arbitrary configurations and to arbitrary 
depths of nesting.

Each equation specifies transformations that do not change the value of a 
boundary form.  This specification is a choice.  Different initial equations 
lead to different types of boundary algebra which support different 
interpretations. 

Each equation identifies void-equivalent structure.  The equations can be 
applied in either direction, left-to-right using void-substitution to delete 
structure, or right-to-left constructively to add void-equivalent structure.  
OCCLUSION serves as a halting condition, INVOLUTION deletes paired boundaries, 
and PERVASION serves to delete forms that have the same pattern.  

2.2.1  Pervasion

PERVASION is a powerful reduction technique with no analogs in conventional 
mathematics.  The curly braces are meta-symbols indicating any number of 
intervening boundaries, including none.  PERVASION applies regardless of depth 
of nesting, generalizing the fundamental idea of the pervasiveness of Void.

The rule of PERVASION renders boundaries semipermeable.  What is outside is 
arbitrarily inside, while what is only inside stays inside.  Since matching 
forms can be deleted from or added to deeper nestings, inward boundaries are 
transparent to replicates.

In the following example of boundary algebra computation, each line is an 
application of one of the void-substitution rules:

                ( ((A)) ((A)(B)(C)) )     boundary form
                (   A   ((A)(B)(C)) )     involution
                (   A   (( )(B)(C)) )     pervasion
                (   A               )     occlusion

The computation by deletion maintains equivalence; therefore,

                ( ((A)) ((A)(B)(C)) ) = (A)
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2.2.2  Virtual Forms

Void-equivalent forms are everywhere that Void is, which is everywhere 
throughout a configuration. For example, consider this demonstration:

                        ((a) a b)      boundary form
                        (( ) a b)      pervasion
                                   occlusion

That is,  ((a) a b) =      .

Since this form is void-equivalent, and thus inert, replicates can be placed 
constructively anywhere in any space.  Here, added replicates are underlined:

             = ((a) a b) = ((a) a b) ((a) a b) = ((a ((a) a b)) a b)
               ---------             ---------       ---------

The approach of conventional token-based mathematics is to represent forms 
explicitly, but this would be quite awkward for void-based boundary mathematics.  
Instead, void-equivalent forms are present implicitly.  They can be raised to 
awareness, used as patterns, and then discarded without effecting the value of a 
computation.  Void-equivalent forms are syntactically virtual.

2.2.3  The Robbins Problem as an Example

The Robbins Problem concerns the axiomatic basis of Boolean algebra.  Huntington 
developed a set of axioms for Boolean algebra that included Associativity, 
Commutativity, and one equation [Huntington(33)].  Robbins asked:  if the one 
equation were slightly different, does it still constitute a Boolean algebra?  
This seemingly difficult problem achieved recognition when an automated theorem 
prover [McCune(96)] used over 17000 steps to answer in the affirmative.

Huntington's and Robbin's equations are presented below as Boolean and boundary 
forms:

                           Boolean                           boundary

Huntington       (a' ◊ b)' + (a' ◊ b')'   = a          ((a) b) ((a)(b))  = a

Robbins         ((a  ◊ b)' + (a  ◊ b')')' = a         (( a  b) ( a (b))) = a

◊ is an undefined binary Boolean operator.  Robbins question is interesting due 
to the apparent symmetries between the two equations.  The boundary patterns 
highlight the essence of the problem:  the Huntington "a" is complemented on the 
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left side of the equation but not on the right, while the Robbins "a" is not 
complemented.  Instead the complement boundary has been factored out to apply to 
the entire expression.

Using virtual forms, the boundary algebra proofs of both equations are quite 
simple.  The objective here is not to establish the smallest set of axioms, but 
to show that the Huntington and the Robbins axioms are equivalent in complexity 
when the three rules of boundary algebra are assumed as a basis.

The boundary forms do not have structural concepts of Associativity and 
Commutativity;  grouping and ordering are not relevant to the boundary proof.  

Huntington  ((a) b) ((a)(b))

                ((a) b        ) ((a)(b)          )   boundary form
                ((a) b        ) ((a)(b) ^((a) b)^)      virtual per
                ((a) b        ) ((a)(b) ^(    b)^)   per
                ((a) b        ) ((a)    ^(    b)^)   per
                ((a) b        ) ((a)             )   forget virtual
                ((a) b ^((a))^) ((a)             )   virtual per
                ((a) b ^(   )^) ((a)             )   per
                                ((a)             )   occ
                                  a                  inv

Robbins     ((a b) (a (b)))

               ((a   b        ) ( a (b)          ))  boundary form
               ((a   b        ) ( a (b) ^( a  b)^))       virtual per
               ((a   b        ) ( a (b) ^(    b)^))  per
               ((a   b        ) ( a     ^(    b)^))  per
               ((a   b        ) ( a              ))  forget virtual
               ((a   b ^( a )^) ( a              ))  virtual per
               ((a   b ^(   )^) ( a              ))  per
               (                ( a              ))  occ
                                  a      inv

The proofs of each equation are almost identical.  These proofs do not directly 
address the question as to whether or not the Robbins equation is sufficient to 
establish a Boolean algebra, because the transformations occur in a boundary 
algebra system that is simpler than (underneath) Boolean algebra.  Since 
boundary algebra has Boolean algebra as an interpretation, the proofs do 
establish that there is no essential difference between the two equations.

"The Robbins problem has the flavor of a fairy tale that shows that finally 
there is an escape from the artificial labyrinth made by insisting on existence 
rather than allowing non-existence."  [Kauffman(90)]
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Thus, boundary computation is also unconventional is several ways:  void-
substitution rather than rearrangement; absence of cardinality, commutativity, 
associativity, arity, and functions; structural parallelism; pervasive 
operations; and use of virtual forms.

2.3  Some Interpretations

An interpretation is a mapping between systems, usually involving a specific set 
of rules or constraints.  Boundary algebra has disparate rules sets and 
interpretations.  Here, interpretations for elementary logic, for positive 
integers, for three-valued logic, and for n-element Boolean algebra are 
mentioned as examples.

2.3.1  Two-element Boolean Algebra

One of the interpretations of boundary algebra is propositional logic, which is 
a two-element Boolean algebra.  The interpretation as two-element Boolean 
algebra arises quite naturally from the initial rules of CROSSING and CALLING, 
and follows Spencer-Brown's presentation of LoF. 

The map between the two systems can be expressed succinctly:

            Boundary            Boolean             Logical

              ( )                  1                 TRUE
              (a)                 ~a                 NOT a
              (a) b             ~a v b            a IMPLIES b

The boundary is interpreted as the truth value TRUE and as the unary 
complement, NOT, and as the binary connective, IMPLIES. 

The same transformations, reductions, evaluations and proofs that can be 
conducted in conventional logic can be conducted in boundary algebra [Bricken 
and Gullichsen(89)].  The reverse is not true.  

The set of well-formed enclosures combined with the reduction rules CROSSING and 
CALLING is sufficient to fully characterize truth functional evaluation in 
logic, and the abstract signal propagation behavior of combinational digital 
circuits.  The set of enclosures containing variables (which represent arbitrary 
forms) combined with the rules OCCLUSION, INVOLUTION and PERVASION is sufficient 
to fully characterize propositional logic and Boolean algebra.
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2.3.2  Integers

Boundary forms can be interpreted for integers as well as for logic and for 
Boolean algebra [Kauffman(85), Bricken(92), James(93), Kauffman(95)].  The 
interpretation for integers shows that the Spencer-Brown initials for the 
arithmetic are limited to a particular application (logic).  Although the 
principles of computing with boundaries remains the same, changing the initial 
boundary equations can result in a different, equally useful system.

For integers, the boundary can be interpreted both as a unit integer and as a 
doubling function, using the following mapping:

                    Boundary              Integers

                                              0
                    ( ) = *                   1
                    (x)                      2x
                     x   y                  x + y

0 is Void.  To emphasize the atomic structure of the unit integer, the empty 
Mark is collapsed to a token, *, without an inside.  SHARING is addition, while 
BOUNDING is doubling (multiplication by 2).

For the interpretation as integers, CALLING and CROSSING are not valid rules.  
Instead, the single arithmetic rule is:

                ( ) ( )  =  ( ( ) )       DOUBLE

This boundary algebra of integers includes two initial equations.  The algebraic 
POWER rule generalizes the DOUBLE rule of the arithmetic. 

                 x   x   =    (x)     POWER

                (x) (y)  =   (x y)    DISTRIBUTION

2.3.3  Three-valued Logic

LoF has been extended to include contradictory (imaginary) logic values by 
adding a second constant, ( 1 )1, the Reentrant Mark [Kauffman(85), Kauffman
(87), Shoup(93), Hellerstein(97)].  The subscripted parenthesis notation here 
indicates that the Reentrant Mark and its contents, labeled subscript-1, 
reenters into the space of its contents, labeled 1.  

Reentry can occur any number of times.  The beginning sequence of equivalent 
forms generated by a Reentrant Mark is:
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  ( 1 )1  =  ( ( 1 )1 )  =  (( ( 1 )1 ))  =  ((( ( 1 )1 ))) = ...  REENTRANT MARK

Reentrant forms can be interpreted as infinite structures.  Reentrant operations 
can be interpreted as an infinite sequence of operations that result in a fixed-
point value.  

In the case of the Reentrant Mark entering its own space, the fixed-point value 
does not stabilize.  However infinite reentry is a natural interpretation of all 
boundary algebra forms, usually without undermining the value of the form.  Both 
of Spencer-Brown's initials for the arithmetic, for example, can be viewed as 
infinite reentrant forms:

        = (( 1 ))1 = (( (( 1 ))1 )) = (((( (( 1 ))1 )))) = ...     REENTRANT CROSS

    ( ) =  1 ( )1  =   ( ) 1 ( )1   =  ( ) ( ) 1 ( )1   = ...     REENTRANT CALL

One set of initial equations for the reentrant boundary algebra [Varela(75), 
Varela(79)] applies to the two constants { ( ), ( 1 )1 }:

                ( )  A  =  ( )      DOMINANCE

                ( ( ) )  =              ORDER

                ( ( 1 )1 )  =  ( 1 )1     CONSTANCY

                ( 1 )1  =  ( 1 )1 ( 1 )1     NUMBER

2.3.4  N-element Boolean Algebra

Section 4 focuses on the interpretation of boundary algebra as finite Boolean 
algebra with any number of elements.  

For a two-element Boolean algebra, the Mark is the entire Universe;  the set 
upon which the system is based contains Mark as the only element.  For an n-
element Boolean algebra, the Mark is still the entire Universe, however the set 
upon which the system is based contains several (n) elements.  A six-element 
Boolean algebra, for example, would have the following definition for Mark:

                        ( )  =  a b c d e f

Boolean algebra and set theory provide definitions of operations in the form of 
equations, however they do not provide algorithms to compute the result of an 
operation, say for example, the intersection of two sets.  In contrast, the 
three void-based rules of boundary algebra provide both structural definitions 
and algorithms for computing the results of set operations.
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3  A HOST OF DIFFERENTIATORS

The previous sections present several fundamental differences between 
conventional mathematical techniques and those of spatial boundary algebra.  
There are many candidates for a primary differentiator, since boundary and 
Boolean algebras have little in common.  Unexpectedly, the novel conceptual 
structure of LoF is sufficient to subsume both propositional logic and Boolean 
algebra. 

Many published technical descriptions of LoF begin with the conventional and 
then unfortunately ignore or misinterpret the structure of LoF itself.  This 
exposition has avoided mapping between boundary and Boolean systems in order to 
emphasize that boundary algebra has unique concepts and techniques of its own.  
This approach preserves what may be the most interesting aspects of boundary 
algebra:

    1)  Logic and human rationality can be cast within a formal system that is 
fundamentally different than the one that has evolved over the last two 
millennia.

    2)  Digital computation and semiconductor design can be cast within a formal 
system that is fundamentally different than the binary zeros and ones that have 
defined computer functioning since its inception.

The primary differentiator, that there is a one-to-many mapping between Boolean 
and boundary domains, is described next, followed by discussion of several other 
potential candidates that also differentiate boundary and Boolean algebras.

3.1  Mapping

Conventional mathematics addresses three common kinds of relations:  
equivalence, order, and function.  Equivalence classes have been presented in 
the form of equations.  A primary definition of the order relation is that of 
containment.  Boundary forms are clearly ordering relations.  Functions map 
between two sets, the domain and the range, and are limited by two constraints:  

        Existence:   All the elements of the domain are mapped to the range.
        Uniqueness:  Every domain element maps to only one range element.

A one-to-many relation cannot be functional, since uniqueness is violated.  So 
there is no functional mapping between boundary and Boolean systems.  Only a 
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relation can map boundary to Boolean systems; this is the order relation, 
discussed later in this Section. 

   

Some not mapped

Some not mapped

one-to-one
many-to-one

one-to-many

                           Relational Mapping

   

 EXISTENCE
  =def=
all mapped

  UNIQUENESS
  =def=
no one-to-many

                           Functional Mapping

3.1.1  One-to-Many

There is a one-to-many map between the structures of boundary and Boolean 
algebra.  A one-to-many mapping asserts that the One system is essentially 
smaller and consequently more efficient that the Many system.  Consider this 
portion of the one-to-many map:

            Boundary            Boolean             Logical

              ( )                  1                  TRUE
              ( )                 ~0            NOT FALSE
              ( )                1 v 0            TRUE OR FALSE
              ( )               ~0 v 0         FALSE IMPLIES FALSE
              ( )              ~(0 v 0)        NOT (FALSE OR FALSE)

17



The same Mark maps onto syntactically different Boolean and logical forms.  For 
example, the Boolean algebra concepts of 1, ~0, and 1 v 0 each express different 
ideas with different notation.  These forms reduce to the same value, however 
the reduction involves taking computational steps (i.e. making substitutions) to 
change one form into the other.  In the boundary system, no step can be taken, 
since there is no difference in the representation of the three.  

The one-to-many correspondence between forms in each system provides an 
interpretative freedom.  The Mark can be freely read as a constant, as a unary 
complement, as a binary function between inside and outside, as a function 
operating on arguments on its inside, or as the representation of a (infinite) 
number of other Boolean forms.  Thus, the one-to-many map transcends syntactic 
mapping and interpretation, it provides choice at the level of reading the form.

3.1.2  A Missing Constant

The breakdown of functional mapping occurs more profoundly in the relation 
between boundary and logical constants.  This incompatibility is at the heart of 
the difference between boundary and Boolean systems.

            Boundary            Boolean            Logical

                                   0                FALSE
 
Quite non-conventionally, boundary algebra assigns a semantic meaning to the 
absence of form.  The particular mapping above is apparently not one-to-many, it 
is none-to-one.  The gain in representational elegance, the underlying source of 
the one-to-many map, is that the boundary form for one of the Boolean constants 
does not exist.  This however plays havoc with the conventional concept of 
functional mappings that underlie the morphisms of algebraic group theory.

3.1.3  No Functional Morphisms

Morphisms are structure preserving maps;  a morphism between two systems is an 
identical structural shared by the systems.  From a mathematical perspective, 
systems with morphic structures are indistinguishable with regard to that 
structure. 

Since morphisms are functional maps, the one-to-many relation means that there 
can be no morphism from boundary to Boolean forms.  The best one can do is to 
examine the many-to-one map from Boolean algebra to boundary algebra.

Morphisms can be represented as constraint equations and as diagrams.  The rough 
idea is to show that the result of an operation in one system gives the same 
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result as the corresponding operation in the other system.  To do this, a 
morphism function is identified that maps between the two systems.  Although the 
technique of morphisms is quite general, it is presented here using the specific 
structures of the two systems of interest, boundary and Boolean algebra. 

3.1.3.1  The Morphism Constraint

The general constraint equation that defines a morphism is:

            F[a ◊ b]  =  F[a] ◊' F[b]      for every a and b

◊ is a generic binary function in the domain system while ◊' is the 
corresponding binary function in the system being mapped to (the co-domain or 
range).  F is the morphism function, a function that maps one system onto the 
other.  If F exists, then a morphism exists.  Diagrammatically:

              

a

!

b

a ! b

 !' 

q

p

p !' qthe same?

F

                Domain System           Co-domain or Range System

3.1.3.2  Boolean to Boundary

An essential distinction between boundary and Boolean algebra is the set of 
constants that each incorporates:

            Boundary            Boolean            Logical

            { ( ) }            { 0 , 1 }       { FALSE, TRUE }

Boundary systems have one constant, the enclosure.  Logic has two, the truth 
values, while two-element Boolean algebra has the binary numbers, {0, 1}.  A 
morphism between two systems requires that each element in one system map to an 
element in the other system.  Thus a morphism between Boolean and boundary 
systems cannot exist.
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Consider two constants SHARING the same space.  Pictorially, the dashed lines 
below indicate that there is nothing that the constant 0 maps to:
              

               

1

OR

0

( )F

1 OR 0
   ( )   

the same?

     
                     Boolean                    Boundary

Since this example is limited to constants, it is not appropriate to use (( )), 
or any other void-equivalent, to stand in place of the non-concept "boundary 
false".  Also note that the operator box for the boundary system is empty.  
There is no token that represents SHARING.  SHARING is not an operator, it is an 
unstructured collection, a capability of the underlying substrate upon which 
forms are recorded.

Mark cannot share a space with Void, there is no Void element.  Void is the 
substrate that supports marking, not an element in the boundary system.  Void is 
not only outside the Mark, it is inside Mark as well.  In the above diagram, the 
representation is explicit that the empty SHARING box is acting as a unary, not 
a binary operator.  It is the Identity function.  Were this diagram converted 
back into a morphism constraint, it would appear to redefine conventional logic:

                F[1 OR 0]  =  Identity[ F[1] ]  =  F[1]

Consider the mapping of logical implication with two FALSE arguments:

               

FALSE

IMPLIES
(.).

FALSE

FALSE 

IMPLIES 

FALSE

( )   
the same?

                    
                   Simple Logic               Boundary
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In this case, not only does the constant FALSE fail to map, but the "operator" 
Mark converts into a constant.

3.1.3.3  Boundary to Boolean

A subtle distinction between a mapping and a function is that mappings are not 
required to cover the entire range being mapped to.  It is permitted for the 
range to have extra, non-mapped elements.  This suggests that the simple two-
element case of mapping from boundary to Boolean systems be re-examined:

              

OR 

( )

true

false

F

( )       

true OR false
the same?

                  Boundary                 Simple Logic

Here, the essential problem is that operations on the non-mapped constant are 
not permitted.  Unfortunately, the two-element Boolean system cannot do without 
one of its two elements.

3.1.3.4  Patching the Mechanism

Who can blame a conventional mathematician who addresses these anomalies by 
providing a token for Void, say ⊥, and a sign for SHARING, say + ?    

The problem is that this seemingly innocuous modification literally disassembles 
the boundary system, structurally converting it into a Boolean system.  Putting 
something in place of nothing adds a new ground element to the boundary system.  
More significantly, it localizes Void to be in one specific place within the 
notation.  Void pervades a boundary form, it is identified with the syntactic 
substrate (the paper, for example) and is thus everywhere.  Labeling Void 
destroys its pervasive property, and consequently undermines the functionality 
of the rule of PERVASION.
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Technically, since boundary algebra contains no functions at all, it is not an 
algebraic system.  Rather, boundary algebra is a pattern-matching system based 
on a relational algebra of inclusion. Thus there is no functional morphism of 
any type between boundary and Boolean algebra.  While Boolean algebra is a 
complemented, distributive lattice (and a lattice is a partially ordered set 
with upper and lower bounds), boundary algebra does not even manage to qualify 
as having a rudimentary algebraic structure (a set and a binary operation on 
that set). Boundary algebra is an algebra only in the broadest sense of a system 
that uses formal techniques to manipulate symbols.

The partial order relation that exists in both Boolean and boundary systems is 
discussed next.

3.1.4  Partial Order Relation

The mapping between boundary algebra and Boolean algebra is relational [Varela 
and Goguen(78)].  Both systems are partial orders.  This is easily seen in 
boundary algebra, since BOUNDING (inclusion, enclosure, nesting boundaries) is 
the essence of ordering, while SHARING is the non-ordering structure that 
permits order to be partial.

A partial order (poset) is a relation that is reflexive, transitive and 
antisymmetric.  For boundary algebra, the Mark is the binary order relation.  
What is inside is "less than or equal to" what is outside.

Conventionally, x ≤ y is read as "x is contained in y".  The containment 
relation is explicit in a boundary representation:

                x ≤ y    =def=    (x) y     BOUNDARY

In comparison, the inclusion relation in Boolean logic is: 

                x ≤ y    =def=   x IMPLIES y    BOOLEAN

3.1.4.1  Partial Order Morphism

A morphism of partial order is a mapping function between two posets.  The 
morphism is defined as

                x ≤ y  =  F[x] ≤' F[y]  for all x, y

The morphism constraint from the Boolean to the boundary poset transcribes as:

                x IMPLIES y  =  ( F[x] ) F[y]

22



The morphism function, F[x], simply maps Boolean to boundary constants, with the 
continuing absence of a mapping for 0:

                Boolean            Logical            Boundary

                   0                FALSE               
                   1                TRUE                ( )

The validity of this mapping can be checked by comparing the truth tables for 
IMPLIES in the Boolean logic system with the algebraic reduction results in the 
boundary system.  

Below, a square bracket in boundary notation, [ ], is identical to a 
parenthesis, ( );  the square bracket is used solely for the meta-purpose of 
highlighting the boundaries that correspond to conventional logical connectives.

       Boolean            Boundary

 FALSE IMPLIES FALSE = TRUE [       ]       = ( ) identity
 FALSE IMPLIES TRUE  = TRUE  [       ]  ( )  = ( ) call
 TRUE  IMPLIES FALSE = FALSE [  ( )  ]       = cross
 TRUE  IMPLIES TRUE  = TRUE  [  ( )  ]  ( )  = ( ) cross

3.1.4.2  Partial Order Properties

Boundary algebra can be employed to demonstrate directly that Mark has the 
partial ordering properties.  Boundaries are reflexive, transitive, and 
antisymmetric.  Conventionally, logical connectors are used to define relational 
properties, however the demonstration can be carried out purely within the 
boundary system.  The partial order property definitions in each system follow, 
again the square bracket is used for highlighting logical transcriptions:

                             Logical                          Boundary

  Reflexive                   x ≥ x             (x) x

  Transitive        x ≥ y AND y ≥ z IMPLIES x ≥ z        [(x) y] [(y) z] (x) z  

  Antisymmetric     x ≥ y AND y ≥ x IMPLIES x = y        [(x) y] [(y) x]  x=y

The boundary algebra proofs that follow illustrate how boundary algebra can 
stand in place of logic.  Three prerequisites are helpful:
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 1.  A preliminary boundary theorem, Dominion, makes the proofs more direct:

                    ( )  A  =  ( )     DOMINION

 2.  The boundary transcription of Boolean equivalence is needed:

                    x=y  =def=  (((x) y) ((y) x))

 3.  The boundary algebra treatment of the structure of proof using premises 
and conclusions is that BOUNDED premises share the same space as the conclusion.  
The literal boundary translation of the logical form of implication is:

                Logic                     Boundary

             A IMPLIES C                  [A]       C

In the case of a conjunction of premises, the literal transcription immediately 
reduces via INVOLUTION:

         A AND B  IMPLIES C           [[ [A] [B] ]] C
                                          [A] [B]    C    inv

Each premise is individually BOUNDED to express the structural relation that 
premises are less than the conclusion.  That is, a valid conclusion pervades its 
premises.

Now the boundary algebra proofs that a boundary is a partial order.  Definitions 
that reduce to Mark are logically TRUE.

  Reflexive          (x) x        def
                     ( ) x         per
                     ( )        dom

  Transitive       [(x) y] [(y) z]  (x) z    def
                    [    y] [(y)  ]  (x) z    per
                    [    y] [     ]  (x) z    per
                            [     ]             dom

  Antisymmetric     [(x) y] [(y) x]   x=y                   def
                    [(x) y] [(y) x]  (((x) y) ((y) x))      equiv
                    [(x) y] [(y) x]  (               )     per
                                     (               )     dom
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3.2  Other Candidates for the Essential Difference

There are several potential candidates for the primary differentiator between 
boundary and Boolean algebra.  Brief discussions of other differentiators of 
interest follow.  These include specific conventional characteristics that 
boundary forms lack, specific characteristics of boundary forms that 
conventional expressions lack, specific operational characteristics that are not 
available in conventional computation, and conceptual tools that boundary 
systems contribute to mathematical thought.

3.2.1  Absence of Group Theoretic Structures

Boundary algebra does not include the conventional structural concepts of  
cardinality, associativity, commutativity, and arity.  Underlying the absence of 
structural properties associated with functions is a fundamental observation:  
there are no functions in boundary algebra.

Conventional properties could be added to boundary algebra as elaborations, by 
introducing constraint equations on boundary forms.  It is common practice to 
construct systems incrementally; for example, adding the rule of commutativity 
to a simple group makes it an Abelian (commutative) group.  Boundary algebra 
can, then, be viewed as a minimal system upon which to add structural 
constraints such as cardinality and commutativity.

It is inappropriate to say that SHARING is an "associative, commutative 
function".  These properties are not possible in a void-substrate space, since 
by definition, Void supports no properties.  It is inappropriate to say that
BOUNDING is a "binary function" since, due to PERVASION, Mark distinguishes the 
SHARING space inside, without influencing the pre-existent SHARING space 
outside.  It is not even possible to write the rule of PERVASION as a 
conventional function.

Seen from this perspective, group theoretic properties, such as commutativity 
and right- and left-identities, have a strangely syntactic origin arising from 
writing expressions on a line.

3.2.2  Semantic Void/Single Constant

Due to the semantic void, boundary algebra is conceptually leaner that 
conventional Boolean algebra.  It is an error to force Boolean concepts onto 
boundary systems, such as the idea of marking Void with an indicator, say 0 or 
the empty set, { }.  To understand boundary math, it is necessary to adopt 
different ideas, not to eliminate new ideas through unnecessary elaboration.
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The notion of a semantic substrate is crucial to understanding boundary 
mathematics.  Drawing a Mark on top of the void substrate creates one 
distinguished space, the inside of the Mark, the other (pre-existing) 
distinguished space is the entire page upon which the Mark rests. 

One source of confusion is the interpretation of Mark as a generator of duality, 
making inside and outside mutually exclusive.  Void can be understood in a more 
natural way as a pervasive space.  The inside is separate from the outside, but 
the outside is not separate from the inside.  In this way, Marks are 
semipermeable; from the outside, a Mark does not present a barrier.

Void works like physical space;  a solid object distinguishes the space it 
occupies, but it does not "push aside" or exclude that space.  Similarly, a Mark 
distinguishes the page upon which it is recorded, but it does not cut the page 
into physically separate pieces.  

The value, or meaning, of Void is inverted by placing a Mark upon it.

                                 --->  ( )

There is no token that can mean Void, since any representation of Void denies 
its meaning, in a very literal sense.  The value of a representation of Void is 
Mark, not Void.  The explicit representation of Void is a semantic error.  Since 
Void is unique, multiple representations of Void are multiple errors.

The idea that one Boolean constant can be omitted from Boolean notation without 
loss of expressive power is an essential innovation.  Two-valued Boolean algebra 
is over-specified, the second value can be inferred from the absence of the 
first.  Although the syntactic structure "FALSE" is not present, the semantic 
idea of FALSE is explicitly distinguished as the empty content of an empty 
Mark, and is implicitly present prior to any Mark as the substrate for marking.

3.2.3  Inside and Outside of Forms

Conventional linear notation treats tokens (for example: foo, +, $) as solid 
atoms, providing an outside but not an inside.  Set theoretic curly braces, 
{...}, provide an inside but not an outside.  Boundary mathematics is unique in 
that constants and compound forms have both an inside and an outside.  This 
requires a spatial rather than a linear notation.  

Delimiting parentheses (that is, matched but potentially separated token pairs) 
play a special role in string languages.  The difference between context-
sensitive and context-free languages is the presence of paired tokens that 
permit an inside and an outside.  In addition, parentheses are the minimal 
string structure that requires a memory in pushdown automata.
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The idea of containment can be represented in ways other than nested boundaries.  
It can also be expressed as a graph, for which links represent containment 
relations [Bricken(86)], or as a map, for which common borders represent 
containment relations.  Maps require a locator to identify the outermost region 
that is overt in nests, graphs and text.  Thus, in different pictorial 
notations, enclosure (nesting) is also connection (graph) is also contact (map):

      Nest             Graph             Map
  

    BOUNDING              

    SHARING        

3.2.4  Spatial (Non-Linear) Notation

The characteristics of a spatial notation are fundamentally different that those 
of a textual, linear notation.  Above, three varieties of planar representations 
are illustrated.  Each is a topological variant;  new spatial notations are 
generated by geometric and topological transformations, not by substitution and 
rearrangement of tokens.

Parenthesis strings have been studied extensively as Dyke languages and as 
interpretations of Catalan numbers.  There are dozens of known isomorphic 
mappings between balanced parenthesis strings, various number sequences, and 
spatial forms.  The spatial representations include binary trees, trivalent 
planar trees with a single root, lattice paths, silhouettes of mountain ranges, 
non-intersecting chords joining points on the circumference of a circle, 
specific types of poset diagrams, and stacks of coins with a contiguous bottom 
row.

Spatial notation permits representations that are typographical (parentheses), 
planar (paths, nestings, networks, maps) and manipulable in physical space 
(steps, cubes, rooms).  All support formal computation through pattern-matching 
and substitution using the three algebraic boundary rules.  Conventional 
mathematical notation has nothing similar.
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3.2.4.1  Topological Variants

The following vertical transformation sequences illustrate two families of 
spatial notation generated by structural variation of the parenthesis syntax.

                        ((a b)((a)(b)))
                         Textual parenthesis string

        

((a b)((a)(b)))
(             )
 (   )(      )
  a b  ( )( )
        a  b

                Extruded                                Capped 

          

aa b b
a b

a   b
                  Tree                                   Boxes

        

a b

ba

a
b

                 Network                             Stacked Blocks

Stacked Blocks are generated by rotating the Box representation 90º out of the 
plane of the paper and extruding.  This 3D representation is of particular 
interest:  when interpreted as logic, it provides a tactile, manipulable form 
for deduction.  Logical reasoning can be concrete as well as abstract.
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3.2.4.2  Notational Variety

To illustrate the wide diversity of spatial notations, several other 
representations of the above form, ((a b)((a)(b))), follow:

 1.  Distinction Network:  this graph reduces/evaluates via local 
asynchronous message passing [Bricken(95)].

 2.  Distinction Steps:  steps are generated by rotating the distinction 
network out of the plane of the paper by 90°, modifying the size of each node so 
that they overlap, and looking down.

 3.  Crossbar Switch:  a variety of electronic circuit based solely on wires 
and inverters;  bars are Marks.

 4.  Distinction Path:  all Marks have been unified into the single boundary 
that the computational path crosses and re-crosses.

 5.  Distinction Rooms:  doors represent semipermeable boundaries.  
Computation can be achieved by walking through rooms and closing doors.

 6.  Circuit Schematic:  conventional electric circuit diagrams use a 
spatial notation that evaluates via signal propagation. 

    

a b
a

b

a

b

  Distinction Network     Distinction Steps            Crossbar Switch

   

a b a
b

a

b

    Distinction Path        Distinction Rooms            Circuit Schematic
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3.2.5  Void-Equivalence

Any arbitrarily complex configuration of boundaries will reduce to either Mark 
or Void when Spencer-Brown's arithmetic rules are applied to delete structure.  
For example:

                    ( (( )) (( )( )( )) )    boundary form
                    (       (( )( )( )) )    cross
                             ( )( )( )      cross
                             ( )      call

The essential structure of a form is a single Mark, together with meaningless 
void-equivalent "junk" that exists syntactically but not semantically.  Boundary 
arithmetic computation is simply a process of deleting the junk, with the 
possibility that nothing, not even a Mark, will remain.  Unlike all explicit 
conventional expressions, void-equivalent boundary forms do not have a value.  
Technically void-equivalent forms lose all characteristics upon evaluation, 
since their only characteristic is their meaningless syntax. 

Each boundary algebra rule permits construction of void-equivalent forms by 
application from right-to-left.  Since these rules can be applied any number of 
times, Void is teeming with virtual structure.  During proofs, constructive rule 
applications are marked by the + sign.  An example constructive sequence:

                                          absence of form
                    (( )  )                      cross+
                    (( ) z)                      occ+      
                    ((z) z)                      per+   

Void-equivalent forms can quickly become complex.  Consider the boundary 
DISTRIBUTION theorem (proved in Section 4.2):

               A ((B)(C))  =  ((A B)(A C))   DISTRIBUTION

Substituting each side of the equation into the void-equivalent construction 
yields:

               ((    z     )       z     )
               ((A ((B)(C))) ((A B)(A C)))       subst  

The resulting form is no longer obviously void-equivalent.  This construction 
from nothing illustrates on why Boolean algorithms are intractable, and how 
PERVASION can be used to disentangle void-equivalent forms.

Void-equivalence sheds light on an essential characteristic of logical 
computation.  An explicit syntactic form consists of one kernel of information 
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(existent as Mark, or non-existent as Void) that is confounded with other void-
equivalent structure.  Logical computation is removing the irrelevancies.  
Conventional logic incorporates ideas of false information, material 
implication, multiple syllogistic structures, inference rules, replacement 
rules, and proof strategies;  through the lens of boundary algebra, each can be 
seen as an unnecessary complexity.

3.2.6  Object/Operator Unification

Boundary forms are structural objects.  BOUNDING acts to distinguish what is 
inside, a boundary is a relation between inside and outside.  Conventional 
mathematics requires unique tokens that distinguish objects, operators, and 
relations.  However, in a computation, what is operator and what is object is 
determined by the implementation mechanism. 

Boundary reduction rules can be implemented by parallel pattern-matching or as 
an asynchronous network process.   Rules can also be implemented by a variety of 
other means, such as string rewriting, tree traversal, and finite state 
machines.  However, it is useful to keep in mind that implementation languages 
characterize the computational machine rather than the mathematics.

In a conventional procedural computer language, operations are instructions that 
operate on data.  In a functional regime, everything is an operation, data is 
simply what is left unevaluated.  In a pattern-matching regime, operations are 
subsumed by the pattern-matching engine;  all forms are objects.  In an 
asynchronous network reduction regime, objects and operators are subsumed by the 
network structure; operations become messages between nodes in the network.  

Object/operator unification in boundary systems is deeper than an implementation 
mechanism.  Boundary algebra variables stand in place of zero, one or many 
forms;  they abstract any collection of forms sharing a space.  The space shared 
by forms does not support grouping or ordering.  Thus, without concepts of 
necessary existence, cardinality, arity, associativity, and commutativity, the 
conventional distinction between operator and object lacks support.

Consider the interpretation of BOUNDING as a relation between inside and 
outside.  How would the form ((a)(b)) be written in a relational syntax?  The 
transcription to the relation R[inside, outside] might be:

                ((a)(b))  =transcribe=  R[ R[a, R[b]]]

Here, the outer boundary has no explicit outside object, the boundary is a unary 
operator.  One of the two inside forms, (a) and (b), must be read as unary in 
order for the other to be binary.  When commutativity is added, both boundaries 
can chosen to be either a binary relation or a unary function.
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The net result is that what is being represented by nested containment is not 
the same as the relation R[inside, outside],  The boundary relation undermines 
the SHARING operation, while SHARING undermines the relational interpretation.  
It is better to accept the non-conventional boundary pattern interpretation that 
to attempt to fit boundary forms into conventional functional structures.

3.2.7  Semipermeable Boundaries/Operational Transparency

A boundary cannot be strictly interpreted as a function or as a relation.  
Difficulty arises when considering how PERVASION works over nested boundaries.  
Assume that the boundary is contained by an outer SHARING space (its context) 
and contains an inner SHARING space (its content).  Consider the functional 
interpretation of BOUNDED-SHARING, (A):

                     s[A, B]  =transcribe=  (A B)

The rule of PERVASION gives permission to alter the arguments of a remote nested 
function, while ignoring intervening functions that contribute to the remote 
argument.  Importantly, PERVASION does not mean that steps are taken across each 
intervening boundary until a pattern-match is found, it means that intervening 
boundaries are transparent.  From the outside, there are no intervening 
boundaries.  Consider this example:
 
    s[ s[a,b], s[a, s[b, c        ]]] =?= ( (a b) (a (b c      )) )    eg
    s[ s[a,b], s[a, s[b, c, s[a,b]]]] =?= ( (a b) (a (b c (a b))) )    per+
    s[ s[a,b], s[a, s[b, c, s[   ]]]] =?= ( (a b) (a (b c (   ))) )    per
    s[ s[a,b], s[a                 ]] =?= ( (a b) (a            ) )    occ

The second line uses PERVASION to insert a form deep into another form.  Under 
the functional interpretation, this is equivalent to adding a new argument to a 
remote function.  The third line uses PERVASION from two different functions to 
extract both arguments of the innermost function, converting it into a constant.  
The fourth line uses OCCLUSION to remove a compound argument, changing the host 
function from binary to unary.  

Naturally, permeable function boundaries, modification of remote function 
arguments, dynamic arity, and transparent functional dependencies are foreign to 
conventional mathematical systems.

3.2.8  Catalytic Computation

Void-equivalence can be used in computation constructively as well.  Forms 
outside a boundary are everywhere inside the boundary as virtual forms.  Virtual 
computation gives permission to postulate, or imagine, void-equivalent forms 
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pervading the substrate upon which forms are recorded (e.g. the page).  Virtual 
forms are not recorded, they are not syntactically explicit.  Rather they are 
used as hypotheses that can be discarded at will.  

Interaction of void-equivalent forms with explicit forms leads to the catalytic 
identification of void-equivalencies within the syntactically explicit, and thus 
to reduction via deletion.  Virtual forms that are useful for reduction can be 
postulated without concern;  virtual forms that may not be useful can be 
forgotten (cast into the void) at any time. 

The reduction example above, ((a b) (a (b c))), is repeated here using virtual 
forms.  A virtual form is indicated by carets, ^...^.  The reduction shows 
virtual structure explicitly, however the carets are meant to indicate that the 
presence of the virtual form is considered, not necessarily recorded.

        ( (a b       ) (         a (         b c)) )  boundary form
        ( (a b       ) ( ^(a b)^ a ( ^(a b)^ b c)) )  virtual per
        ( (a b       ) ( ^(  b)^ a ( ^(   )^ b c)) )  per
        ( (a b       ) ( ^(  b)^ a               ) )  occ
        ( (a b       ) (         a               ) )  forget virtual
        ( (a b ^(a)^ ) (         a               ) )  virtual per
        ( (a b ^( )^ ) (         a               ) )  per
        (              (         a               ) )  occ
                                 a       inv

Therefore, by following rules to convert one form into another,

                    ((a b) (a (b c)))  =  a

Boundary algebra as well provides a body of unique, non-conventional void-based 
transformation and solution techniques.

3.2.9  Thinking with Boundary Concepts 

Boundary rationality suggests that it is possible to reason rationally without 
using the logical connectives.  It is an extremely difficult and bold step to 
realize that conventional rationality can be carried forth in thought and in 
computation without using the familiar concepts of AND, OR, IF, and NOT.  

People have tremendous difficulty using logic correctly.  For all but the 
specifically trained, logic is puzzling.  Thinking in logic creates an 
unnecessary cognitive load.  In contrast, deletion of void-equivalent forms, 
although unfamiliar, is at least conceptually simple.  Learning to think with 
boundaries rather than with conventional logic requires considerable effort;  
this paper merely establishes that such thinking is both possible and different.
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Imagine a computer programmer writing a COND statement (nested IF-THEN-ELSE):

   IF A THEN B ELSE
    IF C THEN D ELSE
     IF E THEN F ELSE
       ...
               IF TRUE THEN H

The use of COND requires structured planning, prioritizing, testing, and 
terminating, all revolving around the semantic use of IF-THEN-ELSE.  The 
boundary form of COND looks like this:

                    (  ((A) B)
                      (  ((C) D)
                        (  ((E) F)
                          (...
                            ((( )) H) ...))))

The above formatting carries residual structure from the direct logical 
transcription.  A different alignment shows the same structure in a different 
way.  Below, the void-equivalent form (( )) is also eliminated.

                     (      (B (A))
                      (     (D (C))
                       (    (F (E))
                        (...
                            (H    ) ...))))

In formulating and using a boundary COND, the thought process does not include 
IF-THEN-ELSE.  That is, the pattern of the parenthesis structure for COND 
achieves the same result but using words like "outside", "bounded" and 
"pervades".  Boundary COND might be verbalized as something like this:

      Outermost, B pervades A is bounded.
        This form pervades other structurally identical forms
          Repeated at each depth.

Thinking in boundary logic might also begin in the deepest space, the space that 
contains H.  All other forms pervade this space, so that everything outside is 
available to it.  The deeper the nesting, the less likely that the nested forms 
will influence the outcome.

In sum, there is an efficient way to think using boundary concepts natively.  
The conventional words/concepts one uses to construct things like a functional 
COND statement embed redundancies not present when thinking in a spatial 
nesting language.
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4  BOUNDARY ALGEBRA IS NOT LIMITED TO TWO-VALUED BOOLEAN ALGEBRAS

Boundary algebra can be interpreted as the algebra of subsets.  The algebra of 
finite subsets is a Boolean algebra based on the powerset of a set of atomic 
elements, the binary operations of union and intersection, and the set 
complement unary operation.  The zero element is the empty set, { }, and the 
unit element is the Universe, X, the set of all elements.  Since the algebra of 
subsets is isomorphic to all other Boolean algebras, this demonstration suffices 
to show that boundary algebra applies to Boolean algebras in general.

4.1  Mapping the Algebra of Subsets onto Boundary Algebra

As would be expected, the mapping from the algebra of subsets to boundary 
algebra is non-standard.  In particular, the zero element, { }, is Void, 
rendering it non-existent; the unit element, X, is Mark; union is SHARING; and 
intersection is a compound operator consisting of one SHARING and three 
BOUNDINGS.  The functional mechanisms of the algebra of subsets are expressed 
solely by boundary relations.

     Algebra of Subsets       Boundary Algebra

 Zero      { }          

 Unit       Universe, X                ( )

 Complement[A]      A' = X - A    (A)

 Union[A, B]         A ∪ B               A  B

 Intersection[A, B]   A ∩ B                ((A)(B))
 

4.2  Proof of the Rules of Boolean Algebra

Each of the constraint equations for Boolean algebra has an analog in boundary 
algebra.  In the table below, the generic operator token, ◊, stands in place of 
both binary operators, union and intersection.
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                      Algebra of Subsets              Boundary Algebra

 Associative     (A ◊ B) ◊ C = A ◊ (B ◊ C)        no grouping concept

 Commutative           A ◊ B = B ◊ A              no ordering concept

 Zero/unit            A ∪ 0  = A                 INVOLUTION  ((A)) = A
                      A ∩ 1  = A

 Complement           A ∩ A' = 0                 OCCLUSION  (( ) A) =
                      A ∪ A' = 1

 Distributive    A ◊ (B ◊' C) = 
                        (A ◊ B) ◊' (A ◊ C)        PERVASION  A {A B} = A {B}

To show coverage of the algebra of subsets by boundary algebra, it is sufficient 
to prove each of the Boolean constraint rules using the three rules of boundary 
algebra.  

Associativity                 Subsumed by space without structure.

Commutativity                 Subsumed by space without metric.

Zero/unit    A ∪ 0  = A                A ∩ 1 = A

     A       = A          ((A)(( ))) = A  transcribe
                                     ((A)     ) = A     inv
                                       A        = A  inv

Complement     A ∪ A' = 1               A ∩ A' = 0

               A   (A) = ( )          ((A)((A))) =   transcribe
               A   ( ) = ( )          ((A)(   )) =         per
                   ( ) = ( )                     =         dom/occ

Both distributive rules in the algebra of subsets can be proved using boundary 
algebra DISTRIBUTION:

                A ((B)(C))  =  ((A B)(A C))   DISTRIBUTION

Boundary DISTRIBUTION is a theorem that can be derived using only the three 
initial equations of boundary algebra.  The following boundary proof nicely 
illustrates the fundamental role of PERVASION.
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           A                         ((  B)(  C))  lhs
           A                         ((A B)(A C))  per+
        ( (A)                      ) ((A B)(A C))  inv+
        ( (A) ((    A B)(    A C)) ) ((A B)(A C))  per+
        ( (A) (((A) A B)((A) A C)) ) ((A B)(A C))  per+
        ( (A) ((( ) A B)(( ) A C)) ) ((A B)(A C))  per
        ( (A) (                  ) ) ((A B)(A C))  occ
                                     ((A B)(A C))  occ, rhs

Distribution, union over intersection:  

                A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

                A   ((B)(C))  =  ((A B)(A C))   transcribe, dist

Distribution, intersection over union:

                A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

                  ((A)(B C))  =  ((A)(B)) ((A)(C))  transcribe

                  ((A)(      B        C   ))   lhs
        ((A)( (   (B)) (   (C)) ))   inv+
        (   ( ((A)(B)) ((A)(C)) ))   dist
              ((A)(B)) ((A)(C))       inv, rhs

Thus the Boolean algebra rule of Distribution is not fundamental, it is a 
theorem of PERVASION.

4.3  One- and Two-element Algebra of Subsets

The powerset, PS, for a two-valued Boolean algebra has four members:

                PS[{0, 1}] = { { }, {0}, {1}, {0,1} }

These four members can be read as "nothing" (the empty set), the two elements, 
and "everything" (the Universe).  

In contrast, the powerset for the one-valued boundary algebra has two members:

                PS[{ ( ) }] = { { }, { ( ) } }
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which again can be read as "nothing" (Void) and "everything" (Mark).  This 
mapping suggests that boundary arithmetic can be interpreted as a Calculus of 
Universes [Bricken(93)].

There is clearly no Boolean algebra of one element.  The rules of Boolean 
algebra call for a zero and a unit element, that is, for at least two elements.  
As well, the operators union and intersection are binary.  The only way a one 
element algebra can satisfy a binary operator is through the degenerate case of 
the union or intersection of an element with itself.

The foundational role of boundary mathematics in elementary set theory is 
evident:  boundary arithmetic is a one-element algebra of subsets that covers 
the two-element algebra of subsets.

4.4  The Four-element Algebra of Subsets as an Example

The algebra of subsets with four elements illustrates the rules of boundary 
algebra as they apply to operations in an n-element algebra of subsets.

The powerset for a four-valued Boolean algebra consists of sixteen elements:

 PS[{a,b,c,d}] = { { }, {a}, {b}, {c}, {d}, 
                   {a,b}, {a,c}, {a,d} {b,c}, {b,d}, {c,d},
                   {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d} }

In using boundary algebra to compute results for the algebra of subsets, a set, 
S, is represented as the elements of the set sharing space.  The curly braces 
and the commas separating members in set notation are both deleted:

                S =  {a, b, c, d}  =transcribe=  a  b  c  d

4.4.1  Definitions vs Algorithms

A preliminary distinction between definitions and algorithms is necessary.  The 
algebra of subsets defines operations such as compliment, but it does not 
include algorithms for computing the results of operations.  For example, it is 
easy to see that b is the only common element in this set intersection:

                    {a, b, c} ∩  {b, d}  =  {b}

However, there is no specification as to how to arrive at this conclusion 
computationally.  One algorithmic approach would be to take each element of the 
smaller set {b, d} and in turn compare it to each element of the larger set, 
saving those elements that are found in both sets.
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In contrast, the three void-equivalent rules of boundary algebra do specify 
steps to take in computing a result.  An algorithm is still needed to apply the 
rules, but it can be the same pattern-matching algorithm that applies those 
rules to any interpretation of boundary algebra.

Consider the union operation in each system:

                {a, b} ∪ {b, c}  =  {a, b, c}
                 a  b      b  c     transcribe
                 a  b         c      per

The set theoretic result is simply the result of a definition, while the 
boundary algebra result is computed by one application of PERVASION.

Unlike the algebra of subsets, the boundary algebra union operation is not 
binary, it applies to an arbitrary number of sets.  As an example:

           {c} ∪ {a, b} ∪ {b, c} ∪ {a, c} = {a, b, c}
  c      a  b     b  c      a  c   transcribe
  c      a  b                      per

4.4.2  Interpreting the Boundary as Set Complement

For the algebra of subsets, the boundary is interpreted as a set partition, the 
compliment operation. 

     Boundary       Subset      Four-element Example

                      { }            { }
       ( )             X             {a,b,c,d}
       (A)             A'            {a,b,c}' = {d}

The empty set, { }, is unique and is a member of every set.  It therefore shares 
some of the characteristics of Void.  There is little to change in casting the 
empty set into the void;  in conventional practice, the empty set is used 
primarily as a marker for nothing.

The Universe, however, has a particular interpretation when it is instantiated 
as a particular set of elements.  Mark inherits that specific interpretation.  
In the four-element example, Mark is the four elements sharing space, while the 
complement of Mark is the empty set, the four elements bounded:

                            ( )  =  a b c d  =  X

                            ( )' = (a b c d) = { }
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Which version of Mark to use depends on the purpose of a computation.  For 
manipulation of abstract rules, Mark can be used, but for specific computations 
over specific sets, the explicit collection of elements must be used.  At any 
time, each can be substituted for the other with no loss of correctness.

For an example, consider the set difference operation, A - B, which is defined 
as those elements in A but not in B.

                A - B  =  A ∩ B'

Transcribing into boundary algebra:

                A - B  =  ((A)((B)))
                          ((A)  B  )    inv

The complement is the set difference between a set and the Universe:

                B'  =  X - B  =  ((( )) B) 
                                 (      B)   inv

Using the abstract Mark as Universe generates a definition of the complement of 
B as (B).  However, consider computing a specific complement:

    {a, d}' =  X - {a, d} = {a, b, c, d} - {a, d} = {b, c}

    (a  d)  = ( ) - a  d  =  a  b  c  d  -  a  d  hybrid

Reducing the boundary definition of set difference,

                (a  d)  =  ((a  b  c  d) a  d)   def ((X) B)
                           ((   b  c   ) a  d)   per

arrives at an intermediate structure:

                (a d)  =  ((b c) a d)

Here, the computation of the complement is not yet completed, but note that the 
computed complement is part of the right-hand-side.  The specific complement is 
the solution to the above equation.  This solution, (a d) = b c, can be verified 
by substitution:

                (a d)  =  ((b c)   a d  )
                (a d)  =  ((b c) ((a d)))   inv+
                 b c   =  ((b c) ( b c ))   subst
                 b c   =  ((b c)        )   per
                 b c   =    b c             inv, identity
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It is never necessary to actually solve the equation, since the solution is 
embodied directly within the right-hand-side.  This can be demonstrated using 
void-equivalence:

               (a d)  =  ((b c) a d)
               (a d)  =  (      a d)    identity
                          (b c) =
                           b c  =  ( )   

This solution makes a subtle redefinition of the Universe by removing {a, d} 
from all forms.  The particular solution to the intersection equation is 
"everything" permitted by the structural constraint defined by the equation.

In practical terms, the form of the complement is one level of nesting deep, 
while the computed complement is two levels of nesting deep.

4.4.3  The Boundary Form of Intersection

Finally, consider the boundary form of the set intersection operation.  Again, 
boundary algebra intersection is computed using the three initial rules, and 
again boundary intersection is not binary, the computation applies concurrently 
to any number of subsets.

Consider the following computational example:

                {a, b, c} ∩ {b, c} ∩ {b, d}  =  {b}

               ((a  b  c)    (b  c)   (b  d))   transcribe
               ((a     c)    (   c)   (   d))     b  dist

Boundary DISTRIBUTION, like other boundary operators, applies to any number of 
component forms, it has no specific arity.

The intermediate form above includes the computed result, b, within it.  One way 
to understand this is to appeal to the definition of the form of intersection,

                ((X)(Y)) =      when X, Y have no common members

Therefore,
               ((a     c)    (   c)    (   d))  b  dist
                                                b  void-equivalent

There is a short cut.  Once boundary DISTRIBUTION has been applied to a form, 
the remaining nested form contains no replicates.  Within the interpretation for 
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subsets, a form in the pattern of intersection with no replicates is always 
void-equivalent.  

Finally, consider an example of the decomposition of the form of intersection 
into unions and complements:

                 {a, b, c} ∩ {b, d}

                ((a  b  c)    (b  d))    transcribe
                (    d        (b  d))    {a,b,c}' = {d}
                (    d         a  c )    {b,d}' = {a,c}
       b                      {d,a,c}' = {b}

At any step of this computation, a boundary algebra rule could be applied.  For 
example, at the second and fourth steps:

                (    d        (b  d))    {a,b,c}' = {d}
                (    d        (b   ))    per
                (    d        a c d )    {b}' = {a,c,d}
                (    d        a c   )    per
       b                       {d,a,c}' = {b}

Further, the specific definition of complement for any bounded form can be 
substituted at any time, thereby computing each complement in the decomposition.

            ((          a b c)  (          b d))  transcribe
            (((   X   ) a b c)  ((   X   ) b d))  subst def
            (((a b c d) a b c)  ((a b c d) b d))  subst Universe
            (((      d) a b c)  ((a   c  ) b d))  per
            (        d            a   c        )  form of complement
                    ((   X   ) d a c)    subst def
                    ((a b c d) d a c)    subst Universe
                    ((  b    ) d a c)    per
                        b                      form of complement

The boundary result is then interpreted as the computed intersection in a four-
element algebra of subsets:

                ((a  b  c)    (b  d)) = b
                 {a, b, c} ∩ {b, d}  = {b}

Boundary algebra forms are never more than three levels deep when interpreted 
for the algebra of subsets, making PERVASION a shallow transformation.  In 
contrast, boundary forms interpreted for logic (a two-element algebra of 
subsets) can be deeply nested.  This suggests an as yet unexplored conventional 
technique of assigning a semantics to deeply nested sets.
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5  BOUNDARY ALGEBRA DOES NOT HAVE GROUP STRUCTURE

The evolution of mathematics has embraced Boolean algebra very deeply; nearly 
all mathematical approaches assume, often implicitly, the conceptual structure 
embodied in logic.  Boundary algebra, then, should be expected to provide new 
concepts and ideas for many mathematical systems.  Consider group theory as an 
example.

Group theoretic systems include a set of objects, S, in the particular system, 
and at least one binary operator, ◊ .  The set must be closed under the 
operator; that is, applying the operator to members of the set yields another 
member of the set.  Group theory identifies a hierarchy of types of algebraic 
systems.  Each type of group theoretic system has its own type of morphism, or 
sameness.  

Many published articles on boundary algebra claim to demonstrate that boundary 
and Boolean algebras are isomorphic.  Isomorphism is the strongest type of 
structural identicality, asserting that the difference between the two systems 
is solely one of notation.  The sequel shows that boundary and Boolean algebra 
are structurally different to an extreme degree, that the only way the two 
systems can be seen to be morphic is to redefine one of them to actually be the 
other system.  Claims of boundary/Boolean isomorphism are based on the logical 
fallacy of circular reasoning.

5.1  Types of Structure

Group theory classifies types of mathematical systems using a hierarchy of 
accumulated properties:

     System name           Property             Constraint equations

      groupoid             < S, ◊ >            ◊ is binary and closed

      semigroup           associative        (a ◊ b) ◊ c = a ◊ (b ◊ c)

      monoid               identity               i ◊ a = a ◊ i = a

      group                inverse               a ◊ a-1 = a-1 ◊ a = i

      Abelian group       commutative              a ◊ b = b ◊ a
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5.1.1  Groupoid

Groupoids have minimal structure:  a set and a closed binary operation.

The boundary algebra candidates for groupoid operations are:

        Possible Operation         Example        Functional Notation

         BOUNDING                 (a b  ) c d         B[in, out]
         BOUNDED-SHARING          (a b c)             B[in, Void]
                 SHARING           a b c              S[space]

Each of these operations is closed, however all incorporate the problematic 
Void.  An operation that uses or results in Void is technically not closed.  

None of these operations is strictly binary.  A space, whether bounded or not, 
can support any number of elements;  there is no mechanism, for example, to 
group or order three forms sharing the same space.  As well, all varieties of 
BOUNDING address a SHARING space:

            BOUNDING         =interpret=  B[S[in], S[out]]
            BOUNDED-SHARING  =interpret=  B[S[in], S[ ]]

In all cases, SHARING is a necessary boundary algebra candidate for the group 
theoretic operator.  BOUNDING interpreted as a binary operator on two SHARING 
spaces will also be considered.  The difficulty with BOUNDING is that deeply 
nested contents support PERVASION, making nested boundaries transparent and 
undermining the idea of specific function arguments.

These difficulties can be finessed by relaxing the constraint that the operator 
is a binary function (or a function at all), and by accepting the dubious 
closure of Void.  More radically, it is necessary to ignore the fact that, in 
boundary arithmetic, the set S has only one member.

5.1.2  Semigroup

A semigroup is a set S and a binary operation ◊ that is closed and associative.  
Associativity is conventionally written as:

                (a ◊ b) ◊ c  =  a ◊ (b ◊ c)

BOUNDING is not associative:

                B[B[1,2],3] = ((1) 2) 3
                B[1,B[2,3]] = (1) (2) 3
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The associativity of SHARING cannot be represented within a boundary system:

                 a   b    c  =  a    b   c

Using INVOLUTION, it is possible to collect boundary elements in different 
spaces without modifying the value of an expression:

               ((a   b))  c  =  a  ((b   c))

What is lost in this approach is the meaning of SHARING, the operator is no 
longer simple, it is a compound construction of one SHARING and two BOUNDINGS.

The associativity property can be represented in diagrams with arrows.  
Associative means that mapping arrows between pairs of elements can be followed 
in any order. In the diagrammatic format, the same result, g, can be reached by 
different paths. For {a, b, c, d, e, g} in S:

                a ◊ b ---> d                       e <--- b ◊ c
                           d ◊ c --->  g  <--- a ◊ e

SHARING could be considered as a (pseudo)binary boundary operator that is 
associative.  Using the diagrammatic format:

                a   b ---> d                       e <--- b   c
                           d   c --->  g  <--- a   e

The semi-group abstract operator ◊ can be loosely interpreted in both boundary 
and Boolean formalisms.  The Boolean interpretation is natural, the boundary 
interpretation requires a redefinition of SHARING.  The redefinition is accepted 
in order to continue.

5.1.3  Monoid

A monoid is a semigroup that has an identity element, i, where identity is 
defined as

                a ◊ i  =  i ◊ a  =  a

In the boundary system, Void is the identity for SHARING:

     a   i  =  i   a  =  a     transcribe
     a      =      a  =  a     void-substitution

SHARING is a monoid when the identity element is Void.  This remains 
problematic, since the boundary identity (non)element, Void, does not exist.
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5.1.4  Group

A group is a monoid for which every element, a, has an inverse, a-1.  That is, S 
can be separated into two subgroups by pairing elements with their inverses.

The inverse of an arbitrary boundary form is that form BOUNDED:

                        Element        Inverse

                                         ( )
                          ( )           (( ))
                           A             (A)

Every element clearly has an inverse by construction, however, one inverse does 
not have an element.

The constraint equation for inverses is:

                a ◊ a-1  =  a-1 ◊ a   =   i  

Transcribing into boundary form, a-1 is (a), ◊ remains SHARING.

                a  (a)  =  (a)   a   =          transcribe
                a  ( )  =  ( )   a   =          per
        ( )  =  ( )      =!=          dom

When the operator is SHARING, the identity element fails to match the 
composition of element and inverse-element.  A moderately redefined SHARING 
forms a monoid, but no degree of redefinition can make SHARING into a group. 

Considering Mark rather than Void as the identity element supporting inverses 
only shifts the contradiction to the definition of identity:

                a ◊ i  =  i ◊ a  =  a

     a   i  =  i   a  =  a     ◊ = SHARING
     a  ( ) = ( )  a  =  a     subst i = ( )
        ( ) = ( )    =!= a     dom

5.2  Compound Configurations

BOUNDING and SHARING both fail as group operators; is there a compound boundary 
configuration that can serve as a group function with an identity and an 
inverse?  Since compound operators inherit properties from simple operators 
through composition, the answer is no.
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For illustration, the potential group structure of a compound form is presented 
next.  Consider the compound pseudo-binary boundary pseudo-operator:  ((.)(.))

The closure of ((.)(.)) is obvious, since substituting any configuration into 
the argument locations still results in a parenthesis boundary form.  The 
compound form is called a pseudo-operator because it is just one particular 
boundary form;  accepting it as a specific operator would require accepting all 
boundary forms as specific operators.  

Any space within an arbitrary boundary form can accommodate any number of 
arguments, making the arity of the operator quite ambiguous.  Thus, the compound 
operator ((.)(.)) does not even represent a class of structures.  The general 
class would include structures with an arbitrary number of space two levels 
deep, ((.)(.)(.)...).  Examples include 

            ((.))        ((.)(.)(.))        ((.)(.)(.)(.)(.)(.))

Continuing anyway:

5.2.1  Associativity    (a ◊ b) ◊ c = a ◊ (b ◊ c)

Diagrammatically,

         ((a)(b)) --->  d                       f  <--- ((b)(c))
                      ((d)(c)) ---> e <--- ((a)(f))

Again, substitution achieves a simpler display format:

             (( ((a)(b)) )(c))  =  ((a)( ((b)(c)) ))
                -------                   -------
        d                         f

INVOLUTION converts this equation of boundary associativity into an identity 
equation.

            (( ((a)(b)) )(c))  =  ((a)( ((b)(c)) ))
            (   (a)(b)   (c))  =  ((a)   (b)(c)   )     inv

((.)(.)) has been shown to be associative.  This is slightly better than the 
case of SHARING because the partitioning by INVOLUTION is more natural.
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5.2.2  Identity    a ◊ i  =  i ◊ a  =  a

The boundary form of the identity constraint for the compound operator ((.)(.)) 
is

                ((a)( i )) = (( i )(a)) = a    transcribe

The identity is ( ), which can be shown by substitution

                ((a)(( ))) = ((( ))(a)) = a    subst i = ( )
                ((a)     ) = (     (a)) = a    inv
                  a        =        a   = a    inv

Thus far, the compound binary form ((.)(.)) is a monoid when ( ) is the 
identity.  This applies to the entire class of such forms.

5.2.3  Inverse    a ◊ a-1  =  a-1 ◊ a  =  i 

In boundary form, (a) is the inverse of a.  

                ((a)((a))) = (((a))(a))   =   ( )      transcribe
     ((a)  a  ) = (  a  (a))   =   ( )   inv
     (( )  a  ) = (  a  ( ))   =   ( )   per
                =             =!=  ( )   occ

The expected contradiction; the boundary form ((.)(.)) fails the inverse test, 
and does not form a group.  

In sum, there are no configurations of boundaries in boundary algebra that 
provide a group function ◊.  This is of interest because:

 1) Since Boolean algebra operators do form groups, boundary and Boolean 
algebras are not isomorphic, and

 2) Boundary algebra provides a new approach to computation that is at 
variance with group theoretic principles. 

There are a number of other difficulties that arise in comparing the group 
structure of Boolean and boundary systems.  For example, AND and OR form two 
Boolean groups that combine to form a Boolean ring. A ring requires two 
associative, commutative and distributive operators.  There are not two 
operators available in boundary algebra.  
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The Boolean system is a distributed, complemented lattice, with AND as meet, and 
OR as join.  AND and OR are dual.  The "Boolean dual" of SHARING is another 
form of SHARING, nested two levels deep, ((.)(.)).  This form is not an operator 
any more than any other configuration of boundaries is an operator.  It is a 
compound form consisting of three BOUNDINGs and one SHARING.  The form could be 
called the dual of SHARING, but it is dual only when a Boolean interpretation is 
imposed upon it.  This is another form of the circular argument that explicitly 
constructs boundary forms to match Boolean properties, and then identifies 
boundary algebra as a Boolean algebra. 

An idea about how group theory might be extended to accommodate boundary algebra 
is considered next.

5.3  A New Kind of Identity

For SHARING, the monoid identity is Void, which technically does not exist.  The 
definition of inverse, required to form a group, results in a contradiction when 
the monoid identity is used.  For boundary algebra in general:

  The monoid identity is the inverse of the group identity.  

Basically, group theory itself requires enlargement, to include something like 
an "inverse-identity", i-1:

Identity for SHARING:

                a ◊ i  =  i ◊ a  =  a   Identity
     a   i  =  i   a  =  a   ◊ = SHARING
     a      =      a  =  a   i =

Inverse for SHARING:

                a ◊ a-1  =  a-1 ◊ a  =  i-1  Inverse
                a  (a)  =  (a)   a  =  i-1  ◊ = SHARING 
        ( )  =  ( )      = ( )    i-1 = (i) = ( )

That is, the identity element, i, defined by the identity equations is the 
inverse of the identity element, i-1, defined by the inverse equations.
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6  SUMMARY

Boundary algebra is an application of boundary mathematics, a collection of new 
formal tools and techniques for computing using spatial forms rather than tokens 
recorded on a line.  Both the syntax and semantics of boundary mathematics are 
incommensurable with conventional mathematical systems.  For example, the 
structural properties addressed by group theory, including the definition of a 
function, are properties only of linear, string-based notations.

This paper emphasizes the substantial differences between boundary and Boolean 
algebras, and highlights the one-to-many mapping from boundary to Boolean 
systems as a primary differentiator.  The most significant conceptual leap 
required to understand boundary mathematics is to accept that nothing, Void, can 
be used semantically without engaging a syntactic representation.  

The mathematics of spatial forms is pattern-based, but not strictly functional 
or relational.  Syntactic variants of spatial notations are generated by 
topological and geometric transformation rather than by token substitution and 
rearrangement.  Non-representation permits global transformation through the 
transparency property of PERVASION, while void-equivalent forms can be used 
freely as reduction catalysts without concern about syntactic or semantic 
interactions.

6.1  Table of Non-Correspondence

                      Boolean          Boundary           Difference

  symbols             atomic           spatial        linear vs topological       

  constants           {0, 1}           { ( ) }  two vs one
  unary operator        NOT            BOUNDING delimited collection
  binary operator     OR, AND          SHARING  not a function, not binary
  arity               specific           any          no concept of argument

  mapping             functional      relational      one-to-many
  ordering           implication       bounding       spatially explicit
  computation         rearrange         delete        void-equivalence

  semigroup          associative      no concept boundary structure only
  monoid             identity, i         void     existence
  group                inverse            i-1    new structure needed
  Abelian group      commutative      no concept  no spatial metric
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6.2  List of Differences

Boundary algebra is formally more succinct than Boolean algebra due to a one-to-
many mapping that maintains equivalent expressive power.

Boundary algebra does not include these conventional ideas:

    Cardinality    --  Boolean and boundary systems are idempotent.
    Associativity  --  Space does not support grouping.
    Commutativity  --  Space does not support metric structure.
    Arity          --  Space does not support counting of contents.
    Functions      --  Void-substitution does not support functions. 

Boundary algebra introduces these concepts that are not present in conventional 
systems:

    Semantic void/single constant  -- 
        Void is everywhere; boundaries distinguish their contents. Nothing more.

    Inside and outside of forms  --
        Containment makes a partial order relation explicit.

    Spatial (non-linear) notation  --
        Typography becomes topology.

Boundary algebra computation includes these techniques that, for the most part, 
are not present in conventional transformational approaches:

    Object/operator unification  --
        Patterns are both objects and operators.

    Semipermeable boundaries/operational transparency  -- 
        Boundaries are barriers to their contents, transparent to their context.

    Void-equivalence  --
        Void-equivalent structure is semantically irrelevant and 
        semantically inert.

    Virtual computation  --
        Void-equivalent forms catalyze transformation.

The above features come as a package; they characterize boundary algebra, and 
they are not independent. The features provide powerful algebraic and 
computational techniques that have no parallel in conventional mathematics. 
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