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PREFACE

Sections I,II, and III can be read independently.

Section I is an introduction to the spatial representations and conventions of 
unit ensembles.  Spatial representations differ significantly from conventional 
token-strings in both concept and usage.  It is the difference between words and 
pictures.  Because spatial formal systems have been suspect within the 
mathematical community, we provide a rigorous formal model of representation and 
transformation of forms.  The formal theory is of unit ensembles, which are 
collections of unitary marks, such as found within tally and stroke arithmetics.  
The axioms and theorems of unit ensembles are both simple and intuitive, resting 
primarily on the familiar algebra of equalities.  We discuss fusion and 
substitution as the primary operations on two types of units, Solid and Hollow.

Section II begins an interpretation of unit ensemble arithmetic as conventional 
integers.  We show how unit ensemble arithmetic differs from the conventional 
arithmetic of integers for operations and for inverses.  We then present several 
theories that constitute conventional arithmetic, and their unit ensemble 
counterparts.  Differences in the structure of comparison operations highlight 
the absence of conventional group theoretic structures within unit ensemble 
arithmetic.  Differences in addition and subtraction operations emphasize 
conventional departures from the Additive Principle that sums are represented by 
their parts.  The integration of multiplication into equational substitution 
shows that multiplication and division do not add conceptual overhead.  We 
conclude by looking at theories of exponents, rational numbers (fractions), and 
solutions of simple algebraic equations.

Section III introduces depth-value notation, used in spatial systems in place of 
place-value notation.  Unit ensembles are base-1;  we provide base-2 and base-10 
equivalents.  Encoding the power of a base in depth of nesting creates the 
boundary integers.  We convert unit ensembles to boundary integers, and show 
that the transformation properties and rules of unit ensembles apply without 
modification to boundary integers.  Fusion in space continues to implement 
addition and subtraction, and substitution of units continues to implement 
multiplication and division. 

ABSTRACT
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INTRODUCTION

This monograph is an introduction to spatial arithmetic and algebra, both 
applications of the new field of boundary mathematics.  Based on recent advances 
in reasoning and computation with spatial forms, these new methods of 
understanding mathematics unite intuition with abstraction.  Spatial arithmetic 
helps to bridge the learning gap between concrete understanding and abstract 
symbol manipulation by rigorously simplifying the rules of algebra.  Boundary 
mathematics provides concepts and tools that closely align the abstract 
formality of mathematical systems with our concrete experience of real objects.

The great majority of people in the Untied States do not understand mathematics.  
Math phobia is known to be rampant.  More than half of all school children 
cannot pass the minimal proficiency exams in mathematics.  As technology grows 
more prevalent, employers are demanding a more educated workforce, one that can 
understand and use the mathematical aspects of commerce and business.  Blame has 
been passed around freely, to students, to teachers, to the mathematics 
curriculum, to State and Federal programs.  Although there is failure at each of 
these levels, we propose that the common problem (what [ref] calls innumeracy) 
is the current structure of mathematics itself.  In particular, since the early 
1900s, mathematicians have embraced the idea that math, "formal" mathematics, 
must exclude intuition, psychology, and education.  Mathematics, as a subject, 
has been defined to be independent of human skills.

Our suggested improvement addresses elementary mathematics, that content taught 
in Grades K-12.  We are not suggesting a modification of advanced or engineering 
mathematics, those topics usually taught at the college level.  There have been 
many suggested curriculum reforms for K-12 math, the changes suggested here are 
of a substantively different type.  In almost all cases, suggested changes in 
the mathematics curriculum, in the way math is taught, and in the training and 
support of math teachers have accepted the established foundations of 
mathematics.  Innovation is solely in terms of making understanding and teaching 
of the accepted foundations of math more efficient and more palatable.  We too 
hope to improve understand and teaching, however we are suggesting that these 
improvements are possible by modifying the way we conceive of math itself.

No, one cannot change the nature of integers, numbers will always have the same 
abstract meaning.  But the way we represent and manipulate numbers is a choice;  
there are many different representations and many different algorithms that 
achieve the fundamental operations of addition, subtraction, multiplication, and 
division.  We are suggesting that both the formal foundations and the way we 
represent these foundations can be changed, without altering what numbers are.  
We are suggesting that the ways we formalize and manipulate integers should 
incorporate essential human needs such as intuition, experience, and 
interaction.  The problem is not with our students or their schooling, it is 
with the presumption that mathematics must be unrelentingly abstract.
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Platonism, Lakatos, Numez...

With the advent of modern algebra, the group theoretic properties of 
commutativity, associativity, zeros, and inverses have provided organization for 
teaching and learning both arithmetic and algebra.  Group theory also defines 
and unites the diversity of possible algebraic structures into a single grand 
theory for modern algebra.  The symbolic algebra approach trades the visual and 
physical intuition that arises from direct experience for the automated 
manipulation of structured strings of abstract tokens.  Spatial algebra is a 
formal alternative to group theory for understanding and for teaching both 
arithmetic and algebra.  It combines axiomatic rigor with simplicity of both 
representation and computation.  However, in formalizing the concrete intuition 
of early childhood interaction with concrete objects, spatial algebra must step 
outside of the predominant conventional wisdom that defines modern algebra.  

Such a divergence from the work of some of the most brilliant mathematicians on 
the planet cannot be taken lightly.  However, mathematics is that particular 
subject that, due to its inherent abstraction, can and does accommodate 
significantly divergent ideas.  The recent history of mathematical advance is 
punctuated with surprising, and at times traumatic, revolutions of concept and 
thought.  The discovery of non-Euclidean geometries, the intractability of non-
differentiable "monster curves" that were eventually recognized as fractals, the 
failure of formalism attributed to Godel's proof of the incompleteness of 
arithmetic, new approaches such as game theory, cellular automata, computational 
complexity, quantum logic and string theory, each of these drastic innovations 
of thought has enriched the recent growth of mathematics with deep conceptual 
reorganization.  Perhaps only the exploration of the cosmos has exposed more 
assumptions and raised more questions.

Pragmatics

As mathematical understand has extended its scope, the abstraction and 
complexity of mathematics has moved further and further out of the reach of 
common understanding.  And it appears that at least in the United States, even 
simple arithmetic and algebra have become more difficult for young students.  
Are our schools failing to keep pace with the rapid growth of technology, are 
our students becoming less intelligent, what is driving poor academic 
performance in mathematical subjects?  We propose a possible reason for lower 
test scores, and a potential solution to math phobia.  But, as should be 
expected, addressing such large and pervasive problems requires significant 
modification of the way we approach math education.  We suggest that math has 
become less comprehensible because over the last hundred years, the agenda of 
professional mathematicians has explicitly sought to make mathematics less 
comprehensible.  The concepts associated with symbolic formalism have been 
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pursued as a singular goal.  These concepts include removal of intuition, of 
psychological necessity, of physical interaction, and of concrete understanding 
from the practice of mathematics.  The formal agenda has contributed a 
tremendous capability for computers to do mathematics, at the loss of the 
capability of people to understand the mathematics being performed.  

The field of mathematics has steadfastly refused to incorporate common 
accessibility to mathematical concepts, not by hiding information, but by 
constructing information without the guidance of psychology or education.  Our 
schools are failing to teach math well because the math they are teaching is not 
constructed to be readily teachable.

Our objective is to reintroduce elements of human learning and human psychology 
into the structures of mathematics.  In order to avoid the common attribution 
that such human elements are not math, we introduce a rigorous formal 
mathematical system for rational numbers that is also rigorously based on human 
capabilities.  Math fails because it has forgotten, nay abandoned, its parents.  
It is now the concubine of computational machines.  And most insidiously, rather 
than recognize that mathematics is a human activity, since the 1970s we have 
redefined the human mind to be a symbol processing machine.

Making Soup

Here is a simple example of constructing conditions for failure to learn 
mathematical skills.  Imagine that you need to add two pints of water to a soup 
mix.  In the best of kitchen worlds, you have a measuring cup that holds exactly 
two pints.  In a slightly less perfect kitchen, you may have a one pint 
measuring cup.  But you may unfortunately find that the only measuring cup is 
metric, holding say one liter.  You can of course turn to the back of the 
cookbook, look up the conversion factors, compute how many liters you need, and 
measure accordingly.  This mismatch of units contributes to the difficulty of 
making soup, but the problem can be overcome in two ways, one by doing some 
simple math conversions, and the other by relying on prior experience.  If you 
have made soup before, you may have a memory of what two pints looks and feels 
like.  You can call upon prior experience, and estimate how much you may need to 
fill the metric measuring cup.

We have traced this cooking example through several levels of difficulty.  With 
the right tools, the soup will be successful.  Even without the right tools, a 
little math or a little experience can come to the rescue.  In the parallel 
world of a math classroom, a student may have to solve a long division problem, 
such as

	 	 349756 ÷ 432

6



This circumstance is faced by every sixth grade student.  "Can I use a 
calculator?"  Or does the student need to practice the intricate symbol 
manipulation designed specifically with the inner workings of a calculator in 
mind.  Does the student need to learn to act exactly like a calculator, failing 
if some human slip may occur?  Without the right tools, can a little math or a 
little experience come to the rescue?

The math classroom can be more insidious than the inconvenient kitchen, because 
in the classroom the right tools are available, their use though may be 
forbidden.  At least kitchen utensils do not work against your desire to make 
some soup.  How can a little math come to the rescue of the long division 
student?  The skill of estimating an answer, of seeing almost immediately that 
the answer is around 800, is most usually discredited by math teachers as not 
addressing the problem.  An exact answer is required, the type of answer that a 
hand-held calculator produces trivially.  The essentially human skills of seeing 
through complexity and of knowing what is about right are denigrated.  Instead, 
to get credit for doing the problem correctly, the student must act exactly like 
the calculator, not only using the wrong tool (a working mind) for the desired 
task, but also abandoning innate skills (a mind working) in favor of blind 
symbol manipulation.

And if a little math cannot come to the aid of our student, can a little 
experience be of help?  Well, no.  Symbol manipulation is not based on physical 
experience, it is based on memorization and automation.  And here lies the main 
problem.  Even accepting that the right tools are not available, even accepting 
that mathematical intuition is not the goal, our student must also perform 
manipulation skills that are not designed for human consumption.  He must, 
figuratively, perform the long division with his hands tied behind his back.  He 
must use a long division algorithm that does not align with his physiological 
skills, let alone his sensibility or intuition.  Should we step back to a time 
before hand-held calculators, the issue still remains.  The algorithms of long 
division, as well as those of each of the other basic operations of arithmetic, 
are both inconvenient and unconsciousable for use by human minds.  That is why 
calculators were invented, that is why they are in use almost everywhere.  Every 
grade school student know this.

One thing is well known about mathematics:  there are always many ways of doing 
the same calculation.  And that is because, at least in math, there is a 
profound difference between concept and implementation.  Pure math is about 
abstraction and power.  Once a route to a solution (or a proof) has been seen, 
the task then changes to mechanics, to following rules without error.  
Calculation is the realm of Computer Science.  There, experts of computational 
technique devise data structures and algorithms and silicon circuits that excel 
at following the rules of symbolic computation.  
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Representation and Meaning

Mathematical knowledge is a densely connected matrix of interrelated concepts 
and representations.  The dominant representation for printed mathematics 
consists of strings of arbitrary tokens [ref phildia].  The intended meaning of 
these token-strings is maintained by explicitly permitted structural relations 
within the one-dimensional arrays of tokens.  Valid syntactic transformation of 
mathematical strings thus relies upon a formal theory of totally ordered token-
strings.  The semantics of these token-strings includes a rich and well-studied 
collection of basic mathematical structures, specifically predicate logic, set 
theory, integer arithmetic, and algebra.  

Mathematical style strictly distinguishes between the complexity and subtlety of 
concept and the choice of representations of concepts.  This is often referred 
to the semantics/syntax barrier.  Syntax is form, semantics is meaning.  We 
propose, however, that representation occasionally leads to structural 
commitments that do injustice to the abstract concepts being represented.  
Seminal mathematical concepts find their way into a conventional notation, and 
then the notation becomes entrenched.  Our understanding of the concepts becomes 
clearer over time, but the representation is not revised to reflect this new-
found clarity.  We often end up with multiple forms of representation and 
multiple meanings for the same representation [ref kaput].  Needless to say, 
this makes teaching and learning mathematics quite difficult.

Simple Ideas Built With Complexity

"Multiplicity ought not be posited without necessity."
 -- William of Occam (1340)

A mathematical approach looks toward simplicity, since mathematics is a common 
ground of communication, with well-understood structural relations expressed as 
well-defined strings of symbols.  However, the foundation of mathematics 
established in the 20th century is itself complex, consisting of:

	 sentential logic -- the familiar AND, OR, NOT, EQUIVALENT, and IMPLIES
	 predicate logic -- a domain of sets referring to structured objects; 
constraints such as closure, validity and consistency; mappings over domains, 
and quantification of symbols.
	 set theory -- a collection of axioms that assure sets, loosely 
collections, of specific structures actually exist
	 integer arithmetic -- familiar numbers (that lead to quite unfamiliar 
types of numbers), includes recursion and iteration for processing, and 
induction for proving.
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Recently discovered mathematical forms (such as fractals, substitution/reduction 
systems, and cellular automata) use innovative structural symbols and techniques 
to express mathematical form, each embodies a notion of complexity but not 
necessarily a notion of simplicity.  

Pruning Complexity

It is unlikely that a newer and simpler way to reason and to compute will appear 
out of nothing.  The approach taken here is to begin with simple integers, and 
to ask "Which aspects of the structural form are not really necessary to achieve 
the intended meaning of integers?" 

This question is nearly equivalent to asking:  "Which essential aspects of 
commonly accepted and validated mathematical forms have been adopted erroneously 
by the greatest minds of humanity?"  These minds, and humanity itself, have been 
making choices that have lead us to the great edifice of mathematics that now 
informs the underpinnings of our digital/technological culture.  Newer systems 
of mathematics continue to appear, expressing the evolution of mathematics 
itself.  Some of these new ideas integrate seamlessly into prevalent 
mathematical structures, while others appear to be irreducibly different.  [[ref 
smith's book? wolfram on computation everywhere]].  Herein we simply propose new 
ways to think about old math.  And we propose new foundations based firmly on 
ancient mathematical practices.

In pursuit of evolutionary growth of mathematical structures, we propose to 
examine new classes of expressively-equivalent formal representation.  The 
primary goal is to simplify structural axioms by recording them in a 
representation that requires less overall effort.  During the course of 
developing computational efficiency, we will refer structural techniques back to 
common forms and practices, not only to provide a link of validity, but to 
suggest how to think about conceptual interpretations of the reduced notation.

Is there a formal basis for the elementary arithmetic of whole numbers that is 
more intuitive than that provided by Frege and Peano at the turn of the 
twentieth century?  We explore the requirements for a modern axiomatization of 
the type of arithmetic taught to four-year olds in kindergarden.  The 
perspective of seeking simpler foundations for common mathematical structures 
has both philosophical and psychological roots, however here we are guided by 
pragmatism.  Generally, simplification of foundations does not erode the 
sophisticated elaboration that marks mathematical progress, but it may 
contribute insight into prospective new tools that can contribute to further 
refinement of thought.
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Where is Simple Mathematics Hiding?

In later sections, we suggest techniques to incorporate simplicity into 
conventional foundational mathematics.  Here are some quite basic technical 
constraints that can be evaluated for removal:

-- Tokens (words) must refer to unique, existent mathematical objects and 
mappings.
-- Every concept embodied within a formal system must have a representation.
-- Mathematical transformations are free of time and implementation cost.
-- Tokens can be freely replicated.
-- There are an infinite supply of variable letters.
-- Processes must be stepwise
-- Mappings must have a specific arity.
-- The formal manipulation of spatial structures is an informal technique to 
achieve the formal manipulation of strings.
-- A token for zero is required for efficient algorithms.
-- Place-value notation is the most efficient way to represent integers for 
computation.
-- One-to-one mappings are necessary for group structures.
-- Single steps must be taken to move from premise to conclusion.

Removal of some or many of these constraints is not intended as a reconstruction 
of existing mathematical foundations;  it is intended to show a particular type 
of mathematical evolution, that of condensation of representation via removal of 
non-useful redundancy.   

The suggested simplification techniques for mathematical representation and 
transformation that follow are related, in that they are derived from the use of 
abstract two-dimensional forms in place of strings.  There is an underlying 
theme:  string notations encourage sequential concepts, while spatial forms 
encourage parallel concepts.

The guiding light that will steer our attempts toward simplification of the 
foundations of integers is that of common understanding.  There is no reason why 
the formal foundations of a universal tool such as mathematics should not be 
accessible to everyone who may need to use mathematics.  And we believe that 
there is no reason that the subject matter to be understood, at least by K-12, 
should not be easy to understand.
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What Comes Next

Ancient systems of arithmetic are believed to have emphasized counting rather 
than computation, and are generally considered to be algorithmically 
inefficient.  Herein, we demonstrate that unit arithmetic can be highly 
efficient computationally, its inconvenience is solely in the act of counting, 
in determining the result of a computation.  By liberating unit arithmetic from 
linear strings, that is, by expressing the forms and transformations of 
arithmetic on a plane, we provide a depth-value notation that achieves the same 
efficiency as place-value notation.  The resulting extension to unit arithmetic 
is called boundary arithmetic.  We also provide a textual format for depth-value 
notation that addresses the issues of compatibility with current string-based 
processing methods.  The techniques of boundary mathematics [refs] have informed 
all structural choices presented herein. 

===FIX
In Section 2, we outline the non-conventional approach of spatial, or boundary, 
mathematics that informs the syntax of unit and boundary arithmetics.  Section 3 
examines the structure of spatial addition.  Section 4 similarly outlines the 
structure of conventional equational theory that enforces the semantics of unit 
and boundary arithmetics.  The spatial algebra developed in these three Sections 
is independent of its interpretation for integers.  However, this algebra is 
designed to map intuitively onto an interpretation as unit arithmetic.  Numbers 
are ensembles of units that share the same space;  addition is placing ensembles 
in different spaces into the same space;  multiplication is substituting a 
replicated ensemble for each unit another ensemble.    

The central sections of the monograph presents a formal theory of spatial unit 
arithmetic.  We treat spatial structure as formal structure rather than as an 
informal notation that must then be brought into conformance with the 
representational conventions of token-strings.  The construction of spatial 
forms is guided more by mereology than by set theory.  The operations of 
arithmetic are closer to physical manipulation of patterns than to computational 
algorithms.  And without the comfort of first-order logic and group theory, 
proof, as well, incorporates non-standard structure and technique.

In Section 4 we examine unit arithmetic and some domain constraints that it 
provides.  Then in Section 5 we provide an axiomatic approach to unit arithmetic 
that does not employ set theory or modern algebra.  Sections 6 and 7 call upon 
the axiomatics of Section 5, and the semantic and syntactic theory of Sections 2 
and 3 to provide an axiomatic understanding of addition and multiplication in 
unit arithmetic.  Section 8 generalizes the results of the prior Sections to 
subtraction and division in unit arithmetic.  

Section 9 introduces a spatial, depth-value notation for unit arithmetic that 
provides a computational efficiency equivalent to that of token-based place-
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value notation.  Section 10 provides examples of boundary arithmetic 
computation.  These Sections address the cognitive and computational pragmatics 
of boundary arithmetic.  Finally, We then summarize the monograph in Section 11 
and provide convenient tables that organize our results.
===

12



How Math Works

One of the most baffling questions is:  why is it that mathematics is so 
unreasonable effective in describing and predicting reality?   Answers to this 
range from "Underneath it all, the universe is mathematics!", to "Mathematics is 
a voluntary myopia, a filter we place over an incomprehensibly complex reality 
that makes it bearable!"

Regardless of mathematical philosophy, we do need to explain how a young 
Einstein could write down an equation derived from imagination that accurately 
predicts slight variations in the orbit of the planet Mercury.  If mathematics 
were indeed a human invention, there is no reason to expect that the planet 
Mercury would behave accordingly.  Fortunately, this question is one of Physics:  
Why do mathematical equations accurately characterize physical events?  

The wonder that maths "works" is of the same nature as the wonder that our 
distinctly human languages can in fact describe what we commonly experience as 
events on the Earth.  Math is a very small subset of language, that particular 
part where ambiguity is not permitted. 

The question of how math works does not need to address the perennial 
philosophical questions about the natures of reality and experience.  We are 
seeking only a surface description.  How do we make math work?  We are not 
seeking an ultimate understanding of the relation between mathematical 
abstraction and physical or metaphysical meaning.  We are asking the structural 
question:  what are the workings of mathematics?

================================================================================
Essay:  Write less than one page in response to this famous question:

Why is mathematics so unreasonably effective in describing and predicting 
reality?

Math concepts come from reality.
From years of discovery and quantification, well defined rules.
Objective and precise, can prove anything that is true, builds upon itself.
Simple, clear and correct. reasonable, applicable to real-life.
Build upon known principles, symbols and abstraction, what leads to wisdom?
The way to understand the Universe, sea of interrelated details, successful 
prediction, laws.
Makes a lot of assumptions and not precise, rules of the way reality works.
Humans avoid analysis and reasoning, reality comes through visionary senses.
An invention of human minds, doesn’t apply to feelings, may not apply outside 
our experience.
Determines patterns, simplicity of concepts, describes what we perceive.
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Math truncates information, simulates world, based on probability.
Explains natural mechanisms, prediction helps survival, identifies structural 
stabilities.
Ineffective, misses non-linear relations and rapid changes and irregular shapes.
Encompasses objective information, misses intangibles and complexities, 
simplified view.
Removes emotion, rigid rule sets, scientific beauty (simplicity, harmony, 
================================================================================

Figure %%% shows several answers to the question about the "unreasonable" 
effectiveness of math. [[discuss]]

Well, this question too turns out to be very complex.  Over the next few 
sections, we will examine a diversity in the types of mathematical structures, 
along with some current approaches to systematize this diversity.  We will look 
at how math is recorded, the numerals that represent the abstract concept of 
number, and the characteristics of how we write math down.  And we will look at 
how math came to be, its historical evolution, with particular emphasis on the 
fundamental changes in math over the last one-hundred years.

The thesis is that it is the ways that we have formalized the recording of 
mathematical ideas, and the self-imposed limits of what we can say using the 
language of math, is the source of the problem of folks not understanding math.  
People do not understand mathematics will not because they have failed in some 
sense, but because mathematics is inherently confusing, and this confusion can 
be removed without loss of anything essential mathematical.  It is as if we have 
put on an extra heavy overcoat, and gloves and hats and earmuffs, in order to go 
out into the warm sunshine.  The over-clothes have been defined as "appropriate 
attire", the only thing you can wear in order to be properly dressed.  Yet as we 
swelter in discomfort, we are all saying below our breath "The Emperor has too 
many clothes."

Mathematics have evolved magnificently, yet just as we do not have to know the 
inner workings of a carburetor in order to start the car, we do not really have 
to know the inner workings of a mathematical process in order to understand the 
results that it generates.  And this is generally true for all of advanced 
mathematics.  Like a virtuoso playing the violin, we can appreciate the music, 
but we do not feel compelled to play virtuoso violin.

So we come to the question:  what is the appropriate level of mathematics to 
know and to understand?  What grounding should each citizen have in order to be 
well educated, and to perhaps learn more as required by work or by play?  We 
have a somewhat radical answer:  enough to use the appropriate tool to get a 
result that has already been physically estimated by intuitive means.  

14



Formalization

A formal symbol system consists of a set of tokens and a set of consistent rules 
for transforming arrangements of tokens.  The rules express ways in which 
complex expressions can be built out of elementary objects.  They also specify 
permissible transformations between complex expressions.  The transformations 
are performed on strings of symbols, without regard to what they mean.  Formal 
transformation, then, can be achieved by pattern-matching without thinking about 
what is being computed.  This may sound unusual, but it is the way we do all 
math.  Say that you have five oranges and you add four more oranges.  What we do 
is to write down (or think) 5 + 4.  In adding five and four, we forget about the 
oranges, we just add the numbers, and then with the result nine in hand, we 
return to say that we have nine oranges.

There is a common aspect of formal systems, independent of their particular 
content.  All formal symbol systems share a body of canons, or basic 
understandings, that define their formality.  One version of these conventions 
is presented below.  Students in mathematics classes are expected to conform to 
these canons.  For the most part they do, even though the canons of formal 
systems are rarely mentioned in mathematics texts and are rarely made explicit 
in mathematics classrooms.  Since these conventions are common to all formal 
systems, they form a basis which defines our understanding of how math works.

The Canons of Formal Symbol Systems

The canons of formal symbol systems are those conventions that guide our 
agreement about the semantics, or meaning, and the syntax, or representation, of 
formal systems.  These canons define the meaning of formality.  Any violation of 
one of these canons is an error.  The canons provide a complete set of rules to 
motivate mathematical behavior.  

The following list is loosely paraphrased from Spencer-Brown's Laws of Form, one 
of the few mathematics texts that addresses the assumptions underlying the use 
of formal symbol systems.  There is another list of canons that apply to 
equations, and the idea of transformation.  This list is presented in Figure %%
%, but not discussed until section %%%.

================================================================================
Social Commitment and Intention
•  New rules or conventions must be mutually agreed upon.
•  What is not explicitly permitted is forbidden.
•  Formal constraints are by choice.

Social Communication
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•  The representation of a concept is not inherently confusing.
•  Symbols represent concepts that can be understood.
•  Contraction of reference:  
Representations may be abbreviated to any extent that is understood.
•  Expansion of reference:  
New representations may be introduced without limit, provided that confusion is 
avoided.
•  A demonstration rests in a finite number of steps.

Relevance
•  Universal properties within a system need not be indicated.
•  A mutually agreed upon interpretative context is assumed.
•  If a property is common to every indication, it need not be indicated.
•  Meaning is indicated overtly in the form of expressions.
•  The form of an expression indicates the choice of a meaning.

Representation
•  Form:  An expression is represented by its form.
•  Content:  The value of an expression is the value of its form.
•  Value:  Expressions with the same value can be identified.
•  The interpretation of a symbol does not change independently of the
interpreter.
•  Reinterpretation denies the original interpretation.
================================================================================

[[discuss]]

We first examine the inner workings of math, the 21st century idea of what it 
means to be mathematical.   

Symbolic Abstraction

Symbolic mathematics uses symbols to express mathematical concepts.  Symbols are 
abstract representations for some actual object, although in mathematics that 
object could be real, like an orange, or itself abstract, like a number.  In the 
English language, a symbol can have a wide variety of referents.  A flag can be 
a symbol, an action can be symbolic, and a parade can symbolize support for a 
cause.  In mathematics, symbols are almost always tokens.  A token is a letter 
or a number or a character, some form of typographical entity.  Token symbols 
can be chosen arbitrarily, their structure bears no resemblance to their 
meaning.  In fact, the intent of token symbols is to provide structures that can 
be manipulated by pattern-matching without concern for meaning.  

A primary theme of this monograph is that mathematical symbols other than token-
string can serve as computational objects.  That is, it is certainly possible to 
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express formal pattern-matching and substitution rules using representations 
other than tokens.  This theme, at least to us, appears to be very reasonable.  

================================================================================
Fig:  patterns of rectangles and a rigorous substitution rule

	 	 [][] = []

	 	 [[]] = ><

	 reduce   (spatial)
	 	 	 [ [[][]] [[]] ]
	 	 	 [ [[]  ] [[]] ]
	 	 	 [   ><   [[]] ]
	 	 	 [   ><    ><  ]
	 	 	 [             ]
================================================================================

Fig %%% provides an example.  A pure mathematics consists of formal structural 
rules, and no interpretation, or meaning.  Certainly the pure mathematics of 
rectangles sharing space and rectangles nested within one another is as well-
defined as any mathematics of token-strings.  And if we were sufficiently 
pragmatic to also be interested in an interpretation, there is one for this 
spatial system, since it maps onto propositional logic [ref], itself the 
foundation of all formal math.  FIg %%%

================================================================================
Fig:  Interpreting patterns of rectangles as propositional logic

	 	 [] = True

	 	 >< = False

Tables for Sharing Space and Nesting

	 	 [][] = []	

	 	 [[]] = ><

================================================================================

We have provided a simple example of a rigorous spatial system that also shows 
that core structures in conventional mathematics can be expressed using a 
spatial notation.  Why then do mathematicians soundly dismiss spatial forms?
===fix
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For example, a drawing of a triangle should be permissible as a symbol.  And 
indeed it is, if we treat the drawing as a single token, with no internal 
structure.  But this is not the intention of having a triangle serve as a 
symbol.  We want the triangle to be an icon, a form that resembles what it 
refers to.  Iconic mathematics uses icons, graphs and diagrams to express 
mathematical concepts.  Thus, iconic math is a visual presentation of the 
meaning of math.
===
 
Mathematical Symbols and Icons

===
smooth
===

Pure mathematics can be considered to be the study of token structures, with no 
attempt to relate these structures to any usage, interpretation, or application.  
Symbolic mathematics is the formal study of token-strings.  Iconic mathematics 
is the formal study of iconic forms.  

A symbol is an association between an actual object or concept and an arbitrary 
token.  We take advantage of this arbitrary choice by using symbols composed of 
letters and punctuation-marks, tokens that fit nicely into lines, thus providing 
display convenience.

An icon is an association between an actual object or concept and a token that 
resembles that object or concept.  Thus, part of the meaning of an icon is its 
specific shape.

Icons are preferable to symbols since icons convey more information.  The Arabic 
numeral 3, for instance, lacks the visual cardinality of the Roman numeral III.  
Some mathematical forms are inherently iconic, such as an equilateral triangle.  

	 	 equilateral triangle

A formal icon can be translated into tokens, such as the words "equilateral 
triangle", or symbols derived from labeling the parts of the triangle: a = b = 
c, <AB = <AC = <BC.  The icon, however, carries more information, since it 
illustrates as well as describes.

Symbolic description is easily standardized.  More importantly, we have 
developed calculi to manipulate symbols (look-up tables, substitution of equals, 
logical deduction, term rewriting, theorem proving), permitting automated 
computation.  Calculating with icons is thought to be difficult and clumsy.  
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However, several iconic calculi have recently been studied extensively;  these 
include fractals, cellular automata, particle diffusion, and knot theory.

The triangle icon above refers to a mathematical object that cannot exist in 
physical space except as an approximation.  We readily accept representational 
forms, such as photographs, of physical objects that do exist.  A drawing can, 
in contrast, resemble an object that does not physically exist.  In the case of 
mathematical objects, we are willing to believe in the existence of non-physical 
objects.  The ideal equilateral triangle is assumed to exist, it is easily 
visualized.  But it is not easily calculated with.  

The problem is that a triangle figure is always of a specific triangle.  The 
iconic triangle is general, referring to all triangles.  When we say that the 
sum of the interior angles of a triangle is equal to 180 degrees, we are 
referring to all triangles, whether they are equilateral or isosolese or acute 
or obtuse.  But the drawing of the triangle is only one of these.  Thus, 
triangle drawings are not considered to be generic mathematical objects.  The 
risk being guarded against is that we may build intuition based on one 
particular triangle, that turns out to be wrong when applied to another 
triangle.

We could however let a triangle stand in place of the concept Three, the three 
sides always representing the idea of threeness.  This notation may be clumsy, 
but it is an example for which properties of the icon visually represent the 
abstract number concept.  And the representation is not limited to a specific 
number, since an n-sided figure could be an iconic representation of n.

Symbolic Representation

Voice and text both unfold in a sequential stream over time.  This structure 
requires symbolic codes that do not mimic their intention.  Symbolic codes 
enforce a division between representation and reality, between mind and body, 
due to the arbitrary nature of their forms.  Thus, words and actions apply to 
quite different domains.

Words are linear and symbolic.  Symbolic representation has been accepted by the 
mathematical community at least since Descartes.  It is currently an absolute 
standard for mathematical communication.  Rigor is better served through a 
unified encodement;  the symbiotic union of logical proof and mathematical 
notation, homogenized through digital computation, is a basis that assures 
manageable formal processes.   

The language of concepts is not necessarily linear or symbolic, as we know from 
art, theater, film, music and architecture.  Expression in these fields is 
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iconic;  intention is conveyed through vision and experience rather than through 
trained memory and following rules.

Symbolic representation, like any encodement, imposes characteristic limitations 
on the form of expression, in exchange for a commonly learnable code.  Teaching 
the linear symbolic code (reading, writing and arithmetic) is the primary 
activity throughout educational institutions.

The limiting presumptions built into symbolic mathematics require explicit 
permissions to overcome.  These limits include:

	 •  arity (counting):
	 The number of objects that an operation can address is specific and fixed.

	 •  associativity (grouping):
	 The grouping of multiple objects imposed by specific arities is important.

	 •  commutativity (ordering):
	 The order of applying an operation to multiple objects is important.

Iconic formal systems express concepts in two and three dimensions, and can be 
shown to be equivalent to linear, one dimensional representations.  Iconic 
representations do not naturally impose structural rules for grouping, ordering, 
and counting.  

Using Math

Figure %%% provides an overview of how mathematics is made to work.  

================================================================================
Using a Formal System

	 [situation]	--difficult route-->	 [solution]
	         |	 	 	 	 	       / \
	         |	 	 	 	 	        |
      {meaning in}	 	 	 	    {meaning out}
	         |	 	 	 	 	        |
	        \ /	 	 	  	              |
	 [representation]   --easy route-->	 [symbolic result]
	 	 	         (blind rules)

================================================================================
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We begin with a situation that requires a solution.  We could directly 
manipulate the situation itself until it resembles a solution.  This usually 
happens with interpersonal and political situations.  No every situation is 
amenable to the mathematical approach.  In fact, no situation that requires 
physical action can be replaced by mathematics.  What math can provide is 
guidance, it can help to determine which physical actions are likely to arrive 
at the desired solution.

The first step in using math is to recognize that the situation can be 
transcribed into abstract symbols, that we can map between meaning and 
representation.  This is called mathematical modeling, and the process is often 
called encoding.  

"We now come to the decisive step of mathematical abstraction:  we forget about what the 
symbols stand for. ... There are many operations which [the mathematician] may carry out with 
these symbols, without ever having to look at the things they stand for."
 -- H. Weyl

Assuming that the formal system accurately represents the actual circumstance, 
the next step is to blindly manipulate the symbols, rearranging them into a 
configuration that is simpler.  This is called computation.  When the 
configuration of symbols is sufficiently simple, we stop the computation, open 
our eyes, and use the mathematical model in reverse to get back to the actual 
situation.  This is called decoding.

[quote]

It is indeed wonderous that this should work at all, let alone that it works for 
the most complicated physical processes we can imagine.  All of Physics is 
mathematics.

[quote]

Math Is Art

===
Beauty

Scientific beauty consists of 
  1.  simplicity  (completeness, economy)
  2.  harmony  (symmetry)
  3.  brilliance  (clarity, connectedness)

"Beauty is the primary standard for scientific truth."
  --  Augos and Staneiv, The New Story of Science, p.39
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"You can recognize truth by its beauty and simplicity"
  --  Richard Feynman

"Frequently a theorist will throw out a lot of data on the grounds that if they don't fit an 
elegant scheme, they are wrong."

  --  Murray Gell-Mann

"A theory is more impressive the greater the simplicity of its premises is, the more 
different kinds of things it relates, and the more extended is its area of applicability."

  --  Albert Einstein
===

There are, however, some significant caveats, in particular, determining whether 
or not the mathematical model accurately models reality.  And these caveats are 
two directional.  Does the math represent what is real, and do we define what is 
real to fit the math?

[quotes]

We will examine this process in detail, in order to find out just what is going 
on.  Although a dangerous question, we first must ask:  How does the human mind 
work?  The answer is quite easy, we don't really know.  One theme that we will 
discuss a few sections from now is that the mind definitely does not work like a 
computer.  This issue is important because since the early 1970s, the vast 
majority of academic disciplines have actively explored this issue, valiantly 
seeking to establish the Information Processing Model of cognition, that the 
brain and a computer are just different devices (soft and hard systems) that do 
the same thing, process information.  Accompanying this effort has been an 
extreme adoption of computer language to describe biological processes.  We 
believe that this effort is one of the most significant acts of dehumanization 
in history.  And in particular relation to the theme of the monograph, the 
excuse that permits teaching mathematics that is incomprehensible.  To 
understand why, we will later look deeply at what it means to "process 
information".  

The quick summary is mentioned above, information processing, mathematical 
abstraction, is blind to thought.  The school of mathematical thought that is 
dominant today is called formalism.  Formalism defines mathematics as a set of 
structural transformations that are not interpreted.  About the same time that 
formalism began to gain sway in mathematics, around the turn of the twentieth 
century, behaviorism in psychology became dominant.  Behaviorism is the idea 
that we should observe a human's physical actions, and completely ignore the 
human mind.  Although behaviorism gave way over the century to a more 
compassionate view of psychology, formalism in mathematics just became stronger.  
The mathematics is free to ignore, and even to deny, the workings of the human 
mind is the specific cause of our countries failure to understand math.
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The Modeling Hierarchy

The first step, that of encoding reality into a mathematical model, is actually 
several steps of abstraction.  Fig %%%.

================================================================================

Conceptualization		 	 (imaginary, perceptual, cognitive, real world)
Mathematical Model	 	 (formal, symbolic, abstract, mathematical)
Data Structure and Algorithms	(representation, computational, software)
Machine Implementation	 	 (actual, structured, physical hardware)

Fig:  the Modeling Hierarchy
================================================================================

[[discuss]]

There are many forms of Conceptualization:  art, music, film, architecture and 
sculpture, games, and mathematics.  Here we will examine formal 
conceptualization, reducing an idea to a mathematical system.

Formal Modeling

A formal system (a mathematical system) consists of 

1.  several sets of labels (for objects, functions, relations) 
2.  rules for building compound sentences (or equations or expressions)
3.  rules for evaluating and simplifying compound expressions
4.  some axioms or assumptions which assert equivalence sets.

	 	 Formal = Atoms + Forms + Transforms + Axioms

Within this scheme, the innovation of spatial mathematics plays a small part.  
We are simply suggesting that the labels can be icons as well as tokens.  Not a 
large change, but significant since iconic labels permit the following steps of 
building equations and rules and assumptions to be in a language that is closer 
to experience.

Here is a description of formal symbol systems that parallels the one above, but 
in a slightly more mathematical language.

A mathematical system consists of 
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1.  a universe of discrete, stable, unique, disjoint, localized objects

2.  a collection of stable states, or object configurations

3.  stable maps between objects;  a territory composed of objects and 
connections between objects (relations)

4.  an interpretation that maps symbols/tokens one-to-one onto objects/meanings, 
together with a defined and stable notion of truth.

[[discuss two definitions, how components align, introduce State Space, a graph 
of state and transitions]]

From Conceptualization to Formalization

Here's what we do when we build a formal model (or do a computation):

0.  Identify a collection of objects/events in the real world.  This is the 
semantic mapping, how math is linked with reality.  The objects/events must have 
these properties:

	 unique	 	 	 	 not confused with different objects/events
	 stable and permanent	 	 not in flux or changing too rapidly to 
identify
	 discrete	 	 	 not lacking well defined borders
	 comprehendible	 	 not confusing or too ambiguous
	 relevant	 	 	 not outside of what we consider to be the objects 
in question
	 permitted,	 	 	 not in violation of tacit understandings about how 
things are

1.  Use unique labels to identify each of the things in the semantic mapping.  
The value of a label is the thing it identifies.

2.  Limit our interest in the types of things in the real world to an abstract 
mathematical property, such as Truth or Count or Membership.

3.  Use different labels to name different abstract things:

	 labels for things		 	 	 	 	 object labels
	 labels for an entire set of things	 	 	 property labels
	 labels for an arbitrary thing in the set	 	 variable labels
	 labels to name properties of things indirectly	 function labels
	 labels to name combinations of things	 	 relation labels
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4. Follow the rules of symbol transformation in manipulating the labels as if 
they were the things.  However, the labels do not have to share any of the real 
world properties of the physical things.

In summary, we convert from physical to virtual, ignore the physical aspects of 
reality, manipulate the virtual (or digital) aspects using the rules of 
virtuality, and then return to physical reality with new knowledge.  

Numeric or Symbolic Computation

===
clean up
numbers used for "measureables"
no longer about numbers
===

Compute symbolically, unless no efficient symbolic technique is known;  
	 then use optimized numeric techniques.

SYMBOLIC:
	 meaning	
	 	 -- written as -->
	 	 	 symbol structures
	 	 	 	 -- reduced by -->
	 	 	 	 	 symbolic transformation rules
	 	 	 	 	 	 -- turning into -->
	 	 	 	 	 	 	 simpler symbol structures
	 	 	 	 	 	 	 	 -- read for  -->
	 	 	 	 	 	 	 	 	 meaning

NUMERIC:
	 meaning
	 	 -- exemplified by -->
	 	 	 selected instances
	 	 	 	 -- substituted into -->
	 	 	 	 	 symbol structures
	 	 	 	 	 	 -- reduced by -->
	 	 	 	 	 	 	 numeric simplification rules
	 	 	 	 	 	 	 	 -- turning into -->
	 	 	 	 	 	 	 	 	 approximate results
	 	 	 	 	 	 	 	 	 	 -- read for -->
	 	 	 	 	 	 	 	 	 	 	 meaning

Mathematica
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We have reached the culmination of the formalist agenda in the work of Stephen Wolfram.

[[discuss wolfram, mma, etc]]

Mma computes symbolically unless either 
 1. no efficient symbolic technique is known, or
 2. processing efficiency is far more important than coding efficiency.
Otherwise, it uses optimized numeric techniques.

The Mathematica Program

A general purpose computational engine for
  numerical calculations(arithmetic)
  symbolic transformations (algebra)
  graphic display (geometry)

A modern programming language with multiple styles
  procedural
  functional
  logical
  object-oriented
  rule-based
  mathematical

The Philosophy

The programmer’s time is more valuable than the processor’s time.

Thus, the architecture is
 interpreted (interactive)
 real-time
 goal-oriented

“Programs you write in Mathematica may nevertheless end up being faster than those you write in 
compiled languages”  p.506

 •  Processing speed depends on the exact implementation algorithm
 •  Mathematica algorithms are both sophisticated and optimized
 •  The internal data form is optimized and compiled for efficiency

Everything is an Expression

  x + y  Plus[x,y]  
  120   Integer[120]
  2ab   Times[2,a,b]
  {a,b,c}  List[a,b,c]
  i = 3  Set[i,3]
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  x^2+2x+1  Plus[ Power[x,2], Times[2,x], 1]

An undefined symbol is itself, providing functional transparency and WYSIWYG debugging.

The Meaning of Expressions

F[x,y]  F is the head.  x,y are the contents.
     Apply function F to arguments x and y.
     Do action F to objects x and y.
     The label F points to elements x and y.
     The object-type F has parts x and y.

The head can both act on its contents (as a function) and maintain the structure of its contents (as 
an object), depending on context (the location of the expression, the presence of a definition).

Unity of Programming Paradigms

Mathematica accepts code in all of the modern programming paradigms.

“All the approaches are in a sense ultimately equivalent, but one of them may be vastly more 
efficient for a particular problem, or may simply fit better with your way of thinking about the 
problem.”  p.487

“As a matter of principle, it is not difficult to prove that any Mathematica program can in fact be 
implemented using transformation rules alone.” p.503
===

27



The Virtues of Mathematical Models

[ref Gries and Schneider, A Logical Approach to Discrete Math]

•  A mathematical model may be more understandable, concise, precise, or 
rigorous than an informal description in natural language.

•  Answers to questions about an object or phenomenon can often be computed 
directly using a mathematical model of the object or phenomenon.

•  Mathematics provides methods for reasoning:
	 	 for manipulating expressions,
	 	 for proving properties, and
	 	 for obtaining new results from known facts.
This reasoning can be done without knowing or caring what the symbols being 
manipulated mean.

[[discuss]]

The Trouble with Mathematical Models

[[elaborate]]

•  Only a small portion of the world and of our experience can be discretely 
objectified.

•  Abstraction discards information.

•  Modeling does not reflect human processes.  
	 (Students taught how to think in models generally make poor programmers.)

•  Modeling dictates a worldview which, at times, may be dysfunctional.

"Present mathematical and scientific education is a hotbed of authoritarianism 
and is the worst enemy of independent and critical thought."  -- Lakatos

•  Human reasoning is physiologically mediated by human emotion.  Discovery is 
intuitive and involves guesswork.

Math Is the Battleground human/tech

Modeling Constraints
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Abstraction Constraints

===
improve transition
===

Growth of Algebra

===========
--CANONS TO GO WITH EQUALITY--
INTENTION
•  Permissible transformations are specified by rules.
SUBSTITUTION
•  In any expression, any arrangement can be exchanged for an equivalent
arrangement.
•  Equivalent intentions are expressed by equivalent symbols.
SIMPLIFICATION/TRANSFORMATION
•  Following the rules does not change the meanings.
•  Meaning is preserved when steps are taken.
•  Symbols may be manipulated within the rules without altering their assigned 
interpretations.
EQUIVALENCE OF TRANSFORMATION
•  The product of transformation steps is independent of the choice
or sequence of steps, given a consistent result.
•  All transformation paths leading to the same result are equivalent.
THEOREMS OF REPRESENTATION
•  Agreement:  Simplification is unique.
•  Distinction:  Rules specify permissible transformation steps.
•  Steps do not change the meaning of an expression, although they do change the 
form.
•  If the value of two expressions differ, then steps taken on the two
expressions maintain that difference.
PROCEDURAL THEOREMS
•  Identity:  Expressions with identical forms represent identical values.
•  Consequence:  Expressions equivalent in value to a given expression are 
equivalent to each other.
CONNECTIVE THEOREMS
•  Invariance:  If a distinction distinguishes equivalent expressions, it is not 
a distinction.
•  Variance:  If different expressions each contain the same arrangement, then 
this arrangement can be communicated to the interpretative context of the 
expressions.

29



The use of algebraic equations and the EQUALS sign in the rules of boundary 
logic carries with it a substantive set of built-in assumptions.  Algebra in 
general provides the familiar transformation techniques of replacement and 
substitution.  Equations define constraints on variables in expressions.    
Algebraic representation places requirements on the use of variables;  for 
instance, naming must be unique and names can stand in place of arbitrary 
expressions.    

The EQUALS sign identifies equivalence classes of expressions.  It has the 
properties of identity, transitivity, and commutativity which support the 
validity of the algebraic transformation techniques.  Importantly, EQUALS is a 
Boolean connective, the value of an assertion of equality is either True or 
False.
===

Prior to 1900

	 computers commerce as algebra

Hilbert's Program

Mathematics and philosophy have always been inextricably entwined.  Two and a 
half millennia ago, the Greeks introduced the revolutionary idea that fact 
should be based in proof, and that proof grew from the application of 
mathematical consistency.  This attitude did not replace the dominance of the 
gods, but it did ascribe to them a preferred subject matter.  Thus Descartes 
asserted that rationality was placed within us by God, and manifest by the a 
priori reasonability of numbers and logic to our minds [ref].  As the 
seventeenth century drew to a close, the work of Newton crowned the two thousand 
year drift of the source of truth from the Greek's observation and intuition to 
the Cartesian abstract concept supported by symbolic rather than physical 
structure. [redo]  

Of course, God was never absent, but his Interests changed from the maintenance 
of every event in the experience of mankind into the maintenance of only 
mathematically structured events on the boundaries of the experiences of 
mankind.  Science, rather than theology, was to step up to define God's Intent 
for His Glorious Machine.  And since God was both Wise and Efficient, 
mathematics became the science of stating What Was in the simplest, most 
efficient language.  The structure of the Universe slowly convolved into the 
structure of symbolic forms, that, presumably by a mapping provided by God, 
allowed us to know the Truth of creation.  
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As Mankind grew more fascinated by the mind of man, Kant reified reason itself.  
Truth, once divine, found itself entombed in thought, thought, that is, that was 
deemed reasonable by those who thought well.

=================
Kline p179 "Instead of starting with the whole numbers and fractions, and then 
taking up the irrational numbers, the complex numbers, algebra, and the 
calculus, the mathematicians tackled these subjects in the reverse order.  they 
acted as though they were reluctant to tackle what could well be left alone as 
clearly understood and only when the need to logicize a subject was imperative 
did they undertake to do so.  At any rate, only six thousand years after the 
Egyptians and Babylonians began to work with whole numbers, fractions, and 
irrational numbers, the mathematicians could finally prove that 2+2=4."
=================
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Virtuality

===
Virtuality has become so prevalent in the current Information Age that much of 
what we do is never part of physical reality in the first place.  Computer 
Science, for example, is a discipline in which the only connection to physical 
reality is silicon hardware.  Study of the physicality of hardware is a 
different discipline, Electrical Engineering.  
===

Binary Computers (Digitality)

Entrenchment of Ideas

Loss of Humanity
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Math Sensibility

We have examined how math works.  First we make a match between something real 
and something that represents what is real.  If the structure of the real 
something conforms to the structures built into a mathematics, then we can use 
that mathematics to model the something real.  Once the encoding step is 
completed, we are thoroughly within the world of math.  We forget about what is 
real, and manipulate the mathematical structures, blindly following exact 
prescribed rules of transformation.  Some of those transformations may be 
trivial, such as adding 1 and 1, and some may be extremely complex, such as 
predicting the weather.  We saw that prior to about a century ago, mathematics 
was most about numbers, and that recently it has become about arbitrary symbolic 
structures.  Once the computation is completed, whether using numbers or 
abstract symbols, we exit the world of math and return to reality by decoding 
the result of the computation.  This result tells us something about real 
problem, hopefully something simpler, like the sum of 2 or whether or not we 
expect it to rain tomorrow.

We saw that the constraints on the real world situation that make it susceptible 
for mathematical analysis include both modeling constraints (choosing the right 
characteristics of the real world situation that match the structures of math) 
and abstraction constraints (choosing not to see some details of the real 
world).  

Now we ask:  Just how much of reality fits into the mathematical model?  
Actually, we will ask a much simpler question:  Just how much of reality fits 
into the simple acts of addition and multiplication that are taught in lower 
elementary school?  Should we be teaching children that simple arithmetic is 
very handy for lots of things, or should we be buffering that teaching with the 
ways that simple arithmetic is misleading?

How Integers Work

Measurement

The Limits of Arithmetic

We now consider how arithmetic may get us into trouble.  In the spirit of math 
classes, we offer a Basic Arithmetic Sensibility Test.  A dozen questions that 
appear to be easy applications of basic arithmetic, but that lead to false 
knowledge when arithmetic is applied. [refs]
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================================================================================
BASIC ARITHMETIC SENSIBILITY TEST 
1.  When is each of the following statements TRUE?

	 1a.	 	 3 + 4 = 7	
	 1b.	 	 9 + 5 = 2
	 1c.	 	 1 + 1 = 10
	 1d.         1 + 1 = 1

11.  John put one lump of mud together with another lump of mud.  How many lumps 
of mud does he have?

7.  One cup of sugar plus one cup of water yields how many cups of sugar water?

2.  My car gets 20 miles per gallon when traveling at 50 mph.  How many miles 
per gallon will it get when traveling at 100 mph?

3.  Leonardo DaVinci painted the Mona Lisa in 1550.  If one Mona Lisa painting 
is worth $40,000,000, how much are two Mona Lisa paintings worth?	

4.  One barrel of oil costs $50. How much does one trillion barrels of oil cost?

5.  A math teacher gives you one star for passing the final exam, one star for 
passing the midterm, and one star for reading the textbook.  If three stars gets 
an A, what does two stars get?

6.  The local supermarket sells one can of tuna for $.60 plus a special sale 
coupon.  How much does two cans of tuna cost?

8.  Sally's bank does not permit overdrawn accounts.  If she has $100 in her 
account, and she writes a check for $200, how much will be left in her account?

9.  A short intelligence test has three questions.  It gives you one point if 
you correctly answer a question a George Washington, one point for a correct 
answer about polar bears, and one point for a correct answer about the area of a 
circle.  What is your intelligence if you get all three questions wrong?

10.  One person can paint a room in one day.  Another person can paint the same 
room in three days.  How long will it take to paint the room if they work 
together?

12.  A professor lost half of his hair by the time he was thirty.  When will he 
lose all of his hair?
================================================================================
[[discuss each]]
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What Is a Number?

Addition via Change of Perspective

How we think about mathematical concepts is often constrained by our 
representation of those concepts.  Syntax and semantics (representation and 
concept) are tightly connected.  The addition operation, for example, is 
conceptualized as binary when written in linear text:  

	 	 	 	 x + y

To add three numbers, we must use two addition operators:

	 	 	 	 x + y + z

Column addition, however, reconceptualizes the addition operation to be variary 
(one operator can be applied to an arbitrary number of arguments): 

	 	 	 	    w
	 	 	 	    x
	 	 	 	    y
	 	 	 	 +  z
	 	 	 	 ----
	      
Naturally, the addition algorithms and techniques taught to students differ for 
the different representations.

The traditional representation of binary addition is one-dimensional.  There are 
two locations for arguments, one on either side of the textual operator.  Column 
addition increases the dimension of representation to the plane; digits of 
individual numbers are expressed horizontally, different numbers are expressed 
vertically.  From a spatial perspective, the number of arguments that can be 
added in one operation depends upon the dimension of the representation.

symbolic
push together
shift perspective

===

Benacerraf -- 

{}, {}{}, {}{}{}, ...	 	 Not sets, but can be encapsulated

{}, {{}}, {{{}}}, ...	 	 Equal if in syntactic correspondence to itself
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{}, {{}}, {{},{{}}}, ...	 Equal if elements in one-to-one correspondence

 
Three varieties of "numbers as sets", all are equally well grounded.  So either:
	 1)  all are correct, and the set-based representation of numbers is not 
unique;  that is, sets are not fundamental to numbers,
	 2)  one is correct and the others can be shown to be wrong,
	 3)  none are correct; that is, numbers are not based on sets.

"There is no unique set of objects that are the numbers." p291

Numbers are essentially names that are in a sequence.  It is not the object that 
forms "numbers", but the particular relation between objects that establishes 
Total Ordering
	 -- reflexive
	 -- antisymmetric
	 -- transitive

"Any object can play the role of 3; that is, any object can be the third element 
in some progression." p291  "The number words do not have single referents."
===

Numerals vs Numbers

"I know how to establish a one-to-one correspondence between numbers and 
objects, and I know how numbers work together to add and multiply, but I cannot 
for the life of me figure out how we discovered their names."

Reading and Computational Ease

Different representations of number systems have different characteristics (see 
chart below).  The primary tradeoff is between readability and computability.  
In prehistory, unit arithmetic provided easy computing, but reading a result 
required counting the resultant units.  Roman numerals added groupings (V, X, L, 
M, etc), making reading easier but introducing computational rules to operate on 
groups (e.g. V + V = X).  The place notation of arabic numerals emphasizes 
readability, at the cost of introducing computational algorithms;  for the 
first, two numbers sharing a space gave little indication of the resultant sum.  
Boundary numbers revert to very easy computation, at the cost of making reading 
a bit more difficult, since boundary numbers have many forms, one of which is 
minimal.

Depth notation corrects an undesirable characteristic of place notation, that of 
right-to-left linearity.  The advantage of a base system is maintained, while 
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the dependence of the base index (i.e. 1, 2, 4, 8, 16,... in binary) on its 
sequential position is removed.  The additional dimension used by boundary forms 
returns parallelism to numerical computation.

===
separate reading from calculation from meaning

Computer Implementation
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Our Conventional Number Systems

When we think of a number, we imagine a series of digits strung together in a 
line, with the left-most digit representing the largest component of the number, 
and the right-most digit representing the units in the number.  This 
representation of numbers, and in particular integers, has become accepted as 
universal.  Our base-10 positional notation is the cumulative result of dozens 
of explorations of number made by every civilization of record.  There are many 
ways to write a number, and our current system is considered to be by far the 
best.

Previous number systems have been defined by these features:

	 one-to-one mapping: units can be counted
	 special names for larger groups:  a handful, a dozen, a score
	 the additive principle:  combination of the parts represents the sum

Our current notation for numbers rests on:

	 one-to-one mapping: units can be counted
	 names for group magnitudes:  powers of ten
	 uniform base:  multiplication by a single base magnitude
	 functional zero:  spaces are filled with symbols of nothing
	 place notation:  dimension can be mapped to sequence

The current positional notation has evolved to ease reading, recording, and 
calculation of quantity.  Conspicuous in its absence is the Additive Principle.

Types of Numbers

Any particular number can be written down in a variety of notations.  Numbers 
are also used to mean a variety of things.  The simple 1+1=2 is not so simple, 
as was emphasized by the Basic Arithmetic Sensibility Test.  We seamlessly 
integrate several types of numbering systems into our daily lives.  These 
different types of numbers include categories, unit ensembles, cyclic numbers, 
ordinal numbers, probabilities, and truth values.

One way to look at the varieties of number is to start with the familiar, and 
successively remove assumed structures.  Another way is to begin with something 
very simple and successively add new structure.  Either way results in the 
Hierarchy of Measure Structures in Fig %%%

================================================================================
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INDICATIVE:  the elementary domain of perception.  Where our mind is.  This one 
is not taught in school.  See Spencer-Brown, Laws of Form.

NOMINAL:  a set, unordered collections of things.  Eg: the space of library 
collections, of fish in a pond, of items on a menu.

ORDINAL:  ordered, ranked things.  Eg: your list of most to least favorite 
novels, pecking orders of fish, steps in an instruction.

INTERVAL:  order in which the distance between items is equal.  Integers.  Eg: 
pages in a novel, age in days of fish,  cells on graph paper.

RATIONAL:  intervals which support ratios.  Numerical fractions.  Eg: 
percentages of each letter in a novel, portions of a meal each fish eats, 
comparison of monetary wealth.

REAL:  continuous space.  Real numbers.  Eg: our model of the space underlying 
words on a page, the weight and length of fish, physical space.

IMAGINARY:  contradictory spaces. Sqrt[-1].  Both True and False.  Eg: our 
construction of mental images from words, wave propagation, inside a black hole.

Fig: %%%  Hierarchy of Measure Structures
================================================================================

[[discuss]]

Note how going down this hierarchy successively adds more mathematics and
less physical reality.  Note how cognitive spaces bound both the top and the
bottom.

===
In reference to the nature of SPACE:  The mathematical theory of measurement 
provides a concise summary of the generic types of spaces.  Here they are, with 
slight elaboration.  This list is a hierarchy, each following type is an 
elaboration of the preceding ones.  Note that each can be conceptualized as one-
dimensional, additional dimensions (2D, 3D, etc) are merely orthogonal products 
of more than one space.  For grounding, it is commonly assumed that our everyday 
living space is composed of three REAL spaces at right angles.  

In fact, this idea was made up in the middle of the sixteenth century by 
Descartes.  TIME is just another space, one that we have forgotten how to travel 
freely in.  So is SCALE.  
===
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Here is how each type of number works.

Indicative

iconic systems, usually not mentioned in the same breath as mathematics

Nominal (Categories)

Categories are the simplest type of numbering system, so simple that we do not 
even consider a set of categories to be numeric.  Each week has exactly seven 
days, and each day has a special name.  When one week has ended, we apply the 
same special name to a different day, and we generally manage to avoid 
confusion.

-- medieval numbers as memorable objects

Ordinal Numbers

--standing in line with a number

Interval Numbers

Rational Numbers

Cardinal Numbers  (interval, rational, real??)

Our number system rests upon two impressive innovations that have been refined 
over literally thousands of years.  The first innovation is the idea of a 
uniform base system;  the second is an explicit zero.

Truth Values

-- truth or not

Unit Ensembles

The simplest case is unit form (also called stroke or tally arithmetic), a one-
to-one mapping between integers (an abstraction) and a collection of atomic 
objects.  The stars on an American flag represent the States the compose the 
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United States of America.  Each State is a unique individual, and each is 
represented by a single star.  The States are not counted on the American flag, 
rather their stars stand in concert, white upon a blue background, organized in 
rows (but no longer in columns), but not identified with a numeral.  Instead, it 
is an option to map each star onto and unique but abstract integer, counting up 
in sequence from 1 to 50.  The last number in the sequence is the count of the 
stars on the flag, and by reference, the number of States within the Union.

Stripes on the American Flag also represent States, this time the original 13 
British colonies that banded together to establish the United States.  Again, 
the stripes are not numbered, and there is no precedent that connects any 
particular stripe to any particular original State.  There is also no precedent 
that connects a particular stripe to the star which may represent the same 
State.

Cyclic Numbers

We use cyclic numbers extensively when we describe time.  A minute has sixty 
seconds, a day has twenty-four hours, a week has seven days.

Probabilities

--chances of rain

Real Numbers

Imaginary

segue:  types and uses about modeling
	   bases and positions about reading and writing
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HUMANKIND'S GREAT ACHIEVEMENT

Our modern, and universal, base-10 place-value notation for integers has been 
glorified as one of humankind's greatest achievements [refs], as significant as 
the invention of the wheel.  

===
quotes
===

All modern computational algorithms rest firmly upon single-base positional 
notation with magnitude implicitly identified by the sequential location of each 
digit.  Digital computers universally use base-2 rather than base-10 since 
base-2 is easier translated into Boolean logic gates.  Both the base-2 of 
computers and the base-10 of commerce share the idea that shifting a digit one 
place to the left multiplies its value by one order of magnitude. Fig %%%  And 
this scheme requires the reputed coup de grace, an explicit zero to fill place 
locations that have no value.

===============================================================================
Fig  %%%  1 10 100 1000...
===============================================================================

A theme of this monograph, that place-value notation can be improved upon both 
abstractly and computationally, might appear to be somewhat heretic.  A critical 
analysis of positional notation requires reconsideration of several fundamental 
assumptions about the structure of arithmetic itself, specifically questioning 

	 -- the linch-pin notion of an explicit zero, 
	 -- the desirability of a strictly linear string notation for numerals,
	 -- the group theoretic relations such as commutativity and associativity
	 	 that permit rearrangement of token-strings on a line, and
	 -- the underpinnings of set theory as a necessity for numerics.

We share Kempe's goal: "...to separate the necessary matter of exact or 
mathematical thought from the accidental clothing -- geometrical, algebraical, 
logical, etc." ref[Kempe]

We do not introduce fundamental new theorems, neither do we discard existing 
mathematical tools and techniques; rather we suggest that the current structural 
constraints that define integer arithmetic can be liberalized, without loss of 
formality or efficiency.  In particular, we demonstrate an advantage in removing 
the syntactic constraints imposed by notations based in the total ordering of 
strings and by relations that have a strict, usually binary, arity.  We suggest 
that arithmetic can be formulated more naturally using parallel rather than 
sequential processes.  That it can be formulated for understanding by using 
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icons, pictures, and diagrams rather than abstract token-strings.  We ask why is 
it necessary to phrase something as common and useful as arithmetic in obscure 
and abstract languages designed for computers?

We begin by separating place-value notation from the concepts of counting, 
magnitude, one-to-one correspondence, and the addition and multiplication 
operations of arithmetic.  The theory of arithmetic is independent of place-
value notation;  base-10 notation is a convenience and is not central to the 
ideas underlying number.  We extend the separation of notation from concept by 
suggesting that properties of relations such as commutativity and associativity 
are also peripheral to the concept of number.  For this reason, we focus on unit 
ensembles, the simplest possible representation of number.  We treat rigorously 
the number systems conceived at the dawn of civilization, and used by preschool 
children to understand number.  We suggest that arithmetic and algebra should be 
very simple, in use and in theory, and should be kept simple until a student 
become a mathematics major in college.

===
II.2.3  Hindu-Arabic Place-notation

Our Hindu-Arabic positional number system is string-based, it assigns a place-
value to the location of a digit in a totally ordered sequence.  A conventional 
integer is written as a polynomial of powers of a base;  this choice impacts the 
complexity of basic algorithms for elementary operations and removes the visual 
and tactile intuitions and parallelism common of other, older numerical systems 
such as unit arithmetic.  Thus, every place-value numeral, such as 2043, 
includes within it a significant amount of mathematical sophistication that 
requires thinking and interpretation on the part of the student.

Place-value notation exchanges convenience in reading for a modest inconvenience 
in computing.  It is difficult to imagine a simpler computational operation than 
pushing piles of objects together, as in unit-addition.  Addition of place-value 
numbers requires memorization of "digit addition facts" and the mechanisms of 
carrying and borrowing to manage place-value alignment.
===

Uniform Base Systems

===
how they work
===

Decimal numbers compromise nicely between size of representation and ease of 
computation:
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	 1222 + 2088 = 3  2  2+8  2+8

In a standardized base (say 10), the positions in a string can be used to count 
the number of times the based is compounded with itself through multiplication.  
The number-name 20458 stands in place of

	 	 2x10^4 + 4x10^2 + 5x10^1 + 8x10^0

Positions are counted-off right-to-left, with the base-ten magnitude multiplying 
the dimension of the base:

===============================================================================

	 	 number-name		 2     0     4     5     8

	 	 magnitude	   10000  1000   100    10     1

	 	 dimension	 	 4     3     2     1     0

	 	 "place"	 	 5     4     3     2     1

===============================================================================

The positional technique forces the number 0 into each position for which the 
magnitude is 0, so the the number-name will not include spaces.  

Place notation imposes a sequentially onto number-names; calculation algorithms 
must include techniques for interfacing adjacent places, called "carrying" and 
"borrowing".

Base-1

Base-2

Base-10

Decomposition Strategies

Unit form is the ultimate additive decomposition, while prime factorization is 
the ultimate multiplicative decomposition, each number represented by the 
product of its smallest prime factors.
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Roman numerals use grouping convenient for finger computations.  Arabic numerals 
use a uniform base with string position representing the dimension of the base.

===============================================================================
  representation             abstract               	 	 example of 204

	 unit	 	 	 1+1+1+1+...		 	 	 	     204 dots

	 Roman		 	 I, V, X, L, C, M	 	 	 	     CCIIII

	 base-10	 	 ax10^n + bx10^n-1 +...+ nx10^0          204

	 base-2	 	 ax2^n + bx2^n-1 +...+ nx2^0	 	     110001100

	 prime factors    	2^i + 3^j + 5^k + ...	 	   	     2x2x3x17

	 boundary-2	 	 (((i)j)...)k	 	 	       ((((((((•)•)))•)•))

	 boundary-10		 (((i)j)...)k	 	 	 	    ((2))4
===============================================================================

Explicit Zero
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A Theory of Representation

We briefly examine three different representational systems for elementary 
mathematics:  

	 -- unit-arithmetic (also called tally or stroke arithmetic), 
	 -- the conventional Hindu-Arabic place-value notation, and 
	 -- boundary arithmetic.
 
These three representational systems align with Bruner's (1966, pp. 10–11) three  
types of representation for mathematical operations:  enactive, symbolic, and 
iconic.  

Unit-arithmetic represents operations, such as addition and multiplication, as 
spatial combinations of sets of marks, maintaining a mapping between concrete  
activity and arithmetic operation.  Place-value notation represents operations 
by collections of rules and algorithms to be memorized since they bear no 
resemblance to concrete operations.  Boundary arithmetic represents operations 
concretely, as joining and substituting forms.  Boundary arithmetic also 
incorporates a unique rule-based standardization process that is purely 
abstract, yet due to the spatial nature of boundary numbers, enjoys a 
resemblance to concrete operations.  The standardization process achieves the 
efficiency of place-value notation without abandoning the naturalness of 
concrete operations.

Form or Content?

Kaput [ref 1987] is directly critical of the emphasis of form over content in 
elementary mathematics.  He sees the predominance of math education addressing a 
particular set of representations and algorithms.  

Mathematically, the operation of addition, for example, is an abstract concept 
that should not depend upon the particular embodiment of a representation.  But 
certainly adding blocks by pushing piles together differs significantly from 
adding the cardinality of sets of blocks by following abstract symbolic rules 
that apply to disembodied symbols with meanings determined by convention.  

Algorithms are known to depend upon representation.  In fact, the discipline of 
Computer Science specializes in development of algorithms with particular 
mechanical efficiencies based on a variety of data structures.  In digital 
computation, for example, decimal numbers are abandoned entirely in favor of 
binary numbers.  In math education, the algorithms for manipulation of fractions 
differ from those of decimals, although fractions and decimals can express the 
same abstract magnitude.  Operations on diagrams representing fractional 
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quantities are of a fundamentally different, concrete nature than the algorithms 
for both symbolic fractions and decimals.

Much of elementary mathematics dwells on specific algorithms for a singular 
specific system of representation (the decimal place-value system).  This 
pedagogical choice is steeped in pragmatism.  The decimal system is particularly 
convenient for reading large magnitudes, and for operations on multidigit 
numbers.  The decimal system algorithms are certainly learnable, but for higher 
or more abstract mathematics, they may be islands of rigidity that interfere 
with progress in mathematical understanding. 

Enactive Systems

Enactive systems are concrete;  addition occurs by physically placing objects 
together.  Although unit-arithmetic incorporates abstract strokes or marks, 
addition in unit-arithmetic is achieved by the action of placing marks together 
in the same space.  This form of addition exemplifies the Additive Principle 
that guided historically early forms of non-symbolic arithmetic.

Symbolic Systems

Symbolic addition abstracts the cardinality of a set of objects into a symbolic 
name such as 3 or 7.  The rules of combining these symbolic names guide the 
determination of their sum.  Symbolic addition does not follow the Additive 
Principle; the symbols being added no longer possess the structural properties 
of the cardinality of the set they represent.  As a consequence, we must 
memorize number facts and algorithms to determine a sum.  Of course, symbolic 
numbers can be decomposed into units, reverting their additive behavior to that 
of unit-arithmetic.

Iconic Systems

Iconic addition is most commonly seen as pictures of groups of objects with 
specific cardinality.  Since Bruner's writing, iconic systems have acquired a 
richer meaning, they can be dynamic and animated.  Virtual manipulatives permit 
iconic forms to participate in computation.  Boundary numbers provide a yet 
richer type of iconic representation that combines the abstract structure of 
symbolic forms with the manipulative behavior of enactive forms.  Animation of 
boundary number operations shows the process of arithmetic.

Multiple Representations
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Number systems support numerical abstraction; in turn, their abstract nature 
supports many concrete interpretations.  "The usefulness of numerical ideas is 
enhanced when students encounter and use multiple representations for the same 
concept."[ref] [ref howmath p292] suggests that "Mathematics programs in the 
early grades should make extensive use of appropriate objects, diagrams, and 
other aids..."

Communication about numerical concepts requires an external representation. 
"Physical representations serve as tools for mathematical communication, 
thought, and calculation, allowing personal mathematical ideas to be 
externalized, shared, and preserved.12"   

Addition, for example, is introduced in elementary school as the act of joining 
together collections.  The cardinality of the combined set is the sum of the 
cardinalities of the sets prior to joining.  Other representations, such as 
joining together structured base-10 (Dienes) blocks, or measured segments of a 
number line, are also used to illustrate the abstract act of addition.  "Because 
many mathematical representations are suggestive of the corresponding metaphors, 
mathematical ideas are enhanced through multiple representations, which serve 
not merely as illustrations or pedagogical tricks but form a significant part of 
the mathematical content and serve as a source of mathematical reasoning." [ref]
===
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How People Work

	 Piaget people
	 embodied vs abstract
	 digitality -- what it means to be human
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Math is Messy
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Information Processing

Information processing models focus on our understanding of how people
think.  Using the model of automated deduction, Newell and Simon studied
the way people go about unwinding symbolic puzzles @cite[humprobsolve].
Their work pioneered information processing models and the methodology
of protocol analysis.  The theory of Information Processing Systems
(IPS) provides a detailed simulation of the dynamics of cognitive
processes in individuals as they solve problems.  Protocol analysis
provides a methodology for studying individuals as they solve problems.

This appendix serves as an introduction to information processing models.
It describes the theoretical context within which specific theories of
error processes have developed, and outlines the constructs that
constitute the information processing perspective.  Davis' frame-based
model is included as an example.  

Overview of the Model

The information processing model proposes a task-specific model of
cognitive processes.  Errors can be associated with each step in the
processing sequence of input, interpretation, transformation,
processing, and output.  These steps are simulated by a software program
under executive control.  Differences in hardware implementation and
software style are ignored.  The similarity between human and computer
processing is assumed.  The IPS perspective expands psychological
modeling to include internal, cognitive processes that interact with
information in the same manner as computers.  To the extent that
computation is algorithmic, the model is deterministic.  Since the
critical aspects of computation are related to input and output (that
is, implementation dependent processes are not emphasized), the IPS
model is neo-behavioristic.  Although internal cognitive processes are
modeled by computational processes internal to the computer, the model
does not suggest that the implementation of the processes used by the
automated system are similar to those used by humans. 

The Information Processing Model

The human information processing model grew out of Newell and Simon's
pioneering study of human problem solving @cite[humprobsolve].  Newell
and Simon assume that people and computers are similiar in that both are
information processing systems.  The IPS theory has these broad
characteristics @cite[humprobsolve ", Chapter 1"]:  
@itemize[
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@b[Process:]  The theory assumes a set of complex cognitive processes or
mechanisms to which behavior can be reduced.

@b[Content:]  The theory is oriented toward content.  A process model
must be able to perform the tasks it explains.

@b[Sufficiency:]  The focus is on mechanisms that are sufficient to
perform and explain the task under investigation.

@b[Dynamic:]  The theory addresses changes over time using the @i[program]
as its formalism.

@b[Individual:]  Processes are associated with individuals not with groups.

@b[Empirical:]  Experimental design and statistical analysis are inappropriate
because of the dynamic, history-dependent, high content topic of study.
]

An @i[information processing system] is "...a system consisting of a
memory containing symbol structures, a processor, effectors, and
receptors" (p. 20).  Newell and Simon expand upon traditional
mathematical description by including a process language that refers to
changes in the state description of the system.  "Symbols that designate
expressions, elements of expressions, characteristics of expressions, or
differences between expressions belong to the state language for the
problem.  Symbols that designate operators for transforming expressions,
sequences of operators, or characteristics of operators belong to the
process language" (p. 75).  Problem solving consists of recognition of
the initial and final states of a problem, and the application of
permissible operators to states of the problem to transform
the initial state into the final state.  

Simon explains his early sketch of this model @cite[a&s ", p. 3"]:
@quotation[@blankspace[1 line]

"If we can construct an information processing system with rules of
behavior that lead it to behave like the dynamic system we are trying to
describe, then this system is a theory of the child at one stage of the
development.  Having described a particular stage by a program, we would
then face the task of discovering what additional information processing
mechanisms are needed to simulate developmental change -- the transition
from one stage to the next.  That is, we would need to discover how the
system could modify its own structure.  Thus, the theory would have
two parts -- a program to describe performance at a particular stage
and a learning program governing the transitions from stage to stage."
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]

Although IPS was developed as a theory of human problem solving, the
techniques and the model are strongly linked with computer science in
general, and Artificial Intelligence in particular.  An evaluation of
the utility of this theory requires the specification of the
relationship between the human behavior and the computational model.
One extreme is to believe that the mind operates in the same manner as a
computer.  A softer position is to see the connection between mind and
computer as a metaphor.  The theoretical constructs of information
science "... are assumed to @i[refer] to the contents, structures, and
processes of the mind, but because the approach is new, the metaphorical
nature of their reference shows through, as it did in Bohr's early solar
model of the atom" @cite[jrme84-kaput ", p. 148"].  Specifically, the
software metaphors incorporated in a program restrict our
conceptualization of mental processes @foot[As a simple example, until a
few years ago, almost all thinking about program design was anchored to
the von Neumann model of a single, sequential processor.  To impose
sequential processing metaphors upon a cognitive model is to assume that
the brain is like a sequential computer, which may be incorrect since
the connection between neurons is massively parallel.].

IPS theories assume that software and implementation styles are
inconsequential to the model.  The theory incorporates constraint into
models by being @i[task specific].  The environment, in the form of a
specific problem to be solved, is held constant, while individual
responses to the task are permitted to vary.  The assumption is that a
subject confines his responses to the specific task.  In Newell and
Simon's study of symbol manipulation within the domain of propositional
calculus @cite[humprobsolve], consenting adult subjects cooperated with
the researchers to describe their processes of solution.  Preliminary
training was a component of the experimental design, so that both
researcher and subject felt they were working in the same 
domain.  

Cognitive systems are assumed to be @i[adaptive], in the biological
sense.  "... adaptive devices shape themselves to the environment in
which they are embedded" (p. 789). Cognitive processes are studied by
observing their adaptation to a constant task environmnet.
@quotation[@blankspace[1 line]

"The shape of the theory we propose can be captured by four propositions:
@enumerate[

A few, and only a few, gross characteristics of the human IPS are
invariant over task and problem solver.
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These characteristics are sufficient to determine that a task environment
is represented (in the IPS) as a problem space, and that problem
solving takes place in a problem space.

The structure of the task environment determines the possible
structures of the problem space.

The structure of the problem space determines the possible programs
that can be used for problem solving" (p. 788).
]]

The central concept of the @i[problem space] refers to the entire set of
potential actions for the subject, including imagined activities.
Problem solving behavior is rational movement through the problem space.
A measure of adequacy of the theory can be obtained by comparing actual
behavior to behavior predicted by the goal seeking model of the IPS
moving through problem space.

Since IPS is a cognitive theory, physical behavior is seen as part of
the environment, while cognitive behavior is internal to the IPS.  To
appropriately constrain physical behavior, the task environment must be
carefully selected to require a unidimensional ability.  The source of
variation across subjects for unidimensional tasks is assumed to be the
difference in each subject's representation of the problem space.  The
complexity of this representation is constrained by the selection of
naive subjects to study.  Task skill is defined as the subject's ability
to efficiently transverse the problem space.

The computational model offers a fundamentally new role for student
errors.  The Tyler model of curriculum, for example, views
an incorrect response from the student as evidence that the lesson
objective was not achieved, calling for either a change in teaching
strategy or a change in evaluation techniques.  The source of the error,
the student's misconception, is not directly addressed at all.  In the
computational model, an error is positive information used to guide the
modification of the algorithm that generated it.  The intent of testing
(evaluation) is to create errors which specifically identify weaknesses in
the student's algorithm so that it can be revised to be more robust.
The iterative development of knowledge follows this course:  
@begin[enumerate, spread=0]

Inclusion of a small, modular skill increment,

Extensive testing of this increment, both independently and in the
context of other knowledge,
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Correction of discovered errors, and

Iterative generalization of the skill.  
@end[enumerate]
The important point is that errors are the source of skill development.
To paraphrase Papert:  the question to ask about a student's knowledge
is not whether it is right or wrong, but whether it is fixable
@cite[mindstorm].

Models of Cognitive Processes

For modeling cognitive processes, IPS proposes the conceptual entities
of structure, process, and information.  They are composed to form the
concept of a @i[mental model] @cite[cogsci81-johnson-laird, mentmod].
Mental models form the basis of the computational theory of cognition.

The components of an IPS follow.  Each component supports a specific
type of error.
@itemize[

@b[Input]:  A parser transforms the external representation of the problem
into an internal representation.  Errors can arise when the parser
does not know the grammar of the input or when the input to internal
representation map is faulty.

@b[Interpretation]:  An interpreter maps the parsed input into an
internal context or @i[operative space].  Errors can arise when the
interpreter maps the internal representation into an incorrect operative
space or when the operative space is not furnished with appropriate
tools for processing the internal representation.

@b[Transformation]:  A set of transformation rules are applied to the
internal representation within the operative space.  Errors arise when
the transformations are inadequate or incorrect.

@b[Processing]:  A processing sequence allows the transformation rules
to be applied to the input repeatedly.  Errors arise whenever the
processor fails to apply appropriate transformations.

@b[Output]:  An output device conveys the result of transformation
sequence as an external representation. Errors arise in the
back-translation process.
]
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Models of Error Processes

Suppes specifies the principle features of IPS models:
@quotation[@blankspace[1 line]

"The fundamental psychological assumption is that the student has an
internal model of any skill he is using to perform a task.  This
internal model is responsible primarily for the errors generated....
The analysis of errors made by the student leads to insight into the
bugs in the student's model of the procedures he is supposed to be
applying"  @cite[is-suppes ",p. 299"].
]

The computational model adopts the generative, or constructivist,
position that a cognitive theory must generate the phenomena it
addresses.  A @i[generative model] achieves explanation by duplicating
performance rather than by prediction.  That behavior is generated by
non-random algorithms indicates a return to determinism as a
model.  Suppes sees this determinism in the adherence of ITS workers to
the belief that students do not act randomly.

IPS models finesse the problem of individual differences by addressing
general competence rather than specific behavior.  A @i[competence
model] seeks to explain what a person @u[can] do in the context of a
particular task, not what he does do.  Thus, experimental observations
of samples can be seen as information about individuals by the
assumption that any of the responses seen in the sample could 
conceivably have come from any specific individual.

During the 1980s the fields of psychology, math
education and computer science have all begun to adopt the IPS model.

Radatz provides an example of an error taxonomy that incorporates
components representative of information processing models
@cite[jrme79-radatz]:  @foot[These categories are all susceptable to
finer resolution.  Pippig, in @cite[jrme79-radatz], for example,
proposes a further classification for the rigidity in thinking category:
@begin[itemize, spread=0]

Perservation:  single elements of the task dominate.

Association:  incorrect interactions between single elements.

Interference:  operations or concepts mutually interfer.
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Assimilation:  incorrect input.

Negative transfer:  an erroneous impression from previous tasks.
@end[itemize]
]

@itemize[

Language difficulties:  misunderstanding the semantics of the representation.

Obtaining spatial information:  iconic representations fail to communicate
with visual students.

Deficient mastery of prerequisite skills, facts and concepts:  including
ignorance of algorithms, incorrect procedures, and insufficient
understanding of concepts.

Incorrect associations and rigidity of thinking:  negative transfer and 
inflexability in approach.

Irrelevant rules or strategies:  application of comparable but incorrect
rules and overgeneralization.  
]

Davis' Frame Model

The work of Robert Davis serves as an illustration of the application of
information processing theory to error processes in mathematics
@cite[cmb75-davis, mi8-davis, learnmath].  His book @u[Learning
Mathematics] provides a comprehensive example of the IPS perspective.

Central to Davis' IPS model is the @i[frame].  @foot[Thyne was probably
the first to introduce the concept of a frame into the modeling of error
processes @cite[patoferr].  He lacked, however, the computational
vocabulary to adequately conceptualize the processes that make frames
useful.]  A frame is a knowledge representation structure consisting of
a collection of attributes, or @i[slots].  Each collection of attributes
in a frame defines an abstract pattern, that, when matched or
@i[instantiated] by specific input, becomes active, producing an output.
For example, the @i[primary-grade addition frame] @cite[learnmath ", p.
113"] has two slots for input digits.  The frame unites specific digits
by addition to produce the sum as output.  It is rather strange that a
knowledge representation structure produces an output.  Davis' concept
of frame has an autonomous aspect: some control structure is constantly
seeking to activate the frame by finding instances.  Instances are
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identified by visual cues and procedures such as pattern matching.
Activated frames generate behavior.  If an active frame is lacking
specific instances, either a @i[default] instance, such as a stereotype,
is provided by the frame, or the frame fails to function, generating an
error.  Davis sees the activity of a frame as question generating.  When
sufficient answers are provided by the environmental input, the frame
creates output.  Frame related failure can occur for several reasons,
including lack of the appropriate frame, a flawed or incomplete frame,
and failure to locate the needed frame.

Frames correspond to Piagetian @i[schemas].  They are the mechanism by
which large chunks of knowledge are coordinated into coherent wholes.
"Piaget's @i[assimilation] clearly corresponds to what we have called
@i[frame retrieval] and @i[frame instantiation].  Piaget's
@i[accomodation] corresponds to the synthesis of new knowledge
representation structures" (p. 158).  Thus, frames "... serve as
`assimilation schemas' for organizing input data" (p. 125).

Davis lists some principles of his information processing model
(p. 108):
@begin[itemize, spread=0]

Discriminations are only as fine as necessary.

Representations are not actually deleted from memory.

The top-level program must run.
@end[itemize]
These constraints are combined with the assumption of @i[commonly-shared
frames] to provide a rough model of how errors are generated.  Errors
are caused when input does not match the structure of the active frame.
Mis-matching input is resolved by modifying the input itself, or the
mapping from input to slots, rather than changing the structure of the
frame.  Once created, frames are persistent.  Frames are created
following orderly rules, such as the @i[rule of initial
over-generalization] and the principles listed above.

Davis acknowledges that his theories are provisional and eclectic.  The
frame model lacks formal constraint on what can be made into a frame,
and has not clarified the mechanisms of how slots, or attributes, are
identified and clustered.  However, "...the nagging problems of frame
instantiation, frame genesis and assembly, and frame coordination [are]
shared by all cognitive science" @cite[jrme84-kaput ", p. 151"].

===
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Early Childhood Understanding

Elementary arithmetic education, in contrast to the conceptual abstraction of 
higher math, depends heavily upon direct experience with concrete objects.  
Number sense originates from visual and tactile interaction with objects during 
the preschool years, and is reinforced by concrete manipulatives in the early 
primary grades.  Children commonly learn numerals, the one-to-one correspondence 
of counting, and the methods of grouping units into collections of a given size 
through the use of physical manipulatives such as attribute blocks, number rods, 
base-10 blocks, coins, balance beams, number lines, and fingers.  Students are 
then asked to transfer their understanding of mathematical concepts from direct 
experience to the symbolic abstraction of string-based arithmetic and algebra.  
The mathematics curriculum then rapidly becomes symbolic and abstract, obscuring 
understanding with unnecessary formal structure.  Mathematical concepts first 
instantiated by spatial and tactile interaction with objects must be converted 
into rigorous algebraic manipulation of abstract, and somewhat arbitrary, 
strings of tokens, creating a severe discontinuity in both the style and the 
content of elementary mathematics education.  We seek a form of arithmetic that 
unites formal abstraction with direct experience.

As Easy As One, Two, Three 

K-2 7-9 gap comes form "now put it down on paper"

Tension Between Abstract and Concrete

[ref howmath] points to an inherent tension between abstract and concrete 
aspects of mathematics  "This tension is a fundamental and unavoidable challenge 
for school mathematics."

Essentially, a student is expected to first learn using concrete applications of 
abstract and very general numerical concepts, and then to transfer this learning 
into the abstract structures of group theory presented as the Rules of Symbolic 
Algebra.  "That kind of learning often takes time and can be quite 
difficult." [ref]

[ref howmath] recommends that "Different ways of representing numbers, when to 
use a specific representation, and how to translate from one representation to 
another should be included in the curriculum."  At the same time, a failure to 
adequately use geometrical structures, especially the number line, as 
representations of numerical concepts is acknowledged.
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We propose to develop and explore a new type of spatial representation that 
maintains a formal mapping to symbolic structures while at the same time 
presents many of the advantages of direct manipulation.  More fundamentally, we 
intend to create curriculum materials that provide the opportunity to explore 
some representational inconsistencies between symbolic and non-symbolic 
(concrete, visual, manipulative, and virtual) math teaching tools, and to 
formatively evaluate the contribution to mathematics understanding (and 
misunderstanding) made by each.  The essential problem is that common concrete 
models of numeric operations do not map directly onto group theoretic concepts.  
To illustrate this tension, we now briefly examine two common representations of 
elementary numerics, unit-arithmetic and place-value arithmetic.  These models 
lay the groundwork for describing boundary-arithmetic, a representational system 
that combines the intuitive operations of unit-arithmetic with the convenience 
of place-value notations.

Two Early Studies Define the Research Issues

Two early studies of errors @cite[est13-phelps, est17-smith] provide a
summary of error phenomena and of the methodological difficulties in
studying errors.

Phelps analyzed errors in addition facts @cite[est13-phelps] @foot[Data are
from 238 eighth grade students of eight schools in San Jose, California.
Each student answered a one-minute long, single-digit addition test,
administered twenty-five times (five times a day over five successive
days).  5950 tests form the data set; each test consisted of the 55
combinations of single digit binary additions.].  His motive was to
provide diagnostic information about how often errors are made, how many
students make them, and which number facts are most difficult.

Phelps found extensive variation in errors, across problems, students,
and schools.  He found that samples from different schools varied widely
in their error behavior, from a low of 16 errors per student to a high
of 70 errors per student on the same battery of arithmetic questions.
There were also regularities in Phelp's error data.  Combinations with
large single-digit integers (such as @math[9 + 7]) were more difficult
than those with smaller digits.  This result was unexpected because the
sample of eighth grade students supposedly received equal practice on
all combinations.  Certain combinations, like adding one (@math[9 + 1])
and adding double numbers (@math[3 + 3]), exhibited specific @i[pattern]
errors, out of proportion to the expected error distribution based on
equal difficulty.  These errors seem to be associated with the syntax of
the problem, and not with its meaning.  Although there were very few
errors on @math[4 + 4] or on @math[7 + 7], there were many errors on
@math[3 + 3].  Wrong answers were attributed to an apparent confusion
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between addition and multiplication, since 90% of the incorrect answers
were the number @math[9].  Phelps was unable to explain why this error
occurred frequently.  The @math[9 + 3] combination presented another
problem:  of the 304 errors on this problem 70% were the number
@math[11], while only 12% were the number @math[13].  Phelps expected an
equal likelihood of being one over or one under the correct answer.

The Newman Hierarchy

Newman's hierarchy of the causes of errors
is based on an information processing model @cite[resinmathedaust-newman].  It
posits a step-wise sequence of skills:  
@itemize[

@b[Reading:]  symbol recognition.

@b[Comprehension:]  understanding the question and the symbols used.

@b[Transformation:]  selection of appropriate processes to answer the
question.

@b[Process skills:]  performing the necessary operations.
Subcategories include wrong operation, faulty algorithm, faulty
computation, and random response.

@b[Encoding:]  writing the answer acceptably.
]

The Newman Hierarchy has strong advantages: it has a consistent focus on
student behavior, is useful for diagnosis by proposing an order in the
occurrence of errors, and is well studied (Table @ref[newmantable]).  It
is weak in that it is not fine grained enough to track detailed
mathematical processes, has only intuitive validation, and permits
multiple classification of the same event.  The Australian data
indicate that about one-quarter of the population of errors is
attributable each to selection of a process, applying the process,
carelessness, and input/output.  

@include[t2-newmanheirarchy.mss]

Individual variation over time, when it was examined, provides a new
perspective on carelessness.  Watson observes:  "... the children varied
their way of working out a problem.  A child would do one division sum
one way, another in a different way, or he would change his mind half
way through working out a problem" @cite[esm80-watson ", p. 327"].
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Watson suggests that carelessness was an overassumptive category in that
singular errors ae not all explained by carelessness.  A student may
generate a correct answer several times, and still revert to an
incorrect algorithm without being careless.

A wrong answer in number work is apparently quite as definite as a right 
answer" (p. 21).@foot[
Within the rote learning pedagogy of the times, Myers concluded "Do not
let him have a chance to answer wrong and do not let his classmates hear
a wrong answer" (p. 24). This sentiment is echoed by Robert Gagne
@cite[jrme83-gagne ", p. 15"]:  "Teachers would best ignore the incorrect 
performances and set about as directly as possible teaching the rules for 
correct ones."]  
]

Gibb

Gibb provides an example of excellent statistical methodology applied to
children's thinking processes in subtraction @cite[jee56-gibb]
@foot[Data are from 36 2nd grade students in 24 different schools in
Wisconsin.  The content was single integer subtraction.].  She designed
a mixed model factorial study with two systematic independent variables,
Application and Context, and one random variable, Individuals.
@i[Application] refers to the type of subtraction situation (take-away,
additive, and comparative) @foot[Subtraction can be used to solve
different types of problems.  @i[Take-away] problems present a group
from which a part is to be taken.  @i[Additive] problems present a part
to which another part must be added to form a group.  @i[Comparative]
problems present two groups whose difference is to be determined.].
@i[Context] refers to the mode of representation of the problem
(concrete, semi-concrete, and abstract) @foot[Arithmetic can be applied
at different levels of abstraction.  @i[Concrete] problems are presented
in the context of manipulatives such as toys.  @i[Semi-concrete]
problems are presented in the context of geometric figures.
@i[Abstract] problems are presented in the context of symbols.].  Each
child was presented with all nine application by context conditions.
Order of testing, and specific problems in each condition were
randomized.  Responses were measured on six dependent variables
associated with performance (sophistication of process, degree of
understanding, time to completion, and others).  In the analysis of
variance, Gibb found that the random effect of Individuals interacted
with both Context and Application.

Gibb also tape recorded her interviews and testing of each student.
Thus, she was able to examine protocol data to discover characteristic
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patterns in behavior.  Portions of her conclusions follow (p. 78):
@quotation[@blankspace[1 line]

"These children did not respond equally well to problems presented
in similar contexts.

... there is no context in which problems appeared the same to all.

... in no case did all applications evoke the same behavior from the same
child.

... one score does not give a uniform picture of the child's behavior
in problem solving situations.  Not only did different children bring
many varied procedures to problem solving situations, but also the same
child used many varied procedures.

... this study gave no evidence of a general subtraction ability
which characterizes children."
]
Again, variability pervaded the data.

Ginsberg

To Ginsberg, the ease with which students solve problems is directly
related to their knowledge of an appropriate and proven algorithm.
Children rely on informal and invented methods when the algorithms
they are taught somehow do not work.  Because these informal methods
return a credible answer more often than the unlearned formal
algorithms, they are persistent.  Particularly, it is often easier to
solve a problem mentally than it is to structure, write, and solve it
mechanically using symbols.  Many errors are purely within the
syntactic domain of written responses, hiding a student's existing
understanding of how to solve a problem.  These syntactic errors
appear to undermine a student's belief in their semantic understanding,
resulting in highly variable and error prone test behavior.  Ginsberg
explains that children first learn intuitive methods.  Later, when
introduced to written methods, they fail to understand, leaving a gap
between understanding and algorithm.  Ginsberg sees this gap as the
source of exotic written errors.  The point of failure is the mapping
between external representation and internal capabilities.

Ginsberg summarizes his model of learning in this way (p. 129):
@itemize[

Errors result from organized strategies and rules.  (These strategies
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are not necessarily variants of correct procedures.)

The faulty rules underlying errors have sensible origins.  (The origins
are semantic as well as syntactic.)

Too often children see arithmetic as an activity isolated from
their ordinary concerns.  (This does not make arithmetic a meaningless
activity;  it does make it low in semantic content, and thus more
susceptable to semantic error.)

Children demonstrate a gap between informal and formal knowledge.
(This lack of connection generates errors.)

Children often possess unsuspected strengths.  (Syntactic errors
hide semantic competence.)
]

Finally, Ginsberg notes:  "Individual children can display
extraordinary inconsistency in mathematical behavior"  (p. 128).
One source of this inconsistency is that students widely
@i[invent] mathematical techniques @cite[psymathinst].

Ginsberg's contribution is the explicit recognition of the semantic
needs of novices.  A limited notion of context dependency was introduced
by Smith when he observed that the operators a student selects for a
problem can be influenced by the operators required in previous
problems.  That errors interact with context has been observed by other
researchers.  This interaction is both within the substeps of a problem
and across separate problems.  In their study of temporary lapses,
Knight and Ford observed different errors depending solely upon the
position of digits in a problem @cite[esj31-knight] @foot[Data are from
200 6th grade students from four schools, on multiple-digit
multiplication problems.].  Thyne observed errors that changed depending
upon the problem that preceded the incorrect one @cite[patoferr]
@foot[Data are from 1325 Scottish children in elementary grades, on
arithmetic addition and subtraction facts.].  The key to understanding
these results is provided by Ginsberg.  The meaning that a student
ascribes to a computational problem often overrides the syntactic
structure of the problem itself.  This semantic component interjects
extra-domain information into the interpretation of symbols.  Errors
appear to be erratic because the relevant aspects of a student's global
context can change often.

Elementary Algebra
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The domain of elementary algebra is constrained to the solution, or
simplification, of linear equations in one unknown.  An equation is
@i[elementary] if it does not require parentheses to indicate nested
complexity.  @foot[This implies one binary operator on each side of the
equation.]  Algebra errors can be conceptualized in much the same way
as elementary arithmetic errors.  The student is taught a simplification
algorithm; he makes errors while applying the algorithm.  

Wattawa conducted one of the first error analysis studies of algebra skills 
@cite[mt27-wattawa].  Her conclusion after recording the errors made by
an algebra class over a period of three months is that
@quotation[@blankspace[1 line]

"... difficulties ordinarily attributed to algebra are in reality
difficulties of a more deep-rooted nature.  It would apparently seem as
if certain fundamental processes, particularly those of arithmetic, have
not become automatic enough for the poorer students to devote their
entire attention to whatever is new to them in algebra" (p. 212).
]

Clinical interview data on algebra problems has been collected for many
high school students @cite[cmb75-davis, focus81-burnett, basalg].
Almost all current research interest in algebra errors is directed
toward the development of an information processing model.  The
automated simplification of complex algebra problems has been a research
focus in Artificial Intelligence since the symbolic integration programs
of the 1960s.  IPS researchers have a well established vocabulary for
the representation and solution of algebraic equations @cite[ai81-bundy,
ijcai81-sleeman,modmathreas].  

However, an observation in
@cite[cmb75-davis] brings the appropriateness of the IPS model into
question.  Davis notes that the mathematical demands of a problem are
different from the cognitive demands.  Specifically, mathematical tokens
are used in several different ways; the interpretation placed upon them
varies with context.  For example, compound tokens such as @math[3x]
represent both objects and processes.  The student must learn to see
compound tokens in several different ways.  Davis' concern is
reminiscent of Spencer's dissertation conclusion:  ambiguities in the
meaning assigned to tokens leads to most errors.  This ambiguity is
particularly confusing when variables are introduced.  

The space of algebra errors is particularly difficult to map.
Arithmetic skills are confounded with algebraic skills, many algorithms
exist for the solution of algebraic equations, and the concepts
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particular to algebra, the variable and the equality symbol, are subtle
@cite[cpi-kaput, esm81-kieran, csms].  Bernard
summarizes the research @cite[pme6-bernard ", p. 145"]:  
@quotation[@blankspace[1 line]

"Indications are clear that the larger the number of steps, the less
likely students are to correctly solve the equation.  Possible difficulties
are with combining like terms, transposing terms, doing computation, or in
understanding fundamental concepts such as 'variable' or 'equation'."
]

In a study of algebra learning in novices, Greeno collected verbal protocol
data @cite[pitts85-greeno].  He observed that novice performance was
"...profoundly disorganized and fragmentary" (p. 3).  Most errors
were characterised as unsystematic.  Greeno concluded that "...students'
processes of representing expressions do not provide them with well-formed
representations of the structural features of the expressions
during their early stages of learning" (p. 11) @foot[This study
is consistent with the results presented in this thesis.].
===
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TEACHING MATHEMATICS

Something Is Not Working 

Spatial Math Is Manipulable

We hope to provide curriculum tools and materials that address a significant 
discontinuity in the teaching of mathematics, the conversion students must face 
going from an elementary curriculum grounded in concrete manipulables to a 
secondary curriculum grounded in abstract symbols.  This discontinuity is deeply 
connected to how we represent mathematical concepts, and is rarely brought into 
question.  Only recently, with the advent of web-based virtual manipulables, has 
the display technology become available to promote diagrammatic and visceral 
mathematical systems from a second-class role as informal aids to a first-class 
role as rigorous formal tools.

It is well known that America's students are underperforming in mathematics 
education.  On the Washington [State] Assessment of Student Learning (WASL) in 
2006, for example, half of the students in grades 6 through 10 failed to meet 
grade-level standards of performance for mathematics [ref].  The 2006 overall 
current failure rate of 50% incorporates a 75% failure rate for Washington State 
minorities and a 70% failure rate for students living at the poverty level, a 
group composed primarily of white and Asian students [Shaw ref].  The WASL is 
based on the Principles and Standards for School Mathematics developed by the 
National Council of Teachers of Mathematics (NCTM) [Trafton ref].

After a decade of extensive effort, the 2006 results represent a significant 
improvement (!), having increased from a 33% pass rate in 1999.  However, the 
continuing massive failure rate suggests that an exploration of innovative 
techniques in mathematics education may prove profitable. 

Manipulables

Historically, at the turn of the twentieth century Frege and Hilbert exerted 
their considerable influence to exclude diagrams and "intuition" from 
mathematics and consequently from the mathematics curriculum [%ref].  The 
success of the entirely symbolic approach of Whitehead and Russell's Principia 
Mathematica, followed closely by the rise of the use of symbolic techniques in 
digital computers, has led to the expression of higher mathematics almost 
exclusively in symbolic languages.  Elementary school teachers however, use 
manipulative and diagrammatic techniques widely.  Due to their physical 
limitations, physical manipulables have been constrained to "concrete examples", 
just as drawing a triangle in geometry is a representation of a particular 
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triangle.  However, with new software tools such as Geometer's Apprentice [ref], 
a student can "draw" a generic triangle, and use the diagram itself as an object 
of computation.

Poor math performance across America suggests that exploring innovative 
techniques may be beneficial.  One potential source of math confusion is the 
difference in the mathematical approaches of concrete manipulables versus 
symbolic abstractions.  Manipulables, for example, generally achieve addition 
based on the Additive Principle:  the representation of combined parts is the 
representation of the sum.  Symbolic addition is achieved by rule, the combined 
representations of the parts do not represent the sum.

Web-based diagrammatic and manipulative tools further confound the distinction 
between concrete application and symbolic abstraction. Their use is in direct 
opposition to the almost complete exclusion of diagrammatic, visual, and 
intuitive representations from formal symbolic mathematics.

===
fix
===
What is missing to date is a rigorous diagrammatic system of numerics, a system 
that is inherently interactive and manipulable while at the same time meets all 
criteria of symbolic formality.  Boundary mathematics is such a system.

We do not propose to have a solution to bridging the gap between the 
experiential mathematics of elementary school and the algebraic abstractions of 
high school.  We have, however, developed diagrammatic formal systems that are 
unexplored as tools for teaching.  Our research proposal is to

	 -- construct curriculum tools in boundary mathematics
	 -- examine student performance in light of differences between
	 	 manipulative and symbolic formal mathematics
	 -- analyze mathematical errors characteristic to each of these modes
	 -- refine the boundary math curriculum tools based on student feedback 

Virtual Manipulables

One direction of growth in tools for teaching mathematics is the use of web-
based virtual manipulables [refs].  A virtual manipulative is "an interactive, 
Web-based visual representation of a dynamic object that presents opportunities 
for constructing mathematical knowledge" ("What are Virtual Manipulatives?," 
Patricia Moyer, Johnna Bolyard, and Mark Spikell (2002)  p. 373).

Virtual manipulables provide iconic models that simulate concrete manipulation.  
They currently bare a strong resemblance to concrete manipulatives such as 
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Cuisenaire rods, base-ten blocks, pattern blocks, rulers, number lines, logic 
blocks, fraction pieces, and geoboards.  Virtual manipulables are decidedly 
constructivist.  Students construct meaning by using computer input devices, 
such as the keyboard, mouse, touch-screen, joystick, etc., to control apparently 
physical actions of virtual objects through translation, rotation, flipping and 
other generally spatial transformations.  For example, graphing linear equations 
can be made interactive both by generating a graph given student input of a 
linear equation, and by generating a linear equation that corresponds to student 
dragging and rotating the line graph itself [refs].  

Physical (concrete) manipulatives have a long history in the classroom.  Today,
Web-based applets that provide virtual models of mathematical concepts and 
computations are burgeoning.  The math archives [ref], for example, provides 
pointers to literally hundreds of tools, while the National Library of Virtual 
Manipulatives  [ref] Interactive Math project at Utah State includes hundreds 
more. Principles and Standards for School Mathematics Electronic Examples--
interactive applets for investigating concepts from NCTM [ref]. 

Many of these new electronic tools for mathematics learning provide a much 
broader experiential basis, they are manipulable models of abstract, symbolic 
mathematical concepts and algorithms.  For example, abstract mathematical 
concepts such as cardinality are mapped directly onto spatial and visual 
analogs, such as collections of abstract identical objects.  

Reimer [ref reimer], suggests potential benefits of virtual manipulatives for 
learning:

"Students liked the immediate feedback they received from the applets, the 
virtual manipulatives were easier and faster to use than paper-and-pencil, and 
they provided enjoyment for learning mathematics.  Their use enabled all 
students, from those with lesser ability to those of greatest ability, to remain 
engaged with the content, thus providing for differentiated instruction."

In Bricken [1992] and Winn and Bricken [1992] we mapped abstract algebraic 
concepts onto properties of space.  Addition was represented as sharing the same 
space without touching, while multiplication was represented by touching stacks 
of algebraic objects (constants, variables and signs).  The key idea was that 
these mappings were dynamic:  spatial manipulation achieved algebraic 
computation.  Figure 1 illustrates this spatial algebra.

Spatial Analogs

Visual and spatial analogs and models of mathematical concepts are elevated to a 
curriculum design principle in How [ref howmath p292]:
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"Design Principle 3:  Providing Visual and Spatial Analogs of Number 
Representations That Children Can Actively Explore in a Hands-On Fashion"

Spatial analogs are lines, scales, dials, etc. that support the concept of 
number within their geometry.  "Most students benefit from visual 
representations of concepts." [ref and [Fuson, 1986]].

The proposed tools based on boundary mathematics are not analogs, they are pure 
numeric forms that do not rely on an underlying geometric metric to construct an 
analogical relation to number.  The forms of boundary mathematics are simply 
spatial numbers, in the same way that the cardinality of a given set is 
spatially represented by the members of the set.   

Often though, multiplication is inconvenient within spatial systems.  Dials and 
scales simply do not support multiplication.  Cuisenaire blocks achieve 
multiplication via an increase in dimension, constructing an array that must be 
counted.  Thus the additive principle is called indirectly, since a x-by-y array 
must be counted unit-by-unit to arrive at the multiplicative result.  This 
provides a visual but not an algorithmic understanding.

===
Virtual reality is a computer generated, multi-dimensional, inclusive 
environment which can be accepted by a participant as cognitively valid [6].  VR 
teaching systems overcome the inconvenience of an insufficiently abstract 
physical reality by combining mathematical abstraction with the intuition of 
natural behavior.  The programmability of VR allows a curriculum designer to 
embed pedagogical strategies into the behavior of virtual objects which 
represent mathematical structures [2].  Using a VR presentation system, the 
axioms of algebra can be, so to speak, built into the behavior of the world.
===

===to integrate

The difficulties children have when they begin to learn algebra are well 
documented [9] [7] [17] [8] [4].  
Spatial representations enhance understanding [11].  Concrete manipulation is 
known to be an effective teaching technique [15] [1] [14].

===
[1]  Berman, B., & Friederwitzer, F. (1989)  Algebra can be elementary ... When 
it's concrete  Arithmetic Teacher, 36 (8), 21-24.

[4]  Bricken, W. (1987)  Analyzing errors in elementary mathematics  Doctoral 
dissertation, School of Education, Stanford University.
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SPATIAL FORMS 

Formalism is at the heart of mathematics, it is the desire to have every concept 
and every representation rigorously defined, so that no possible doubt or 
ambiguity can arise.  The sequential notation of token-strings has accompanied 
the rise of formalism.  More properly, the development of formalism was 
accompanied by the rigorous removal of all other notational forms, including 
both unit ensembles and diagrams.  We revisit formalism with a desire to 
incorporate intuitive models such as diagrams.  Proper treatment of the concepts 
of spatial representation shows that token-strings are not the only 
representation that is blessed with rigor.  A consequence of formalizing spatial 
forms is that we find an array of new, relatively unexplored concepts that can 
serve as a basis for arithmetic.  These unexplored concepts were mostly present 
at the dawn of civilization about 8,000 years ago.

Spatial Formalism

We seek to develop a formal system that can unite the axiomatics and the 
pragmatics of arithmetic.  The content that follows incorporates formal concepts 
that are anathema to many professional mathematicians [refs].  

"...despite the obvious importance of visual images in human cognitive 
activities, visual representation remains a second-class citizen in both the 
theory and practice of mathematics." [ref barwise1991]

Specifically, we develop a spatial formalism not based in string notation.  The 
notation of boundary arithmetic is not an informal convenience built on top of 
string-based expressions, it is instead a collection of formal techniques that 
instill upon spatial forms the same rigor as has been established for 
conventional token-string notation.

Trees and Graphs

Algebraic formulae are often treated as trees, and even graphs, suggesting that 
mathematical equations can be read as two-dimensional forms.  But what are the
specific properties that distinguish two-dimensional diagrams from one-
dimensional strings?  For example, the form x+y can indeed be viewed as a tree, 
as shown in Fig %%%.  However, whenever the branches of this tree are assigned a 
"right" and "left" position, the tree representation is constrained to be 
equivalent to a totally-ordered string representation.  A spatial form located 
in a featureless space has no anchors with which to associate the handedness of 
its branches.  The primary topological property of the tree representation is 
that there is a distinguished node, the center one, that has multiple links 
connecting leaves.  Each leaf, by definition, has only one link.  However, when 
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different labels are ascribed to either link, the simple graph form becomes 
oriented in the plane.  Topologically indistinguishable graphs become 
distinguishable by their handedness.  This orientation grounds our perspective 
so that we cannot engage in spatial transformations (such as rotating 180 
degrees) that otherwise would be freely available.  We consider handedness in 
graphs, counting the number of links, labeling links, and in general 
construction of any privileged perspective, to be artifacts rather than 
structural features of a spatial display.

===============================================================================
Figure %%%:  x+y as string tree spatial topo
===============================================================================

Similarly, the idea of specifying the number of links connected to a central 
node is extra-topological, thus imparting unintended semantics onto a purely 
spatial structure.  Thus, for example, a binary tree incorporates a structural 
metric, that of a specific number of links, that is not intrinsically part of 
the spatial structure.

Diagrammatic Logic

Both diagrams and token-strings can represent what is meant by propositional 
logic.  Frege and Peirce each developed a type of diagrammatic logic, a formal 
method of manipulating spatial structures to achieve logical deduction.  Their 
innovation is that relations between spatial shapes can stand in place of 
strings of tokens.

"...there has until quite recently been a long-standing prejudice against non-
symbolic representation in logic, mathematics, and computer science." [ref shin 
iconic p21]

The question to date has been whether or not diagrams can convey the same formal 
information as strings.  Venn developed his diagrams with set theory in mind; 
Peirce developed his existential graphs with logic in mind;  Hasse developed his 
diagrams with partial orderings in mind.  But there has been a history of 
exclusion of diagrams from the formal foundations of mathematics [refs], and a 
general disregard for the attempts by Venn, Peirce, Frege, and others to 
incorporate the expressive power of spatial forms into formal mathematics.  
Since the diagrammatic approach incorporates types of structure that are simply 
not available within a string-based notation, we consider spatial formalism to 
be an asset rather than a liability.

Peirce's Alpha Existential Graphs are a boundary logic within which the formal 
structure of sentential logic is expressed by nested and juxtaposed circular 
boundaries drawn on a plane surface.  Fig %%%.  The semantics of logic is 
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embedded within the containment relations of spatial boundaries.  In Laws of 
Form, Spencer Brown clarified Peirce's Existential Graphs by incorporated void-
equivalence into an algebra that stands independent of logic, but has an 
interpretation as sentential logic.  Fig %%% Boundary mathematics is built upon 
a new type of non-numeric imaginary first articulated by Peirce:  void-
equivalent form in a featureless space.

===============================================================================
Fig: AEGs
===============================================================================

===============================================================================
Fig: LoF
===============================================================================
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Featureless Space

We begin with a featureless space, and the implicit or explicit boundary that 
differentiates that space from the surrounding context.  Fig %%%  We are 
thinking quite physically rather than abstractly, of the space surrounded by a 
glass or a grocery bag, the inside and outside of homes and cars, and in 
particular, the edges of the page these words are recorded upon.

================================================================================
Figure %%%:
================================================================================

We want to maintain certain features of space within the syntax of the 
mathematical systems we are considering.  These features can be contrasted to 
aspects of the typographical space of a line, the words and letters arranged 
thereupon, and the rules of transformation that permit rearrangement of words, 
letters, and mathematical tokens.  String notation, the totally ordered 
arrangement of tokens endowed with a semantics, is supported by a one-
dimensional linear space, together with a collection of conventions about how to 
lay out long strings into lines on a page and pages in a book.  Modern algebra 
rests upon rules of syntactic string transformation, with its semantics 
reflecting the concepts of the spatial arrangement available to ordered strings.

For example, the concept of commutativity is represented by two strings that are 
connected by a sign of equivalence.  The circled dot, ⊙ , represents any 
commutative operator.  The small letters stand in place of arbitrary objects.

	 	 	 a ⊙ b = b ⊙ a
or
	 	 	 Rxy = Ryx

Commutativity permits an arbitrary form to reside either first or second in an 
ordering of two tokens.  It asserts that position on either side of the operator 
token ⊙ doesn't matter.  Alternatively, we may say that the commutative 
relation supports rotation of argument tokens through 180 degrees.  Fig %%%.  

================================================================================
Figure %%%:  rotation
================================================================================ 

The syntax gives permission to exchange the relative location of two universal 
variables, the semantics identifies a group theoretic symmetry.  Alternatively, 
arguments could be labeled by ordinals, freeing them in space by constraining 
them by ordinal identification,

	 	 	 R(first=x, second=y) = R(second=x, first=y)
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Ordinal labeling removes the ambiguity introduced by placing arguments in space 
by endowing each argument with an additional property. 

When specifying the commutative rule governing the unit of a system,

	 	 	 1 ⊙ a = a ⊙ 1

we conventionally identify a "right" and "left" unit rule, mirroring the 
positional and ordinal perspective on arguments. 

Now imagine providing a planar space for arguments,

===============================================================================
Figure   (a b) = (b a)
===============================================================================

Here the relative location of the two variables requires additional information;   
in addition to left/right, we must also specify the meaning of up/down.  From a 
Cartesian perspective, we have additional types of symmetry.  The spatial 
freedom permitted to an argument token can encode a more complicated object. An 
example is an imaginary value on the complex plane, for which real numbers are 
arranged in a line from left to right while imaginary numbers are arranged 
bottom to top.  

Here we examine the freedoms provided by not interpreting relative position, by 
not attributing arguments with additional properties.  In a spatial vocabulary, 
two forms in space can be free to be anywhere within that space (although 
leaving the space for a different space would considered to be a violation of 
intention).  We propose to remove the concept of distinguished arguments (as 
enforced by ordinal labeling for instance) from the operations of addition and 
multiplication.

If we consider the entire space enclosed by a frame as a single context, with 
argument tokens distributed anywhere within the frame, then commutativity 
becomes an irrelevant concept.  Here we are interested in spaces that operate 
upon whatever they contain, regardless of relative position or rotation of forms 
within that space.  The relative location of members of a set does not mater;  
similarly the relative location of spatial variables to matter.  The primary 
difference is that the spatial representation shows the absence of ordering for 
members of a set more explicitly, by having space to put them into.  The token-
string representation cannot explicitly represent the positional relation 
between members because strings are organized in a strict left-to-right order, 
{a,b,c,...}.
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The freedom of spatial position can be interpreted as super-commutativity, or 
one might say that commutativity is implicit within the spatial relation.  The 
perspective presented in this monograph is that the concept of commutativity is 
irrelevant to a spatial relation, the property is neither confirmed nor denied, 
neither explicitly nor implicitly.  We can elect to add either explicit 
commutativity or explicit non-commutativity as it becomes relevant, such as the 
case in which spatial structures are interpreted as non-commutative groups.

We will also develop the idea that spatial representation supports parallel 
network computational models, while string representation supports sequential, 
iterative  computation.  Our point is that axioms for a theory of integers can 
be constructed in both sequential and parallel notations.  Our goal is to 
introduce a simple formal system that incorporates intuitive spatial forms and 
operations, that achieves the algorithmic efficiency of place-value notations,  
that is compatible with existing notations, and that is as expressive as modern 
algebra while avoiding the linear symbolic abstraction that token-strings impose 
upon mathematical understanding.
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A Simple Example

Consider a collection of pennies placed on a table top, as shown in Fig %%%.  

===============================================================================
Figure %%%:  Pennies on a Table
===============================================================================

Every penny is physically distinct from every other penny, although each has the 
same value.  The coins can be freely moved about the table top and stacked upon 
one another.   The spaces occupied by each coin are disjoint, both pairwise and 
as an ensemble. There is no coordinate system that permits identification of a 
coin's position relative to an origin.  No particular coin has a privileged 
position.  In fact the only relations available to distinguish the relative 
position of coins are those of sharing the same table top, and of being stacked 
upon one other.  The number of pennies on the table is arbitrary, but we can 
clearly distinguish base cases of no coins and of a single coin.  

In this example, the structural relations between coins is a model of a boundary 
arithmetic.  The space occupied by the pennies is not a three-dimensional 
Cartesian space, nor a metric space, nor an abstract dimensional manifold;  
rather, it is featureless.  Even the flatness of the table is irrelevant to this 
model.  All that identifies a "table-top" space are the edges of the table-top, 
and the presence of coins in the space defined by the edges.  Strictly, the 
space containing coins and the configuration of coins themselves are co-defined. 

Define addition as stacking;  coins are added together by sharing a common 
stack.  Every coin is itself a stack, so that there is no difference between a 
single coin and a stack of one coin.  Here, the concept of addition embodies the 
Additive Principle:  the representation of a sum is the representation of the 
parts constituting the sum.  Fig %%%

===============================================================================
Figure %%%:  Naive Semantics of Adding Pennies on a Table
===============================================================================

This model of addition is substantively different than that of symbolic 
arithmetic.  Commutativity of the addition operation could be interpreted as an 
invariance of stack value under stack construction.  That is, two stacks can be 
combined in either order without changing the number of coins in the resultant 
stack.  Alternatively, commutativity could be interpreted as a permission to 
stack coins in any order.  However, the spatial perspective is stronger still.  
The positional freedom of a spatial configuration of coins makes assembly order 
irrelevant.  Coins are grouped within a space by being put into that space.  
There is no notion of which group goes first, nor is there a privileged group of 
coins that is added to.  In contrast to a necessity for formal permission to 
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rearrange the ordering of a sum as in string notation, in the spatial model, 
ordering is semantically irrelevant and syntactically inaccessible.  Stacks may 
be combined concurrently, and multiple stacks may be combined at the same time, 
precisely because the spatial configuration does not distinguish the concepts of 
spatial and temporal ordering.  For spatial semantics, the concepts of 
commutativity and associativity of addition simply add structural constraints to 
an addition process that, unlike string-based semantics, does not include 
ordering within the concept of addition.  To add several stacks of pennies, a 
child may pick them all up with both hands, and then place a single stack down 
on the table.  The number of stacks being combined is structurally irrelevant;  
the presumed sequence of picking up coins one pile at a time is temporally 
irrelevant.  

Further, the particular pennies in any of the stacks added together are 
indistinguishable.  Within a stack there is no particular ordering, no penny 
that is distinguished as the first or the last in the stack.  (Well, penny 
stacks do require a physical top and bottom coin, in that way the analogy is 
weak.  We could equally well use a bag or a handful of coins as the unordered 
physical structure, what we call an ensemble of coins.)  We will appeal to the 
handful analogy, we are consider a group of pennies, and other groups of pennies 
in other hands, and they all become a single group of pennies by being 
concurrently dropped into a larger bag.  

The central principle is that, from the perspective of the addition operation, 
no particular penny, or group of pennies, is special.  There should be nothing 
within the specification of what it means to add that says that one particular 
added unit is more central than any other added unit.  The concept of 
commutativity has this idea at its heart, but since commutativity conventionally 
must be asserted, it starts at the wrong place, by assuming a difference (when 
there is none) and then correcting this misconception by making a commutative 
rule.

Pennies-on-a-table provides a concrete example of a unit arithmetic, for which 
magnitude is expressed in a unary rather than a binary or decimal base.  The 
example illustrates that, conceptually, addition can be formulated outside of 
the structural rules of modern algebra, that indeed the rules of algebra may do 
disservice to the simplicity of the idea of adding.  We will show that addition 
can be formulated without exchanging the Principle of Addition for the 
conveniences of symbolic abstraction.  And we will show this more natural 
formulation to be both rigorous and efficient.  

Both Inside and Outside

The fundamental idea in boundary mathematics is to express mathematical concepts 
using representations that have both an inside and an outside.  A circle () is 
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the prototypical planar boundary form.  String tokens have only an outside, so 
that concatenation of string tokens is defined as adjacency on the outside.  
Boundary symbols, such as circles, can be composed on the outside, () (), and on 
the inside, (()).  One consequence of "two sided" symbols is that they can be 
interpreted both as objects (when composed on the outside) and as operators 
(when composed on the inside).  

It is important to accept that a boundary symbol is atomic, and not a relation 
between inside and outside.  As an atomic structure, a boundary symbol is 
concurrently object and operator, the specific interpretation is lifted from the 
representation itself, becoming a semantic choice when a form is read.  That is, 
in boundary mathematics, there is no explicit differentiation between object 
(member of a domain or codomain) and operator (function assigning correspondence 
between domain and codomain members). 

When a boundary form is read as an object, transformation can be defined by 
substitution of equivalent objects.  Objects can be generalized to patterns by 
including variables to represent arbitrary forms.  For example, the idempotency 
pattern gives permission to delete all replicate forms sharing a space.  Below, 
this pattern is illustrated for atomic objects and for patterns:

	 	 	 	 () () = ()

	 	 	 	 A A = A

Depth-value notation, in Section %%%, use an enclosing boundary extensively as 
an operator, one that multiplies its contents by the base value of the numerical 
system.

Unit arithmetic provides a running example of the more general idea of the 
spatial formalism of boundary arithmetic.  Boundary arithmetic is a calculus of 
partial orderings, using the frames that contain featureless space as a syntax 
for nested and juxtaposed abstract spaces.  For pennies-on-a-table, the 
perimeter of a coin serves as a boundary, or frame, that differentiates what is 
outside the coin from what is "inside".  Coins stacked together are inside the 
stack's boundary, while non-stacked coins are outside.   Both conceptually and 
physically, the stack boundary defines a third dimension of representation, 
independent of the two spatial dimensions of the table top.  

Representations that possess both an outside space and an inside space 
participate in a substantively different type of syntax than those (such as 
string tokens) that have only an outside.  We are familiar with this idea from 
the common notation for a function, f(x,y), which represents an operation when 
read conventionally from the outside, and which represents the arguments of the 
operation when read inside the function's argument delimiters.  When an argument 
is itself a function, such as g(a,b), the space inside the function delineators 
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is nested further by an application of function composition, f(g(a,b),y).  In 
functional notation, the space of arguments permits expressive options (such as 
the number and order of arguments) not available to tokens having no interior.

In boundary mathematics, the representation of constants and variables 
incorporates both an outside and an inside perspective.  Read from outside, the 
example of a penny is unitary.  Read as part of a stack, that penny participates 
in a grouping.  Thus, each atomic unit has a dual role, as an object in relation 
to other units on the outside, and as an object in relation to units inside a 
common shared stack.  We explore several substantive differences between string-
based and boundary representations in the sequel, the most fundamental of which 
is that the spatial zero is implicit as empty space.  The explicit 
representation of nothing as a token is both unnecessary and undesirable.  

Increasing the dimensionality of a representation creates a one-to-many map 
between spatial and string syntax.  Further structural constraints can be 
appended to spatial forms to construct an isomorphism to string forms; such 
elaborations are equivalent to converting the spatial formalism to a string 
formalism.  Herein, we pursue the more adventurous path of expressing integer 
arithmetic in a purely spatial syntax, the advantage (or cost, depending upon 
one's commitment to string processing) is that much of the structural foundation 
of modern algebra becomes irrelevant.

Unit ensemble arithmetic is our running example of a boundary mathematics.  But 
to illustrate the generality of the techniques, we now present an application to 
elementary algebra.
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SPATIAL REPRESENTATION of ELEMENTARY ALGEBRA

Our understanding of a concept is tightly connected to the way we represent that 
concept.  Traditionally, mathematics is presented textually.  As a consequence 
novice errors, in elementary algebra for example, are due as much to 
misunderstandings of the nature of tokens as they are to miscomprehensions of 
the mathematical ideas represented by the tokens.  We interact with spatial 
representations through natural behavior.  When the environment enforces the 
transformational invariants of algebra, the spatial representation affords 
experiential learning.  

In general, how we represent numbers is a matter of convenience.  For learning 
mathematics (and for doing mathematics) it is often more convenient to call upon 
visual interaction and natural behavior than it is to conduct symbolic 
substitutions devoid of meaning.  Spatial algebra uses the three dimensions of 
natural space to express algebraic concepts.  A higher dimension of 
representation greatly simplifies the visualization and the application of 
algebraic axioms.   Algebraic transformation and the process of proof are 
achieved through direct manipulation of the three-dimensional representation of 
the algebra problem.  Spatial algebra addresses common errors made by novice 
algebra students by permitting experiential interaction with abstract 
representations.  

===
The visual programming community has developed taxonomies of visual approaches 
[13].  The experiential approach to mathematical formalism presented in this 
paper is sufficiently unique not to fit into existing taxonomies of visual 
languages.  The approach of mapping formal operations onto the topological 
structure of space itself is not diagrammatic, iconic, or form-based.  Most 
fundamentally, experiential mathematics imparts semantics onto the void (empty 
space).  Actively using the void is both simple and conceptually treacherous 
[3].  
===

A Spatial Algebra

The components of space which can be used for the representation of mathematical 
concepts include: 

	 --  empty space (the void), 
	 --  partitions between spaces (boundaries, objects), 
	 --  labeled objects that share a space, and 
	 --  labeled objects that share a boundary (touch one another).  
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This is sufficient structure for the expression of elementary algebra.  One 
possible map from algebraic tokens to algebraic spaces is:

	 Constants:  
	 	 	 	 { 1,2,3,...}  -->   { labeled-blocks }   
	 Variables:
	 	 	 	 { x,y,z,...}  -->   { labeled-blocks }  
	 Operators:
	 	 	 	 { + }         -->   { sharing-space }
	 	 	 	 { * }         -->   { sharing boundaries }
	 Relations:
	 	 	 	 { = }         -->   { partitions of space }

Examples of a spatial representation of the above map follow.  

Constant as labeled block:

	 	 	 	 	 	 3

Variable as labeled block:

	 	 	 	 	 	 x

Space sharing as addition:

	 	 	 3 + 2 = 5

Touching as multiplication:

	 	 	 	 3 * 2 = 6

A simple algebraic term:

	 	 	 	 	 2x + 3

The gravitational orientation of the typography (top to bottom of page) in the 
above examples is not an aspect of spatial algebra, although gravitational 
metaphors are useful for the representation of sequential concepts such as non-
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commutativity.  As well, the sequencing implied by stacked blocks is an artifact 
of typography;  stacks only represent groups of objects touching in space.  

Group Structure of Spatial Forms

Elementary algebra is taught in high schools as an application of a very general 
theory called the theory of groups.  A group is simply a set of objects and an 
operation that converts some objects into other objects.  Groups can have 
particular properties or characteristics.  The Rules of Algebra as taught in 
school are the properties of addition, multiplication, and equality as defined 
by group theory.

Generally, spatial representation can be mapped onto group theory.  A 
commutative group is a mathematical structure consisting of a set and an 
operator on elements of that set, with the following properties:

	 --  The set is closed under the operation.
	 --  The operation is associative and commutative.
	 --  There is an identity element.
	 --  Every element has an inverse.

The integer addition and multiplication operators belong to the commutative 
group.

Commutativity

Spatial representation permits the implicit embedding of commutativity in space.  
The commutativity of addition is represented by the absence of linear ordering 
of blocks in space (visualize the blocks in this example as floating in space 
rather than in a particular linear order):

	 	 x + y = y + x

We intuitively recognize objects contained in a three-dimensional space as 
ordered solely by our personal perspective.  In contrast, typographical objects 
are necessarily ordered in sequence by the one-dimensional nature of text and by 
the two-dimensional nature of the page.  

Commutativity of multiplication can be seen as the absence of ordering in 
touching blocks:

	 	 	 	 	 x * y = y * x
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Again, in space there is no preferential ordering to touching objects:

	 	 	 	

Associativity

Associativity of addition is the absence of an explicit grouping concept in 
space:

  (x + y) + z = x + (y + z)

The apparent visual grouping expressed by differences in metric distance between 
blocks can be assigned a semantics of associativity (for example, add closest 
objects first), or it can be ignored, permitting the operation assigned to space 
to address multiple arguments in parallel.  From an intuitive perspective, 
operations embedded in space apply to any number of objects in that space.  
Whatever grouping we use is a matter a choice and convenience.  Parallel 
computers provide techniques for addressing all objects at the same time.

Associativity of multiplication is the absence of an explicit grouping concept 
in piles:

	 	 	 	 (x * y) * z = (x * z) * y

The apparent visual ordering of piles can be overcome by assuming that all 
objects in a pile touch one another directly.  Rather than displaying stacked 
objects, we might present objects in piles as completely interpenetrating.  
Every object in this non-physical representation is in contact with every other 
object, forming a Cartesian product of touching objects.

Distribution

Precedence operations associated with the distributive rule are the most common 
algebraic error for first year students [12] [4].  The representation of 
distribution in spatial algebra is particularly compelling.  Generally, the 
distributive law permits combining blocks with identical labels into a single 
block with that label.  Conversely (read right to left), distribution permits 
splitting a single block that touches separate piles into separate but identical 
blocks touching each pile:  
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ax + bx = (a + b)x

Blocks with identical labels are both singular and arbitrarily subdividable in 
space.  This ability to arbitrarily divide and combine blocks with a common name 
is the same as the ability to arbitrarily create duplicate labels in a textual 
representation.  Changing the size and the number of occurrences of a labeled 
block is easy in a virtual environment. 

Any potential ambiguity between distributive idempotency and the use of space as 
the addition operator is avoided by the effect of context on interpretation.  
Idempotency requires the context of touching blocks (multiplication).  Addition 
requires the context of non-touching piles. 

Identities

Zero is the identity element for addition.  The identity in the spatial metaphor 
is the void;  identities are equivalent to empty space.

The additive identity:  

	 	 	 x + 0 = x

That is, zero disappears in space:

The multiplicative identity: 

	 	 	 	 1 * x = x 

The One block disappears only in the context of an existing pile.  A zero in a 
pile makes the entire pile disappear:  

	 	 	 	 	 0 * x = 0

Additive Inverse

The inverse of a positive number is a negative number.  Negative numbers are the 
most difficult aspect of arithmetic for elementary students. One way to directly 
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represent inversion is to create an inverter block.  Another way is to create an 
inversion space; for example using "under-the-table" for inverses.  Inverses can 
be represented in many ways: as inverters, as colors, as orientations, as 
different spaces, as binary switches, as dividing planes, as inside-out objects.

In this version of spatial algebra, piles are inverted by the inclusion of a 
special inverter block:

	 	 	 	  

Since a negative number can be seen as being multiplied by -1, the inverter 
block is expressed as touching (multiplying) the pile which is inverted:

	 	 	 	 -x  = (-1) * x

The inverter block expresses subtraction as the addition of inverses,

	 	 x - x      is written as      x + (-x)

The additive inverse:

	 	 	 x + (-x) =  0

Calculus of Signs

The use of the inverter block for negative numbers introduces a calculus of 
signs into the algebra of integers.  A sign calculus requires the explicit 
introduction of the positive block:

	 	 	 	 	

The positive block is the inverse of the inverter block.  It introduces the 
concept of polarity and the act of cancellation.  Numbers without signs are 
usually assumed to be positive.  Making signs explicit removes this assumption.  

The following rules of sign calculus assume each sign has a unit value 
associated with it.

Additive cancellation in space:
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Cardinality in space:

	 	

Multiplicative cancellation in piles: 

	 	  

Multiplicative dominance in piles:

	 	 	

The following example illustrates an inverter sign distributed across all 
objects in a space:  

	 	 	 (-x) - y = -(x + y)

Multiplicative Inverse

Finally, division is the multiplicative inverse.  Again, there are many possible 
ways to represent an inverse in a spatial representation.  Since the traditional 
notation for fractions is primarily two-dimensional, it already has many spatial 
aspects.  The division line that separates numerator from denominator could be 
carried over to the spatial representation as a plane dividing a pile into two 
parts.  Here however, the multiplicative inverse is represented by inverse 
shading of the block label:

	 	 	 	 	 	 1/x 

The multiplicative inverse:

	 	 	 	 x * 1/x = 1

One weakness with the choice to represent a reciprocal as differently shaded 
labels is that composition of reciprocals -- for example 1/(1/x) -- is not 
visually defined.  Choice of representation necessarily effects pedagogy.  It is 
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an empirical question as to which representations facilitate learning algebraic 
concepts efficiently.

Fractions are the second most difficult area for students of arithmetic.  A 
typical problem using fractions requires the application of the distributive 
rule:    

   a/b + c/d = (ad + bc)/bd

Factoring

Factoring polynomial expressions is equivalent to multiple applications of 
distribution.  For instance: 

   x^2 + 4x + 3 = (x + 1)*(x + 3)

One advantage of the spatial representation on the right-hand-side of this 
equation is that both the factored and the polynomial forms are visible 
concurrently.  Looking from the side, we see two completely touching spaces 
which represent the factored form: 

	 	 	 	 (x + 1) * (x + 3)

Looking down from the top, we see four piles which represent the polynomial 
form:  

	 	 x^2 + 1*x + 3*x + 1*3

Here, the factored form is converted to the polynomial by slicing each addition 
space through the middle.  

Caveats

The representational details of the spatial algebra presented here are, like any 
choice of syntax, somewhat arbitrary.  We lists many options, for example, for 
the representation of inverses.  This representational freedom can be 
constrained by empirical studies intended to determine which particular 
representations are effective for task performance.  There is no reason to 
believe that effective representations are generic.  More probably, different 
individuals will prefer and understand different representations in the context 
of different tasks.  Still, the research to determine which representations are 
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effective has yet to be conducted.  In fact, demonstrating that spatial algebra 
actually improves performance in high school algebra remains as future research.

The weakest aspect of the proposed spatial  algebra is the representation of 
three or more multiplied objects, x*y*z for example.  This form can be 
represented by either completely interpenetrating blocks or by "blocks" with 
complex shapes that twist around to touch all other blocks.  This problem gets 
particularly difficult for multiplying several factored expressions, for 
example:  (x + 1)*(x + 2)*(x + 3)

In general, the cubic blocks presented above are misleading, since they imply a 
Cartesian coordinate system.  In fact, the spatial representation proposed here 
has no associated metric (or rather, the metric is irrelevant to the 
mathematical formalism).  The treatment of space might be improved by explicitly 
including a representation for the table which blocks can be imagined to rest 
upon.

Spatial representation provides a map to a wide range of new visual languages.  
The examples above are expressed in a language of labeled blocks.  The spatial 
rules, however, map just as easily onto people in a room, toys in a box, salmon 
in streams, and bricks in a wall.

Principles of Spatial Mathematics

We use the term boundary mathematics to describe the collection of rules and 
tools used to generate representations of spatial algebra.  Boundary mathematics 
is general in that its principles can be applied to many mathematical domains.  
Boundary mathematics is quite unique, since it incorporates both the participant 
and the void into its formal structure.

General Principles

-- Mathematics is the experience of abstraction.

-- Experience is not a recording.  Representation is not reality.

-- The void cannot be represented.

-- Space requires participation.  To participate is to partition space, to 
construct a boundary.

-- Boundaries both separate and connect.

-- Boundaries identify an intentional construction.
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-- Representation and meaning are different sides of the same boundary.

-- Our body is our interface.

Mathematical Principles

-- Operators, invariants, and identities can be embedded in space.

-- Multiplicity is generated by observation.

-- Commutativity is embedded in space, ordering is embedded in time.  Spatial 
entities are asynchronous parallel processes.

-- Associativity is the choice of the participant.  Spatial entities are 
autonomous.

-- Entities are both singular and plural in form, depending upon the 
construction of the participant.  Entities with the same name are the same 
entity.

-- That which is common to every entity in a space is common to the space 
itself, forming the ground of the space.

-- Touching spaces are in pervasive contact (Cartesian product).

-- Crossing a boundary inverts a space.  Inversion unites partitioned spaces.

-- Normalized spaces are those equivalent to the void.  They can support 
arbitrary grounds.

==========
[2]  Bricken, M. (1991)  Virtual reality learning environments:  potentials and 
challenges  Computer Graphics Magazine, ACM, 7/91.

[3]  Bricken, W. (1986)  A simple space  Proceedings of the Sign and Space 
Conference, University of California at Santa Cruz.  Also as HITL Technical 
Report R-86-3 , University of Washington, 1989.

[5]  Bricken, W. (1989)  An introduction to boundary logic with the Losp 
deductive engine  Future Computing Systems 2-4.  
 

21



[6]  Bricken, W. (1992)  Virtual reality:  directions of growth  Proceedings, 
Imagina'92, Centre National de la Cinematographie, Monte-Carlo. 

[10]  Kauffman, L. (1980)  Form dynamics  Journal of Social and Biological 
Structures  3, 171-206.

[12]  National Assessment of Educational Progress (1981)  Results from the 
second mathematics assessment  National Council of Teachers of Mathematics, 
Reston, Va.

[13]  Shu, N. C. (1988)  Visual programming  Van Nostrand Reinhold, New York.

[16]  Spencer-Brown, G. (1972)  Laws of form  Julian Press, New York.

[18]  Winn, W. & Bricken, W. (1992)  Designing virtual worlds for use in 
mathematics education  Proceedings of AERA, 1992.

22



UNIT AND BOUNDARY ARITHMETICS  --  SECTION IIC   October 1, 2008 10:55 PM
William Bricken
January 2007

Boundary Mathematics
	 Unit Arithmetic
	 Unit Arithmetic in Antiquity
	 	 Sumerian Cuniform
	 	 Egyptian Hieroglyphics
	 	 Roman Numerals
	 	 	 Pictographic Roman Numerals
	 	 	 Readability

UNIT ENSEMBLES
	 Dot Pictures
	 Foundations
	 Void Foundations
	 Counting vs One-to-one Correspondence
	 Calculating without Counting
	 Boundary Delineation
	 Names and Variables

1



Boundary Mathematics

Boundary mathematics is the study of formal systems that utilize diagrammatic, 
planar, spatial, and physically manipulable representations, in contrast to the 
token-string representations of conventional formalisms.  For example, the 
Euclidean School of Geometry in ancient Greece [ref] used concrete diagrams to 
define geometric axioms.

==finish

For example, boundary arithmetic relies upon syntactic constructs that occupy 
the two dimensions of a page;  representations are, so to speak, positionally 
free.  In particular, boundary arithmetic is independent of the concepts of 
commutativity, associativity, and arity.  Imputing these positional, temporal, 
and numerical syntactic constraints is a violation of the intended semantics of 
boundary arithmetic; specifically, boundary mathematics treats the ordering, 
grouping, and arity of arithmetic functions as semantically irrelevant 
structural detail.  An unintended but unavoidable consequence is that boundary 
mathematics rests firmly outside of the conceptual structures provided by modern 
algebra, group theory and set theory.  Although not emphasized here, it also 
stands outside of conventional sentential logic and Predicate Calculus.

===delete?
Algebra

The representations and transformations of boundary arithmetic are readily 
converted in a boundary algebra with variables.  Substitution and replacement 
are core operations within an algebra, so that boundary arithmetic prepares for 
the pedagogical transition from arithmetic to algebra.  Figure 11 show one 
possible extension of boundary arithmetic to algebra, by applying boundary 
notation to Peano's axioms.
===
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Unit Arithmetic	

===
CONSTRUCTOR

• isan ensemble
if A and B are ensembles then so is A B
No others
===

suggest UA is easier than positional notation

Consider unit-arithmetic:

	 to count:  establish a one-to-one correspondence between units and 
cardinal numbers
	 to unit-add:  place collections of units together
	 to unit-multiply:  replace each unit of one form with the other form

These operations are commonly taught using Cuisenaire rods and base-10 
arithmetic blocks.  Unit arithmetic is base-1.  Place-notation does not make 
sense in a base-1 system, since each new unit requires a new position.  The 
absence of place-notation leaves units free to be placed anywhere on the surface 
of representation, wether it be a page of a table.  This of course means that 
adding groups of units does not require any effort in keeping track of which 
units represent which magnitudes.  The difference between adding by pushing 
piles together and adding by keeping track of magnitudes and aligning and 
carrying it purely notational, and has nothing to do with what numbers mean.

By grouping blocks into collections of the same size, unit-arithmetic can be 
converted into an analog of Roman numerals.  By restricting the size of 
collections to one magnitude, a base system is added to unit-arithmetic.  
However, these extensions effect the reading of unit-numbers, they do not change 
the operations of addition and multiplication.

Both unit-addition and unit-multiplication follow the Additive Principle:  the 
combination of the parts represents the sum, without further computation.  The 
price, of course, is that the answer must be retrieved from the combined pile of 
blocks by (re)reading the piled blocks in one-to-one correspondence to the whole 
numbers. 

Unit-arithmetic does not translate well into the group theoretic structural 
rules of modern algebra.  The additive identity in unit arithmetic is "doing 
nothing", adding no blocks to a specified pile.  Commutativity is difficult to 
discern when piles are pushed together without selectivity.  Associativity too 
is difficult to support when multiple piles are pushed together simultaneously.  

3



And usually, the additive inverse is converted from a numerical object to a 
process of "taking away" blocks.

Since unit-multiplication is defined in terms of making a substitution, the 
order of substitution is structurally relevant, making the commutative and 
associative rules of multiplication also relevant.  The multiplicative identity 
is substitution of units and wholes.  

The additive and multiplicative inverses define new objects, expanding the 
domain of application from whole numbers to integers to rationals.  These new 
objects can be added to unit arithmetic, generating unit-integer and unit-
rational systems.

Figure 2 shows the mapping of unit arithmetic to the concepts of group theory.  
We are observing that unit arithmetic do not map onto the group theoretic 
concepts of place-value arithmetic, especially for addition.  The issue is 
deeper than syntax, unit arithmetic does not include the group theoretic 
structures of symbolic addition.  The weakness of the map may manifest at the 
level of a student's understanding and constructive modeling, or at the level of 
technical mapping of symbol systems and their semantics.  The divide between 
concrete and symbolic manipulation of numbers is not superficial, the two 
systems are simply incommenserable, an observation generally ignored by the 
mathematics curriculum.

In math education texts, for example, commutativity of unit-addition is achieved 
by fiat.  "We may associate 3+5 with putting a set of 3 members in a dish, and 
then putting a set of 5 members in a dish to form the union of the sets.  We 
associate 5+3 with putting the 5 set in a dish and then putting in the 3 
set." [ref johnson]  Unit-addition, however, does not require or incorporate an 
external dish or a temporal ordering or actions.  When a 3 set and a 5 set share 
the same table, children will add them by pushing the piles together 
concurrently.  One set simply does not have temporal precedence over another.  
More radically, it is possible to add the two sets merely by shifting one's 
attention, from the individual sets to the contents of the table.  All that the 
additive principle requires is a shift of the focus of attention.
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===
integrate with above
===

An example of a boundary arithmetic is tally or stroke arithmetic, within which 
identical marks are recorded in one-to-one correspondence to objects. Figure %%% 
shows the representation of the first few whole numbers in three tally systems, 
Pebbles, Tallies, Stars, and Dots.  Regardless of the type of unit, these 
systems all share the common characteristic that the magnitude of a number is 
explicitly represented by a one-to-one correspondence with indistinguishable 
unit "objects".  The multitude of unit markings explicitly represents the 
cardinality of an intended number. 

Here we call the arithmetic of identical marks, unit ensemble arithmetic, unit 
arithmetic for short.  We represent units by centered dots, •.  Unit ensemble 
arithmetic provides a continuing example in the sequel, however the formal 
principles of the boundary mathematics underlying unit arithmetic apply broadly 
to numerics, to logic, to algebra, and to more exotic systems such as knot 
theory and fractals.

===============================================================================
	 	 Pebbles   Tallies	      Stars		 Dots	
	
	 1    		 	 /	 	 	 	 •
	 2	 	 	 //	 	 	 	 ••
	 3	 	 	 ///	 	 	 	 •••
	 4	 	 	 ////	 	 	 	 ••••
	 ...

Figure %%%:  Unit Arithmetic Numbers
===============================================================================

Unit arithmetic possesses specific structural characteristics that identify it 
as a spatial formalism.  These spatial properties lift the representation of 
arithmetic from the strict ordering of token-strings into the space of diagrams, 
drawings, and other iconic representational forms.  The units, or marks, within 
a unit arithmetic are recorded in an open planar space that is free of an 
underlying metric.  Magnitude is directly visible as the accumulation of a 
quantity of indistinguishable marks.  

Addition in unit arithmetic is characterized by the Additive Principle:  a sum 
is represented explicitly by the accumulation of its components, or parts. 
Figure %%%. Symbolic arithmetic, in contrast, represents a sum as an abstract 
encoding derived from transforming the abstract encodings of the components of 
the sum.  
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===============================================================================
Fig. %%%:  
===============================================================================

Multiplication of two collections of marks in unit arithmetic is by substituting 
a replicate of one entire collection for every unit in another collection.  
Figure %%% show how multiplication can be easily visualized.  Although marks can 
be subtracted by "crossing them out", unit arithmetic does not have an explicit 
zero token.  Zero marks is not represented as 0 or as any other token.  It is 
instead the absence of marks, the presence of unmarked space.  The semantic use 
of non-representation is a signature characteristic of a spatial, or boundary, 
mathematics.

===============================================================================
Fig. %%%:  
===============================================================================

Unit Arithmetic in Antiquity

Archeological evidence [ref Schmitt-Besserant] suggests that unit arithmetic was 
in use in pre-Sumerian cultures, circa 5000 BCE.  By 4000 BCE, units were 
combined into groups of equal size, most probably to facilitate counting.  
Base-10 grouping is dominant in ancient numerical systems, as is positional 
notation.  In positional notation, tokens for grouped numbers are arranged by 
order of magnitude in a line.  A primary (but not particularly ancient) example 
is Roman Numerals.  Three thousand years prior to the Romans, Sumerian cuniform 
also included grouping tokens.

Sumerian  Cuniform

Egyptian Hieroglyphics

Roman Numerals

The Romans iused names for collections of certain numerical values.  What we 
call "five" was spatially converted to the shape "V".  For example,

	 	 	  5  ==  V  ==  ///// 

The Roman numerical names (translated into their modern reading) include:

	 	 I  ==     1
	 	 V  ==     5
	 	 X  ==    10
	 	 L  ==    50
	 	 C  ==   100
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	 	 D  ==   500
	 	 M  ==  1000

The particular numeral assignments have deep roots in the pre-history of the 
evolution of mathematics through counting (called unit form above).  The 
techniques of numerical arithmetic evolved in co-dependence with our built-in 
numerical computing tool, the hands.  The symbolic representation of these 
numerical processes arose in co-dependence to other physical tools, such as 
impressions in clay, knots in string, and the abacus. 

Pictographic Roman Numerals

Roman numerals are not Roman letters, although capital letters do serve as a 
convenient typographical form of numerals.  C, which represents the numeral 100, 

ccI>>

cccI>>>

The Roman numerals for large numbers are boundary forms.  The letter sequences 
that depict them are iconic forms for spatial structures, and not letters of the 
Roman alphabet (">" is reversed "C"):

===============================================================================
	 	     100	 	   C
	 	     500              I>              
	 	   1,000             CI>               (|)
	 	   5,000	 	    I>>	 	    |))
	 	  10,000	 	  CCI>>	 	  ((|))
	 	  50,000	 	    I>>>	 	    |)))
	       100,000	 	 CCCI>>>	 	 (((|)))
===============================================================================

Early versions of these ideas were present in Roman numerals, for example, where 
729 would be represented as DCCXXIX (D=500, C=100, X=10, and I=1). Although 
Roman numerals use grouping by tens and the interpretation of a numeral depends 
to some extent on the placement of the symbols,20 they do not at all constitute 
a place-value system. Also, the system of Roman numerals is ad hoc, in the sense 
that each new grouping requires a new symbol, so it is strictly limited in 
extent. 

Readability
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The problem of readability of large numbers is addressed by having names for 
large groups, such as M for 1000.  Like unit arithmetic, Roman Numerals can be 
added by collecting representations together in a shared space:

	 	 1096 + 387   ==   MLXXXXVI + CCCLXXXVII = M CCC LL XXXXXXX VV III

The result of a sum is significantly easier to read than the corresponding sum 
in unit ensemble notation, which would consist of 1483 dots. Figure %%%.

===============================================================================
Roman Numeral and Unit Ensemble Arithmetic Addition

(spatial joining w/wout groping)   1483 DOTS

Figure %%%
===============================================================================

Specific "Roman Numeral facts" improve the ease of reading even more.  For 
example: 

	 	 5+5 = 10   		 	 ==    VV = X
	 	 10+10+10+10+10 = 50	 ==	 XXXXX = L
	 	 50+50 = 100   	 	 ==    LL = C

	 	 1483   ==    M CCC LL XXXXXXX VV III = M CCCC L XXX III  

Although Roman numerals use grouping by tens and the interpretation of a numeral 
depends to some extent on the placement of the symbols,20 they do not at all 
constitute a place-value system. Also, the system of Roman numerals is ad hoc, 
in the sense that each new grouping requires a new symbol, so it is strictly 
limited in extent.

===
We next develop a formalism for spatial units, without as yet calling upon an 
interpretation as an arithmetic of integers.  Spatially arranged units 
constitute a boundary mathematics.  Units are both located outside one another, 
and located inside a container that defines them as a Whole, an ensemble of 
identical parts.  We adopt the whole/part relational structure from mereology.  
We then describe the structure of equivalence relations upon spatial forms, in 
particular defining substitution of forms within a given spatial environment as 
a primary transformation mechanism. 
===
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UNIT ENSEMBLES

A unit is a single mark, stroke, tally, pebble, or other singular distinction.  
We represent the atomic unit as a centered dot, • .  Unit marks may be 
replicated, providing a supply of indistinguishable replicas.  We will enforce 
the indistinguishability of unit replicas.  The only difference between 
replicated units is the space that each occupies.  Replicas have separate 
existence, but cannot be indexed, labeled, or uniquely identified.  Of course, 
the constraint of singular representation applies only within one computational 
or representational context.  We can freely rewrite a configuration such as that 
in Figure %%% on another page.  More commonly, spaces separated by an equal sign 
can each reference the same object.

Units can occupy space in two distinct ways, by SHARING SPACE and by being 
PARTITIONED into different spaces (that is, by not sharing the same space).  
Figure %%% shows three separate spaces with several units sharing each space.  

===============================================================================

Figure %%%:  Distinguishable Spaces and Indistinguishable Units
===============================================================================

Units that share the same space constitute an ensemble.  A single space can 
contain only one ensemble of units, specifically the units that share that 
space.  Units are components, or parts, of an ensemble, as well as discrete 
entities.  An ensemble can consist of a single unit, but it cannot consist of no 
units.  When units are absent, ensembles do not exist.  Thus there is only one 
type of form, the ensemble, that is co-defined with the space it occupies.  We 
will consider only transformations on ensembles.

Note that ensembles differ significantly from sets;  

	 -- there is no "empty" ensemble
	 -- the parts (members) of an ensemble are all identical 
	 -- the parts are not separately identifiable objects
	 -- there is no distinction between a single unit 
	 	 and an ensemble consisting of a single unit part, and 
	 -- no unit participates in more than one ensemble.

•

•

•

•
•

•

•
•

•

•
•

a

b

c
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Dot Pictures

For typographical convenience, we will place units that share the same space 
together in a continuous line, for example, •••••••.  Stringing units together 
is an informal notation and does not imply a string syntax.  

===============================================================================
fig   circles and dots
===============================================================================

It is important to appreciate that units in an ensemble share absolutely no 
relative, metric, or positional relationships.  Since units in an ensemble 
cannot be differentiated, they cannot participate in semantic relations.  Thus, 
the concept of the intersection of ensembles is not defined, for if intersection 
were possible, then at least one unit could participate in two ensembles.  This 
unit would be "in two places at the same time", and thus would be distinguished 
from other units.  

An alternative syntactic method of conceptualizing units in ensemble is that we 
are not free to construct replicate names, a unit cannot have pointers to it.  
Units are not referents of variables;  they represent themselves.  This 
perspective treats the notion of uniqueness of reference seriously:  each 
separate representation of a unit is a different unit.  A unit that exists 
refers only to itself.  Thus, units have a significantly different semantics, or 
meaning, than do conventional tokens.  Specifically, the unit dot indicates a 
unit that connects to nothing but itself.  It is its own meaning.

Should we wish, the complete non-interaction of units can be attributed to the 
space inside an ensemble boundary.  That featureless space has no underlying 
substructure to support interaction between contents.  This idea is not unusual, 
it is the semantics of sets.  The defining characteristic of a set is its 
membership.  

The calculus of unit arithmetic does not include labels for or variables over 
units.  Thus, for example, it is syntactically not possible to write a 
commutative rule for units, just as the commutative rule applied to unit 
integers loses its interpretability:

	 	 	 1 + 1 = 1 + 1

A deeper issue addressed in the sequel is that we no longer have the convenience 
of predicate calculus as a base language for formalization.  In particular, the 
concept of a unit ensemble requires non-standard functions and relations.
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Foundations

Replicate units are intended to be indistinguishable, in order to reduce the 
idea of counting to a foundation of one-to-one correspondence between marks and 
objects.  The semantic equality between an abstract cardinal Number and the 
quantity of its referent is then defined only by an operation of matching 
identical units to things one-to-one.  This approach differs from that of set 
theory, in that sets require unique symbolic forms to correspond to unique 
objects.  Number is a property of an infinite class of sets that each has 
exactly the same "number" of members.  

With unit ensembles, quantity is achieved by replication rather than by unique 
identification.  The replicate function shares much with the successor function 
of conventional axioms of numerics.  The successor function constructs and 
identifies a unique individual that is "next".  This new number is strictly 
connected with the "prior" number from which it sprang.  The replicate function 
maintain no such allegiance. There is nothing new constructed, replicate is but 
a mirror conveniently placed so that we might perceive more than one.

Void Foundations

 ><  ><  not

	 • = •

The significant difference is that the addition and multiplication tables for 
binary form requires entries for 0.  Thus there are four possibilities for a 
particular sum of two binary digits:
	
	 	 0+0 = 0
	 	 0+1 = 1
	 	 1+0 = 1
	 	 1+1 = 0	 carry 1

This translates to an XOR gate in circuitry, a single logical function that, of 
the two-input logical gates, requires the most complex wiring of transistors.

In boundary forms, the literal absence of 0 reduces the computational 
transformations to one.  In the case of "0+0", absence does not support the 
concept of multiplicity.  That is, one cannot tell if nothing has been added to 
nothing, or if it hasn't.  Similarly, in the cases of "0+1" and "1+0", one 
cannot determine if the unit that is present has or has not been added together 
with nothing.  Thus the only computational case is that of "1+1", that is, unit 
merge.  In circuitry, unit merge can be determined by a simple AND gate. &&?&&
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The boundary situation for addition is similar to binary multiplication, for 
which absence of two forms determines the result:

	 	 0x0 = 0
	 	 0x1 = 0
	 	 1x0 = 0
	 	 1x1 = 1

Boundary multiplication, however, does not involve "times tables", 
multiplication is achieved by simple substitution for units.  For forms with 
more than one unit, multiplication also requires replication.  In circuitry, 
this is routing of signals (for substitution), and splitting of signals (for 
replication).

Since unit substitution occurs at the depth of the particular unit, 
multiplication via addition of exponents occurs automatically.  Multiplication 
of magnitude is always 1xN, the single case of look-up which is significant in 
binary multiplication.

===
leibniz-clarke
===

An accurate assertion of the idea that every unit is indistinguishable would be 
the algebraic rule

	 	 	 • •  =  •

which reduces all unit representations to their singular identity.  
Conventionally, this is an idempotency rule, and leads to a spatial Boolean 
algebra by collapsing the idea of separable replica.  

Here we wish to construct multiplicity via replication of indistinguishables, 
which can be achieved formally by denying that the space containing units is 
idempotent:

	 	 	 • •  ≠  •

Instead, uniqueness of reference is supported by the concepts of ensemble and of 
disjoint partitions.

We thus permit replications to continue in existence, while still requiring that 
they are in all other ways indistinguishable.  We will, however, need a 
mechanism to distinguish ensembles of units;  this can be achieved spatially by 
providing a capability to maintain different spaces.  In string representations, 
a space between letters defines a word.  Although letters are the atomic unit of 
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syntax, words are the atomic unit of semantics.  It is the space between words 
that distinguishes structure from meaning.  Similarly, we will distinguish units 
within an ensemble by proximity.  In a spatial notation, proximity can be spread 
over the plane of the paper.  To be clearer still, we place a spatial boundary 
around each ensemble that is assigned a distinguishable meaning, or reading, as 
is illustrated in Figure %%%.  

===============================================================================
Fig. %%%:  
===============================================================================

Counting vs One-to-one Correspondence

The constraint that units cannot be distinguished from one another can be 
phrased in another, somewhat surprising, way:  we are not able to count units.  
Counting requires assigning each unit a unique identifier, that is, it requires 
making them distinguishable.  The calculus we are developing is sufficiently 
simple to operate prior to the idea of counting.  The technique that replaces 
counting is one-to-one correspondence.  Counting is, in fact, placing units in 
one-to-one correspondence with a sequence of unit increments.  What we will not 
be using, and for spatial arithmetic do not need, is the sequence of increments 
otherwise known as the integers.

The proposition that we do not need the integers for arithmetic sounds quite 
strange.  However, when numbers are represented by unit ensembles, we have the 
ensemble itself to stand in place of the unique integer it corresponds to.  This 
approach is quite visual, an ensemble illustrates the Number of its unit parts.  
An ensemble is also abstract, in that a particular ensemble corresponds to a 
Number; it is not, for example, a member of a collection of ensembles.  

Cardinality is the only property that distinguishes ensembles.  Within the 
algebraic frame of mind,

	 	 • • ≠ •

is the only relational rule.

The Number of unit replicas within an ensemble can be determined only by 
applying a counting function that works through one-to-one correspondence.  
Number is an external characteristic of ensembles.

A natural concern would then be:  how can we know the number of units in an 
ensemble without counting them?  And of course, we cannot.  The idea though is 
that we can separate the operations of an arithmetic calculation from reading 
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the result, and we need to count only once, when we have arrived at the result 
of potentially many operations.

Calculating without Counting

Unit ensemble arithmetic provides all the machinery needed to do conventional 
arithmetic operations without having to stop to count.  After the operations 
have been completed, it is necessary, only once, to count what remains as the 
answer to the computation.  The innovation is primarily one of separating the 
idea of arithmetic calculation into two independent components, transformation 
and evaluation.  The spatial representation of unit ensembles permits this 
separation of tasks.  We might say that conventional arithmetic is easy to read 
(to count) but not so easy to calculate with.  Unit ensembles are easy to 
calculate with, and not so easy to read.

===
Money as an example? don't count pennies in quarters
===

The difficulty in reading unit assembles is solely in tallying up the individual 
units in an ensemble that represents the result of a computation.  The 
difficulty in computing with conventional Arabic/Hindu numbers is that we are 
maintaining the capability of easy reading throughout the computational process.  
It is quite clear that both representations of the integers address the same 
semantics, that of the transformation of Numbers under the operations of 
arithmetic.  Any Arabic/Hindu numeral can be decomposed into a sum of units, and 
thus brought into correspondence to unit ensembles.  Similarly, any unit 
ensemble can be encoded via counting as a conventional place-valued numeral.  
The specific issue is not that the abstract systems are different, it is that 
the concrete representations are different.  And, somewhat contrary to the 
conventional mathematical position that syntax does not interact with semantics, 
syntax does interact with the algorithms that achieve semantic transformation.  
By strictly separating reading from operation, we can engage in simple spatial 
algorithms during the transformation stage, and then simple one-to-one counting 
during the reading phase.  See Fig %%%.

===============================================================================
Fig. %%%:  
===============================================================================

Another concern may be that computing with unit ensembles is indeed difficult, 
since we must deal with a lot of them, particularly for large numbers.  In 
Section %%% we will provide a base-10 spatial notation for unit ensembles that 
maintains the simplicity of the transformational rules while gaining the 
representational efficiency of common place-value notation.  We preserve the 
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ease of spatial transformation of unit ensembles through a spatial depth-value 
notation that has all the advantages that conventional place-value numerals 
confer upon reading, without the algorithmic overhead that place-value notation 
places upon calculation.  By comparing the two approaches, we can possibly learn 
more about the nature of number.

Table %%% presents a comparison of various notations across readability, 
computability, and convenience.

Boundary Delineation

Boundaries can also be expressed in string format by parentheses, braces, and 
brackets.  [quote Knuth]  For typographical convenience, we will represent 
ensembles as bounded dot pictures, and more than one ensemble as bounded dot 
pictures with a separating bar, | , between ensembles to indicate separate and 
disjoint spaces.  Bars that separate ensembles are partition delimiters.  The 
bar is an informal notation that permits a more compact representation of 
discrete ensembles.  Thus

	 	 (•••|••••)

represents two ensembles in two different spaces.  For convenience, we omit the 
containing boundary around singular wholes, letting the implicit boundary of 
white space delineate the ensemble.

Different ensembles must necessarily occupy different spaces, since all unit 
parts within a particular space participate in the same ensemble.  Ensembles are 
disjoint in space, so that the idea of a part "on the left of a bar" and a part 
"on the right of a bar" has no meaning.  More appropriately in spatial syntax, 
Figure %%% illustrates that there are no positional metrics associated with the 
representation of partitioned Wholes:

===============================================================================

Figure %%%:  Several Indistinguishable Partitioned Wholes
===============================================================================

Each of the partitioned Wholes in Figure %%% is identical.  The varieties 
pictured in Fig %%% illustrate, respectively, that rotation of a Whole, 
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placement of units within partitions, placement of partitions within Wholes, and 
shape of partition boundaries have no intended semantics within the spatial 
syntax.  The variety of appearance over representations of a given partition in 
analogous to the variety of appearances afforded arbitrarily selected variable 
tokens within a string representation.  

Typographically, each of the above circle pictures is represented by one dot 
picture:

	 	 (•••|•••|••|•)

The above partition of ••••••••• is a singular structure consisting of a 
collection of wholes within the ensemble delimiter (represented by parentheses 
in the example).  A partition is not a set, and also not a multiset, for several 
reasons:  

	 -- an empty partition is not defined,
	 -- partitioned Wholes do not share objects,
	 -- transformations apply to partitions and ensembles, 
	 	 not to constituent units.  
	 -- all members are identical
	 -- all ensembles are identical but for the cardinality of parts

Combination of ensembles cannot be interpreted as a type of union operation, 
since the union of objects from two sets produces a collection of objects, while 
combining ensembles produces a single united ensemble.

Names and Variables

Although units do not support naming, ensembles do.  Later, within an 
interpretation as integers, we will label ensembles with numerals, {1,2,3,...}.
For now, small letters {a,b,c,...} are used as names of particular ensembles.

Boundary and unit calculi utilize ensembles as patterns for substitution and 
transformation rules.   Capital letters {A,B,C,...} are used as variables that 
range over forms, that is, over Wholes and over partitions.  Operations over 
partitions are rarely mentioned in the sequent, so to keep partitions clearly 
marked, we will occasionally use italic capitals to refer to partitions.  Normal 
capital letters will be used exclusively to refer to ensembles within a single 
space.

Here is an example of a partitioned Whole with labels:

	 	 A = (•••|•••|••|•) 
	 	 A = A|B|C|D   where   A = •••, B = •••, C = ••, and D = •
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MEREOLOGICAL CONCEPTS

Mereology is a formal system not based in set theory that addresses part/whole 
relations.  We now consider several mereological concepts that contribute to a 
formalization of unit ensembles:  void, fusion of parts, partitioning an 
ensemble, and spatial structure.  In general, an ensemble is a mereological 
Whole with parts that do not support overlap (intersection in set theory).  

Void

Mereology studies Wholes and parts of wholes. It does not embrace an empty 
object, since the empty whole would have no parts.  Emptiness cannot participate 
in an ensemble.  When unit parts are present in a space, emptiness is negated, 
while an empty space, containing nothing, has no parts, no properties, and no 
mechanism by which it can be identified.  That is, an "empty ensemble" does not 
support even a label.  More specifically, empty space is what is contained 
within an empty boundary.  

The syntactic implication of a Void with no name is that all names and labels 
refer to existent ensembles.  When an ensemble ceases to contain parts, its 
label ceases to exist.   Void, the absence of both concept and representation, 
does however play a significant role in formal unit and boundary arithmetics.  
It is possible to have a representation of structure with ambiguous reference;  
this is the conventional notion of a variable.  So capital letter variables, 
those that stand in place of ensembles, can also stand in place of nothing.

Existent structure that denotes Void is said to be void-equivalent.  Void-
equivalent forms can participate in an equality relation;  they are equal to 
their absence, and thus semantically irrelevant.  When a void-equivalence is 
established, void-equivalent forms can be replaced by their absence, that is, 
they can be deleted.  Formally, such a deletion is a void-substitution.

The equational representation of void-equivalence is non-standard:

	 	 	 «void-equivalent-form» =

It is intentional that nothing is recorded on the right-hand-side of this 
equation. 

Like the empty set, every void-equivalent form is everywhere present within 
every representation.  Unlike the empty set, Void is neither unique nor 
identifiable.  Like the core of Leibniz' argument against replicate universes, 
identification or perception of Void negates its essential characteristic of 
being Void.
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Void Meta-Notation

We have already referred to Void.  The word "Void" is within a meta-vocabulary,  
we have used it to talk about the concept of absence in boundary mathematics.  
It is sometimes inconvenient for communication not to be able to incorporate a 
pointer to what is essentially not there.  We do so by inserting a meta-symbol 
for Void within the equational syntax.  To label Void as clearly meta-notation 
within an equation, we will write the label «void», or >< for short.

===
Void has no properties, including cardinality, so

	 	 >< ><   is an abuse of meta-notation.
===

The meta-token >< is meant to represent a form that is disappearing into its 
center.  It is always easy to read, since it is a meta-token, it can be deleted 
wherever it occurs, without loss to meaning.  Such a sign is truly a "notation", 
since it acts as a reminder but does not act as content.  Said another way, the 
meta-token >< is purely cognitive.

Units

Units are solid, in that a unit has no contents other than itself.  Units are 
also empty in that they contain nothing else inside.  Solidity of units is a 
representational aid that conveys the impression that it is not possible for a 
unit to occupy the space inside another unit.  This constraint can be stated as 
an equation:

	 	 • • ≠ •

Boundary mathematics addresses representations with both an inside and an 
outside.  A unit has been defined to have no accessible interior because that 
particular structure nicely models the units the constitute Numbers.  We can 
also construct a unit boundary that does have an inside:

	 	 ()

This may be considered to be a Hollow unit.  There are two possible 
configurations of a Hollow unit and its replicate. These simple structures may 
be represented as configurations of delimiter pairs,

	 	 () ()		 and	 	 (())
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We reserve nested boundaries for a different task, that of depth-value notation.  
In base-2, a boundary doubles the magnitude of its contents.  The corresponding 
structural equation is

	 	 () ()	 =  (())

With unit notation, this equation would be written as

	 	 • • = (•)

Solid units enforce the accumulation of a magnitude of replicates, permitting an 
interpretation as whole numbers.  Hollow units provide an additional 
interpretation; we later use them to represent negative units.  

It is of passing interest that changing the cardinality rule to an idempotency 
rule

	 	 ()() = ()	 	 	 calling
	 	 (()) = ><	 	 	 crossing

creates a system that is sufficient to fully express propositional logic [refs].

With nesting of Hollow units reserved, we will permit juxtaposition of Solid and 
Hollow units in the same space.  These units are defined to annihilate each 
other, providing the essential void-equivalence equation for the system of unit 
ensembles:

	 	 • ◊ = ><	 	 	 annihilation

The two unit rules that govern the construction of an interpretation for 
integers are:

	 	 • • ≠ •	 	 	 cardinality
	 	 • ◊ = ><	 	 	 annihilation

Nesting-as-doubling will later provide a far more convenient notation for large 
Numbers.

Fusion

In formal mereology, parts are composed together into Wholes.  Each Whole is 
exactly the sum of its parts, and nothing more.  Here, units are 
indistinguishable parts of wholes;  wholes are distinguished by occupying 
distinct and disjoint spaces.  We will borrow from mereology the concept of 
fusion as a method of construction for ensembles.  New ensembles are constructed 
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by fusion of existent ensembles.  For example, the fusion of ••• with •• is 
•••••.  Algebraically:

	 	 	 fuse(•••|••)  =  •••••

(•••|••)  represents two spatially disjoint ensembles, ••• and ••.  Fusion 
unites the parts of each ensemble into a single Whole.  The parts of the fused 
Whole are the parts of Wholes that are fused, while the distinction between the 
Wholes that have been fused is lost.  Fusion is not set theoretic, there is no 
reference to objects, classes, or type hierarchies. 

In general,

	 	 	 fuse(a|b) = ab

The label "ab" denotes a single new space containing as parts the ensembles 
formerly occupying (and defining) spaces a and b.  Of course, once fused, the 
discrete identification of the parts formerly associated with spaces a and b is 
lost, as are the spaces themselves.  Note that "ab" does not denote 
multiplication, it denotes the ensembles a and b fused into ensemble ab.
	

Variarity

For convenience, the above example fuses two spaces.  Fusion, however, is blind 
to the number of spaces being fused.  Fusion is simply the simultaneous 
collection of any number of formerly separate ensembles into a common space.  A 
Whole is simply the fusion of its parts, and in particular, a Whole is not 
formed by a sequence of "binary" fusions. 

An operator that accepts any number of arguments is called variary.  Variary 
functions do not have a specific arity.  A more general notation would then be:

	 	 	 fuse(a|...|z) = a...z

An example of the application of fusion in spatial notation:

                  

• •

•

•

•
•

•
•

•

• •

•

•

•
•

•
•

•

=fuse

Typographically, we represent the above spatial equation as

	 	 	 fuse(•••|•••|••|•) = •••••••••
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Void, the absence of an ensemble, cannot be fused since there is nothing to 
fuse.  Fusion of a single ensemble is an identity:

	 	 	 fuse(a)  =  a

By viewing the parts a,...,z from the perspective of the fused Whole that they 
form, we can interpret the structure a|...|z as singular, making fusion a unary 
operation.   That is, fusion operates on a singular partitioned form, converting 
it into a single non-partitioned Whole by deleting existent partitions.  

Many-to-One

Fusion maps any partition of a given Whole into that Whole, making fusion a 
many-to-one spatial operation:

	 fuse(•••|•) = fuse(••|••) = fuse(••|•|•) = fuse(•|•|•|•) = ••••

Partitions of the same Whole become equal under fusion.  Above, the varieties of 
the partitioned whole •••• are semantically equivalent although they differ 
syntactically.   The set of partitions can be arranged into a lattice, with 
lattice levels counting the number of Wholes constituting a particular 
partition, That is, the number of parts in the partition.  Links between 
partitions showing available deletions of a single partition barrier.

===============================================================================

	 	 	 	     •|•|•|•		 	 four parts
                              /
	 	 	 	    ••|•|•	 	 	 three
                           /     \
                       •••|•    ••|••   	 	 two
                           \     /
	 	 	            ••••	 	 	 one

Figure %%%:
===============================================================================

The theory of unit ensembles currently incorporates only one sort, that of the 
ensemble, or Whole, which is composed of units.  A Unit Sort is not necessary; 
in the calculus of unit ensembles, a solitary unit is always an ensemble of one.  
Besides, due to the indistinguishability of units, there is only one unique 
member of the unit sort.
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Flatness

Fusion converts Wholes in separate spaces into a single Whole in a single space.  
By construction, ensembles do not form into a hierarchy of structure;  fusion 
enforces this.  This mereological operator differs from both set theory and 
function composition.  Specifically, fusion is a "flat" function, any nested 
applications are subjugated to the top-level fusion application.

	 	 fuse(a|fuse(b|fuse(c|d))) = fuse(a|b|c|d) = abcd

	 	 fuse(fuse(a|b)|fuse(c|d)) = fuse(a|b|c|d) = abcd

Although we can construct a representation of nested fusions within a token-
string representation, nesting evaporates in the more proper spatial syntax.  
Figure %%% shows that partitions cannot be nested inside other partitions.  That 
is, we do not distinguish ensembles of ensembles.

===============================================================================
Figure %%%:  Fusion Does Not Require Step-wise Computation

===============================================================================

A flat function conforms to the structure
	
	 	 f(f(x)) = f(x)

and more generally

	  f(u,...,f(v,...),f(w,...,f(x,...))) = f(u,...,v,...,w,...,x...)

The bar notation mimics the flatness of fusion, since it degrades function 
nesting into identical partitions at the same level

	 	 fuse(a,fuse(b,c))  =notation=  a|b|c

Flat functions are variary, one step applies the function to any number of 
arguments.  In a resource constrained implementation, arguments may be combined 
in any groupings and in any hierarchical order, dictated by the convenience of 
the implementation substrate. 

What is strange here, at least from a conventional perspective, is that it 
appears that temporal composition of fusions is not permitted, that we cannot 
take steps from a diverse beginning to a singular end.  This is exactly what is 
intended.  Temporal and operational steps are treated as occurring in parallel.  

In conventional symbol manipulation, we begin with a syntactic structure for 
which, presumably, we do not know the eventual simplest form.  We take steps, 
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applying a variety of transformations, to eventually terminate with a syntactic 
structure that is judged to be simple.  Solving a set of linear equations, for 
example, allows us to replace a variable of unknown value by a specific value 
for that variable.  If the solution were known in advance, the steps, 
presumably, would not be necessary.  Consider a simpler example:

	 	 1 + 1 + 1 + 1 + 1 + 1 + 1  =  7

In this example, both representations are solutions, depending upon the intended 
use of the representation.  Were the token 7 an iteration variable, we would 
prefer the decomposed version, in order to make seven iterations.  If the 
particular problem, however, lent itself to computational parallelism (for 
example, paying for seven penny candies), then we would prefer the non-
decomposed representation.  

The Additive Principle incorporated within the semantics of unit ensembles 
assures that the result of taking steps is apparent within the parts prior to 
taking those steps.  Thus there is no motivation to fuse only some parts of a 
Whole on the way to fusing the entire Whole.  Computation is immediate, 
requiring only one "step", while reading results requires time and effort.  The 
cost imposed by having to count units in a result, via one-to-one correspondence 
with numerals, is balanced by the benefit of not having to take partial steps 
toward the result.  

We are here seeking to remove the method of implementation and the application 
specifics from the concept of Number, by formalizing a system that can be 
interpreted as integer arithmetic and that maintains the intuitive spatial 
parallelism of the Additive Principle.  Thus, should we intend to fuse Wholes a, 
b, c, and d, as is recorded in the hierarchical token-based representation 
above, then we need not decompose that fusion into binary steps.  We need not 
impose a step-wise sequential arity on the structure of operations in the 
spatial formalism.   Figure %%% illustrates this by representing fuse(a|b) and 
fuse(c|d) as inherently incomplete with regard to the Whole that informs the 
fusion process.

Pre-associative, Pre-commutative

The concept of a flat function disallows several conventional group theoretic 
relational properties.  Although we could write, for example, an associative 
rule for fusion:

	 	 fuse(fuse(a|b)|c) = fuse(a|fuse(b|c))

this would be misleading since the ordering of binary fusions above is an 
unintended artifact of permitting different partitions of the same Whole to be 
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distinguished.  In spatial notation, the relational structure "associative" is 
irrelevant to fusion.  Figure %%% shows that the associative rule degenerates 
into a semantically improper choice to partially delete a partition structure.   

===============================================================================

fuse(ab|c) = fuse(a|bc) = abc

Figure %%%:  Associativity is Irrelevant to Spatial Fusion
===============================================================================

Associativity conveys a temporal distinction, an artifact of operations that can 
accommodate only two arguments as once, and therefore require temporal 
composition.  In a spatial model, this distinction is a syntactic implementation 
detail rather than a feature of the fusion operation.  Fusion should be read 
simply as "delete the separating boundaries",

	 	 fuse(fuse(a|b)|c)  = fuse(a|b|c) = abc  

Similarly, a commutativity rule for fusion,

	 	 fuse(a|b) = fuse(b|a)

can be constructed only as an artifact of a linearly ordered notation.  In 
spatial notation, the relational structure "commutative" is irrelevant to 
fusion.  Figure %%% shows that the commutative rule degenerates into a syntactic 
choice of a rotation of a bounded space. 

===============================================================================

fuse(a|b) = fuse(b|a) = ab

Figure %%%:  Commutativity is Irrelevant to Spatial Fusion
===============================================================================

a

c

b
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c

b
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The syntactic structure "(a|b)", which is a representation of two disjoint 
spaces, does not impute a pairwise semantics to fusing parts into a Whole, any 
more than writing the word "cinq" imparts a French semantics to the concept 
five.  Fusion is essentially a parallel process, independent of both the 
associative ordering of function application and the commutative ordering of 
function arguments.  We thus call unit ensembles pre-associative and pre-
commutative.  Ideally the two relational concepts would not be mentioned at all.  
However, due to the prevalent presumption that integer addition obeys 
associative and commutative rules of composition, we address the issue directly, 
by establishing that the theory of unit ensembles is constructed from 
foundations prior to the conceptualization of either relation. 

Fusion Relations

In summary, fusion bears little resemblance to a conventional function.  Some of 
the ways that fusion is non-standard are:

===============================================================================
	 	 Fusion	 	 	 	 	 Conventional Relation

	 maps parts onto wholes	 	 	 maps unique members of a set
	 	 	 	 	 	 	 	 onto members of another set
	 accommodates any number of parts	 must have specific number of arguments
	 no position to parts	 	 	 arguments occupy a specific location
	 many-to-one		 	 	 	 functions are one-to-one
	 flat, no nesting	 	 	 	 can be nested
	 no concept of associativity   	 almost always associative
	 no concept of commutativity	 	 commutative or non-commutative
===============================================================================

Modern algebra classifies mathematical systems by the types of structural 
relations they possess.  Well-known structures include

	 equivalence		 	 reflexive, symmetric, transitive
	 total ordering	 	 irreflexive, antisymmetric, transitive
	 partial ordering	 	 reflexive, antisymmetric, transitive

It is somewhat misleading to characterize fusion, and other spatial structures, 
using relational constructs that require conventional sets and mappings for 
their definition.  We next examine the quasi-relational structure of fusion, 
overtly recognizing that fusion is not a relation, and that the process of 
transforming it to conform to relational structures in fact changes it into a 
mathematical structure that it is not.
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Axiomatic Structures

Fusion applies only to ensembles, the "objects" being fused.  Ensembles are, of 
course, not legitimate objects in the sense of unique, atomic, existent set 
theoretic structures.  We address the axiomatic structures of Closure, 
Existence, and Uniqueness later, within the interpretation of fusion for integer 
operations.  Here we analyze unit ensembles from the perspective of the 
conventional relational properties for identity.

Self Structures

The relational properties on a single object are Reflexivity  Idempotency.  The 
relation of reflexivity, whether or not a relation can be applied to replicates 
of the same object, is primary.  Fusion is not reflexive.  The structure that 
conveys the idea reflexive fusion is
	 	
	 	 fuse(a) = a

A space is fused with itself.  Reflexivity assumes we can construct a relation 
that refers twice to the same object:
	
	 	 	 R •••• ••••

However, these two arguments are either different ensembles, in which case the 
proper labeling would be Rxy, or they are the same ensemble, in which case we 
cannot construct a replicate reference without constructing a new ensemble.  
Thus, fusion is not only irreflexive, reflexivity itself is not conceptually 
possible.   The deeper issue is the meaning of multiple occurrences of a label 
for one thing.  Free generation of replicate labels is a characteristic of 
token-string notations, but not necessarily of boundary notations nor of 
ensembles consisting of indistinguishable units.

Idempotency serves to highlight this issue, since it confers a value on a 
reflexive structure:

	 	 	 Rxx = x	 	 	 Idempotent

Fusion of ensembles is not idempotent, in that two ensembles can have the same 
cardinality, yet when they are fused, the value of the resultant form is the 
value of neither.  Rather the fusion has the value of both combined.

	 	 	 Rxx = xx

That is
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	 	 fuse(x|x) = xx

The most succinct way to formulate this idea is to apply it to the spatial base 
case of featureless space:  Space itself does not support reference, and most 
certainly does not support replication of reference.  Empty space is not 
idempotent for an unusual reason.  We could write, correctly from a conventional 
perspective,

	 	 R«void»«void» = «void»

However, this equation violates the semantics of Void in two ways.  Primarily, 
empty space cannot be labeled; secondarily, it cannot be labeled twice.  We can 
write the above relation only due to the void meta-notation. In a spatial 
syntax, empty space is identified only indirectly by an empty container.  The 
empty boundary, (), contains nothing.  Generally in a spatial notation, we can 
refer to space indirectly via boundaries, as in

	 	 R()() = ()

Once written, it is easy to see that the equation no longer refers to a relation 
on empty space, it refers to a relation on containers.  More clearly, it may be 
best just to consider reflexivity to be conceptually irrelevant to the concept 
of fusion, while idempotency is explicitly denied.

	 	 fuse(•|•) ≠ •

Structures with a Constant

The conventional relations involving a constant are Identity and Invertability.

	 	 	 RxG = x	 	 	 Identity

	 	 	 Rxx' = G	 	 	 Invertability

Identity and invertability are the stalwarts of group theoretic structures.  
Both involve the construction of a ground case that serves to define the 
relational concept.  Identity supposes a ground (or constant) object G that in 
relation to an arbitrary object x does not change the arbitrary object.  
Invertability supposes an object x' that in relation to an arbitrary object x, 
generates the ground object G.

What is the ground object for fusion that creates an identity?  Technically it 
would be the featureless space, since, to distort the concept slightly,
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	 	 fuse(x|«void») = x

The problem here is that, due to its non-existence, void cannot be fused, and 
most certainly cannot be construed as a constant object.  Within the intended 
meaning of fusion, there is no fusable ground object.  

What then of invertability?  Void cannot be implicated in any relational 
structure, nor can units.  But it is certainly possible to have an x' that 
inverts x to yield void.  In the case of units, annihilation of Solid and Hollow 
units is an example.  Voids can be the consequence of a equational operation.

	 	 fuse(•|◊) = • ◊ = «void»

Fusion then is invertable, given the two types of units x and x', which are 
defined for unit ensembles later as the Solid unit • and the Hollow unit ◊.

Symmetry Structures

The symmetry relational property includes notions of asymmetry and antisymmetry.  
Although argument symmetry characterizes fusion, the reason is non-standard.  
Writing

	 	 fuse(a|b) = fuse(b|a)

is wrong.  As spatial structures, ensembles are not elaborated sufficiently to 
possess the concept of a position.  Partitions that are fused likewise do not 
have a relative location that can be used to identify positional symmetry.  We 
might say that partitions are super-symmetric:  no matter how you locate them, 
they appear to be in the same place.  This is, of course, stretching the idea.  
More accurately, with regard to an argument position for fusion, partitions are 
independent of a symmetry concept.  A partitioned whole is a single form that 
consists of other wholes sharing only one relation, that of being a part of the 
particular partition.  

Ordering Structures

The relational properties that imply an ordering, either temporal or structural, 
are not relevant to the concept of fusion.  These include Associativity and 
Transitivity.  Fusion is associative for the same reason that it is symmetric;  
the spatial structure of a partition does not support fragmentation into binary 
(or n-ary) groups for selective transformation.  A stronger reason for the 
irrelevance of associativity to fusion is that it is a flat function, partitions 
are fused concurrently.  From the perspective of the abstract fusion operation, 
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there is only one argument, the partition to be fused.  This perspective 
converts fusion into a monadic function.

Fusion is intransitive in that the fused structure a|b and the fused structure 
b|c do not imply that we have a fused structure a|c.  Figure %%%  shows this.  

===============================================================================
Fig. %%%:  
=============================================================================== 

Transitivity creates an interpretative problem in the context of unique 
referents.  What do the logical structures AND and IMPLIES mean with regard to a 
flat function operating on unique ensembles?  Consider the spatial 
representation in Figure %%%.  Using symmetry irrelevance, we have a case in 
which two different ensembles (a and c) are fused to a third (b).  Flat fusion 
might interpret the AND and yet another fusion

  fuse(a|b) AND fuse(b|c) == fuse(fuse(a|b)|fuse(b|c)) = fuse(a|b|b|c) = abbc

The difficulty with this interpretation is that ensemble b is fused twice into 
the result.  The conjunction AND could mean not sharing a space, but simply 
existing in two separate spaces:

	 	 fuse(a|b)    fuse(b|c)

This places the burden of interpretation on the dual location of the ensemble b.  
And as we have seen, transitivity is not intended to mean "two separate 
ensembles identical to b".  We could defer to a Venn diagram-like form, shown in 
Figure %%%, interpreting AND as spatial identity of arguments.  

===============================================================================
Fig. %%%:  
=============================================================================== 

Then most certainly fusion would be transitive, or rather super-transitive, 
since all parts fused in pairs would immediately be parts of the same flat 
fusion.  But then the implication that fuse(a|c) is the case becomes suspect, 
since we have absolutely no mechanism to hold off the fusion of a and c so that 
it can be an implication of two existent fusions a|b and b|c.  That is, 
conjunction and implication degrade into the same thing.

This makes the property of transitivity particularly interesting, since the 
logical connectives appear to invite a temporal construction.  Should one have 
to take a step to construct a|b and b|c and then a following step to conclude 
that a|c has been constructed?  This interpretation certainly does not 
characterize a flat function, nor the non-temporal semantics of logic.  
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"Flat transitivity" might better be written as

	 	 fuse(a|b) AND fuse(b|c) = fuse(a|b|c)

However this very special interpretation is in essence saying that fusion is 
idempotent, that replicates do not fuse, leading us far afield from the original 
spatial concepts.

What does transposition mean for a conventional relation?  It is not temporal, 
but observational.  Antecedents a|b and b|c are current observations that, 
should we look, are also accompanied by another observation, a|c.  This 
perspective makes fusion non-transitive, since the two fusions imply nothing 
about any other fusions.  The map between the ensembles a and b and their fusion 
ab is independent of the map between ensembles b and c and bc, and it is 
independent of the map between ensembles a and c and the fusion ac.  
Transitivity, like commutativity and associativity, is irrelevant.

Universal Relation

===
--conclude universal but for reflex.  Everything connected/transforms/
symmetrical except identity.--
===

Another way to look at fusion is that it is most similar to a universal 
relation.  Universal relations are true of every possible combination of 
objects.  But universal relations convey nothing about particular structure;  
they are more appropriately seen as properties of the entire system than of a 
particular operator.

Every possible way of combining ensembles, from 2 to N at a time, generates a 
new, but not necessarily unique, ensemble. Fusion is, in a conventional 
vocabulary, a set-based unary function, taking all members of the power set of 
ensembles into the set of ensembles.

It seems best just to say, also, that transitivity is irrelevant to a flat 
function such as fusion.  Transitivity is also irrelevant to the addition of 
integers, since addition is a ternary relation.  

===============================================================================
Fig
	 (a|b) (b|c) (a|c)

	 (a|  b  |c)

15



===============================================================================

Mixing Structures

Distribution of fusion over substitution, the other transformation within the 
system of unit ensembles, will be considered in Section %%%, after a discussion 
of substitution itself.

Where has this exploration lead us?  Conventionally, fusion is an invertable 
function with no identity that distributes over substitution.  The rest of the 
properties of conventional relations appear not to apply.  And where then does 
fusion fit into the theory of groups?  Here we may try adding in the irrelevant 
properties of irreflexivity, asymmetry, associativity, and transitivity.  Doing 
so brings us to a semigroup that would be a group were it not for the non-
existence of void.  It is surely best just to accept that fusion is not group 
theoretic.
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===============================================================================
Figure:  Properties of Relations

Axiomatic Structures
	 Closure
	 Existence
	 Uniqueness
Self-Structures
	 Reflexive/Irreflexive   Rxx                       NOT
	 Idempotent	 	 	 Rxx = x
Structures with a Constant
	 Identity	 	 	 RxG = x
	 Invertable	 	 	 Rxx' = G
Symmetry Structures
	 Symmetric/Asymmetric	 Rxy = Ryx
	 Antisymmetric	 	 Rxy and Ryx implies x=y
Ordering Structures
	 Associative		 	 Rx(Ryz) = R(Rxy)z
	 Transitive	 	 	 Rxy and Ryz implies Rxz   NOT
Mixing Structures
	 Distributive	 	 R(Sxy)(Szw) = S(Rxy)(Rzw)
===============================================================================

===============================================================================
Fig  Summary of Fusion Quasi-relations

	 Quasi-relation	 	     Reason
Self
	 irreflexive		 	 irrelevant due to uniqueness of representation
	 not idempotent	 	 irrelevant due to uniqueness of representation
Constant
	 no identity		 	 no ground structure
	 invertable	 	 	 annihilation is permitted
Symmetry
	 symmetric	 	 	 irrelevant due to spatial freedom
	 asymmetric	 	 	 inside/outside spatial location
	 antisymmetry	 	 no
Ordering
	 associative		 	 irrelevant due to spatial freedom
	 transitive	 	 	 irrelevant due to flatness
Mixing
	 distributive	 	 over put/in substitution forms, but not for-forms
===============================================================================
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Discrete Spaces and Partitions

We mention the partition operation only briefly, since it is not used in our 
formalization of unit arithmetic.  Partition can be added to extend the theory 
of unit ensembles by differentiating between structurally varying partitions of 
the same Whole.

A single partition consists of unique labeled spaces, each containing a single 
ensemble.   Here, partitioning is more limited than general mereological 
decomposition, since by definition, all unit replicates within a space and all 
ensembles are disjoint.  Partitions are collections of occupied spaces.

Fusion can be seen as the inverse of a partition operation, 

	 	 a...z ==> (a|...|z)	 	 PARTITION

which separates or divides a Whole into constituent parts.

Partitions is a unary operation that maps a Whole onto a set of possible 
partitions; it is therefore one-to-many.  For example:

  partitions(•••••) ==> 
	 {(••••|•), (•••|••), (•••|•|•), (••|••|•), (••|•|•|•), (•|•|•|•|•)}
 
Using a single partition generator,

	 	 partition(a) = choose-one-of(partitions(a))

we can express the inverse relation between fusion and partition:

	 	 fuse(partition(a)) = a

	 	 partition(fuse(a|...|z)) = a|...|z 

In a maximal partitioning, all constructed spaces containing exactly one atomic 
unit, so that the maximal partition consists of named spaces in one-to-one 
correspondence to units in the partitioned ensemble.  For example:

  max-partition(•••••) = (•|•|•|•|•) = (a|b|c|d|e)  where a = b = c = d = e = •

The conventional counting operation usually depends upon a maximal partition, 
although we can also count "by twos" or by groups of another magnitude.  Unit 
arithmetic is formulated to avoid unit iteration in favor of direct one-to-one 
correspondence, and to avoid sequential iteration in favor of parallel 
operations.
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===============================================================================
Here are all the partitions of the five smallest ensembles:

    Whole	                   Partitions                            

     •             none                                 
     ••           (•|•)                                 
     •••         (••|•),  (•|•|•)                          
     ••••       (•••|•),  (••|••),  (••|•|•), (•|•|•|•)
     •••••     (••••|•), (•••|••), (•••|•|•), (••|••|•), (••|•|•|•), (•|•|•|•|•)
===============================================================================

Note that a partition must consist of two or more parts.

Partition Lattice

Partitions can be organized into a (semi?)lattice, with no separating boundaries 
within the minimal element, and N separations within the maximal element.  The 
minimal element is the Whole, without partitioning, while the maximal element 
has a separating boundary around every unit that constitutes the whole.  Thus 
there are N-! boundaries in the maximal element of the lattice for the Whole N.

The levels of the lattice count the number of separations within a form, so 
there are N levels (with partitions ranging from 0 to N-1 separations).  If the 
partition function is viewed as strictly binary, then the lattice identifies 
steps that generate each possible partition, each binary-partition step adds a 
single separator.   

A partitioning transformation that permits only one partition per application 
might be characterized as a binary function modeled by the lattice Join  
(&&&check) operation. An iterative sequential mapping of steps that add or 
delete exactly one separator permits traversal of the lattice.
However, in a more parallel fashion, the lattice can be treated as a single 
object, with a variary function that maps to all possible partitions (i.e. a 
lattice-function).  Partition is such a function, mapping a Whole representing 
the integer N onto a lattice of possible partitions of N.  Fuse is the many-to-
one inverse function that maps any lattice element onto the corresponding Whole.

For example, the lattice for •••••• is displayed in Fig %%%:

===============================================================================
	 	 	 	 •|•|•|•|•|•
                             /
	 	 	      ••|•|•|•|•
                      /           \
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            •••|•|•|•              ••|••|•|•   
               /      \           /  /  \
              /    /---\---------/  /    \
             /    /     \          /      \
          ••••|•|•        •••|••|•     ••|••|••
           \       \    /   /  \     /
            \        \/    /     \ /
             \      /  \  /      / \
             •••••|•    ••••|••    •••|•••
                    \      \      /
                        ••••••

Fig %%%   Layers:  1-1-2-3-3-1 = 11
===============================================================================

Since fusion lattices are so densely interconnected, the anti-lattice of non-
connections is preferable. The anti-lattice of non-connections for •••••• are in 
Figure %%%:

===============================================================================
	 	 	      •|•|•|•|•|•
                          
	 	 	       ••|•|•|•|•
                                 
                ••|••|•|•      •••|•|•|•           
                              /      
            ••••|•|•    ••|••|••    •••|••|•     
                 \       /    \
                  •••|•••     •••••|•     ••••|••

                               ••••••

Fig %%%   Layers:  1-1-2-3-3-1 = 11
===============================================================================

In summary, we have constructed a limited mereological theory of unit ensembles 
that does not support overlap, or intersection, of parts.  Wholes are composed 
of indistinguishable atomic units.  Spatial forms are either Wholes or 
partitioned Wholes.  From a conventional perspective, we currently have a formal 
theory with one Unit, one Sort, and one variary, many-to-one Fusion operation, 
as is shown in Fig %%%.  The definition of a form as either a unit or a fusion 
of wholes provides sufficient mechanism for decomposition of wholes.

===
Partitions
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A number can be partitioned into subnumbers by drawing a distinction between the 
components of the number.  This defines addition.

eg

•      as    •/

••     as    ••/      •/•

•••    as    •••/     ••/•     •/•/•

••••   as    ••••/    •••/•    ••/••    ••/•/•    •/•/•/•

•••••  as    •••••/   ••••/•   •••/••   •••/•/•   ••/••/•   ••/•/•/•   •/•/•/•/•  

•••••• as    ••••••/  •••••/•  ••••/••  •••/•••   ••••/•/•  •••/••/•   ••/••/••

	 	 	 	 	  •••/•/•/•   ••/••/•/•   ••/•/•/•/•    •/•/•/•/•/•

A subset of these subnumbers defines multiplication, wherein all subdivisions 
are equal.

•      as    •/

••     as    ••/         •/•

•••    as    •••/        •/•/•

••••   as    ••••/       •/•/•/•             ••/••

•••••  as    •••••/      •/•/•/•/•  

•••••• as    ••••••/     •/•/•/•/•/•         •••/•••   ••/••/••     

•••••••      •••••••/    •/•/•/•/•/•/•

••••••••     ••••••••/   •/•/•/•/•/•/•/•     ••/••/••/••   ••••/••••
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•••••••••    •••••••••/  •/•/•/•/•/•/•/•/•   •••/•••/•••

A subsets of these subnumbers defines exponentiation, wherein all subdivisions 
are equal, and the number of subdivisions also equals the subdivision number.

•      as    •/

••••   as    ••/••

•••••••••    •••/•••/•••

8 = 2^3

••••••••     ••/•• / ••/••
===

===
Equivalences

An equivalence set  is a relation which is

 reflexive  xRx
 symmetric  xRy -> yRx
 transitive  xRy and yRz -> xRz

Partitions

A partition of a set (or a relation) is a collection of disjoint subsets of the set.  The union of 
partitions is the entire set.  

The equivalence relation determines a partition, and each partition of a set defines an equivalence 
relation.
===
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===============================================================================
Figure:	

	 W(•)	 	 	 	 	 	 	 a single unit is a Whole

	 when W(a) and W(b), W(fuse(a|b))	 	 fused ensembles are Wholes

	 fuse(a) = a		 	 	 	 	 identity

	 fuse(a|...|z) = a...z	 	 	 	 unary many-to-one relation

This permits a constructive characterization of Wholes:

	 when W(a), W(b) and W(c), a = •  or  a = fuse(b|c)

===============================================================================

We now construct a theory of equality for fused Wholes.
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EQUALITY AND SUBSTITUTION

Algebra is the formal manipulation of abstract symbols that themselves may be 
interpreted widely.  The primary connective structure in an algebra is equality, 
which defines an equivalence relation on the syntactic structures of a system.  
Structures with the same intent, or value, are equal, even though they may be 
different structures.  A simple example is the equation

	 	 1 + 1 = 2

Here the expression 1+1 differs structurally from the expression 2, yet both are 
equal in numerical value.  

Formal transformation means following explicit and unambiguous structural 
transformation rules.  Substitution and replacement of equivalent symbolic 
structures are deep properties of algebraic equality.  An algebraic computation 
can be characterized as substitution of equivalent syntactic patterns.

The boundary mathematics generalization of syntactic structure to two and more 
dimensions can be incorporated within a conventional theory of algebraic 
equality by identifying equivalence classes of spatial forms.  Valid 
transformations are identified by algebraic rules that define equivalent spatial 
patterns.  Equivalent patterns can be substituted for one another without 
undermining an assertion of equality.

Axioms of Equality

Equations specify valid transformations.  They also obey several relational 
constraints, due simply to the nature of equations.  Without regard to 
interpretation, the conventional relational constraints on the equality relation 
hold:

	 	 A = A		 	 	 	 	 reflexive
	 	 A = B  iff  B = A		 	 	 symmetric
	 	 A = B and B = C  iff  A = C	 	 transitive

When an equation asserts the two spatial structures are equal, the same rules 
hold.  Expressing a formalization in equations is particularly handy, since it 
permits syntactic identity.  Forms that appear the same are identical.  Forms 
that are equal in value can be transformed into one another by syntactic 
substitution rules. 

Functional Substitution
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Functional substitution is a property of equality.  When two forms are equal, 
the applications of a function to each form are also equal:

	 forall A,B  if A=B then F(A) = F(B)

More generally,

	 forall A,B  if A=B then 
	 	 	   F(x1,...xi-1,A,xi+1,...,xn) = F(x1,...xi-1,B,xi+1,...,xn)
===
add Leibniz LAw
===

Logical Inference

--ifthen use iff

===
Since we favor an entirely algebraic notation, we define implicative relations 
to be bidirectional, rather than axiomatizing one directional implication and 
then demonstrating the other direction.
===
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Pattern Substitution

The general rules of pattern substitution apply within an equational theory.  In 
pattern substitution, all occurrences of a "for-form" within an "in-form" are 
replaced by a "put-form":

	 sub(<put-form>, <for-form>, <in-form>)  ==>  <new-in-form>

This would be read:  "Substitute the pattern <put-form> for each literal 
occurrence of the pattern <for-form> within the pattern environment defined by 
<in-form>."

Here we introduce the simpler notion of replacing any occurrences of the for-
form within the in-form by the put-form, whether or not the put-form and the 
for-form are equivalent.

Transforming an Environment

The in-form defines a context for the scope of a substitution.  The in-form is 
the environment that is changed by a substitution.  When the put-form is 
exchanged for an equivalent for-form, the substitution will alter the particular 
structure of the environment, but it will not alter its value.  

We focus first on the general capability of changing an environment by following 
specified pattern substitutions, without concern for value.  Some substitutions 
maintain equality across portions of an environment but do not maintain the 
value of each portion.  Some substitutions degrade into trivial base cases.  
Some change the value, or meaning, of the environment, others do not.  In this 
Section, we identify the structural properties of substitutions in general, 
using unit ensembles as an example.  We do not yet employ an interpretation as 
integers, and so do not introduce addition or multiplication.  Just like fusion 
can be interpreted as addition, we will later show that substitution can be 
interpreted as multiplication.

Types of Valid Substitution

A valid substitution does not alter the value of the environment, the value 
prior to substitution remains invariant after substitution.

The primary method of algebraic transformation is substitution in which the put-
form is equivalent to the for-form.  This is commonly known as "substitution of 
equals for equals".  We discuss this type of substitution later, as value 
maintenance.  
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A second type of substitution invariance occurs whenever the environment is an 
equation.  In this case the equivalence of each side of the in-form equation is 
maintained during substitution even when the put-form is not equal to the for-
form.   This type is called "global replacement", since all occurrences of the 
for-form must be replaced by the put-form in order for in-form equivalence to be 
maintained.

A third type of substitution invariance occurs when we apply the equational 
rules of functional substitution to substitution itself.  Replacing equals for 
equals in the put-form, or in the for-form, or in the in-form, constructs new 
substitution patterns that are equivalent to those of the original substitution 
pattern.

Thus there are three different ways that the value of form can be maintained 
during substitution.  In substitution of equals, value is maintained because the 
forms being exchanged are equal.  This is semantic substitution, since the put-
form is a different (but equal) syntactic structure than the for-form.  Global 
replacement of a for-form in an equation for an arbitrary put-form, however, is 
syntactic substitution, since the replacement relies upon the equality within 
the equational in-form.  Finally functional substitution is structural, the 
structure of a substitution pattern is converted into a different but equivalent 
substitution pattern.

We next provide an example of each of the types of substitution within the 
context of unit ensembles.

Substitution of Equals

Fusion does not change the number of units within an ensemble.  With regard to 
the number of units, we can assert this as

	 	 fuse(a|b|c) = abc

As a specific example,

	 	 fuse(•••|••|•) = ••••••

Substitution of equals applies to partitions as well as to wholes:

	 	 sub(x, (a|b|c), (a|b|c|d|e)) = (x|d|e) 

We can substitute a partitioned form for a Whole:

	 	 sub((a|c), (b|c|d), (a|b|c|d|e)) = (a|a|c|e)
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Because we are substituting an equal for an equal, it is not necessary to make 
every possible substitution.  That is, substitution does not need to be global.

Global Replacement within an Equation

The equality expressed by an equation is maintained whenever one form is 
globally replaced within the equation by another form, regardless of whether or 
not the two forms are equal.  Another way of saying this is that substitution 
distributes over equality.

	 	 sub(a,c,e=f)  =  sub(a,c,e)=sub(a,c,f)

As a specific example,

	 sub(••,•, fuse(••|•)=•••)   =   sub(••,•,fuse(••|•))=sub(••,•,•••)

	 sub(••,•, fuse(••|•)=•••)       sub(••,•,fuse(••|•))=sub(••,•,•••)   
      =  fuse(••••|••) 		 	   =  fuse(••••|••) 
	 =  ••••••                       =  ••••••

	 	
Although the unit value of the in-form fusion equation is changed on both sides 
of the equation, the assertion of equality is maintained.

Functional Substitution Applied to Substitution

Applying functional substitution to each of the arguments of the substitution 
operation yields three structural rules for valid substitutions:

	 if A=B then  sub(A,C,E) = sub(B,C,E)	 	 put-equality
	 if C=D then  sub(A,C,E) = sub(A,D,E)	 	 for-equality
	 if E=F then  sub(A,C,E) = sub(A,C,F)	 	 in-equality	

For the application to unit ensembles, the relation between ensembles and 
equality of substitution is bidirectional, allowing us to write the equality 
rules as equivalences:  The three substitution equality rules are:

	 	 A=B  iff  sub(A,C,E) = sub(B,C,E)	 	 put-equality
	 	 C=D  iff  sub(A,C,E) = sub(A,D,E)	 	 for-equality
	 	 E=F  iff  sub(A,C,E) = sub(A,C,F)	 	 in-equality	
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============================================================================
Example:      
	 A = 2+3    B = 3+1+1   C = 3    D = 2+1    E = 5+3+2+1    F = 4+3+2+1+1

	 sub(2+3, 3, 5+3+2+1)  =  sub(3+1+1, 3, 5+3+2+1)

	 	 5+(2+3)+2+1     =     5+(3+1+1)+2+1

	 sub(2+3, 3, 5+3+2+1)  =  sub(2+3, 2+1, 5+3+2+1)

	 	 5+(2+3)+2+1     =     5+3+(2+3)

	 sub(2+3, 3, 5+3+2+1)  =  sub(2+3, 3, 4+3+2+1+1)

	 	 5+(2+3)+2+1     =     4+(2+3)+2+1+1
=============================================================================
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Condensed Notation

We introduce a more elegant notation that allows axioms to be stated clearly and 
that makes algebraic proofs easier both to construct and to follow.  Unit 
ensembles already have the advantage of an algebraic formulation, reducing 
transformation sequences to well understood steps of substitution of equals for 
equals.  We have also eliminated logical implication, if...then..., in favor of 
bidirectional implication, iff, the statement of logical equivalence.  

In pursuit of simplicity, we have also limited the theory of unit ensembles to 
only two operations, variary fusion and ternary substitution.  The formulation 
of axioms and theorems incorporates principles of boundary mathematics, for 
which spatial enclosure indicates relational structures.  We can now abbreviate 
the notations for substitution and for fusion.

Substitution requires three ordered arguments.  Substitution is represented by 
unlabeled square brackets.  Thus we can take as implicit that forms enclosed in 
unlabeled square brackets are substitution triples.  For further simplicity, we 
delete the commas that separate arguments:

	 	 sub(a,c,e)  =notation=  [a c e]

This use of square brackets is an example of a boundary notation.  In boundary 
notation, an operation is named by a delimiting boundary rather than by a token.

A partition is indicated by an outer boundary and inner separation bars, such as 
in (a|b|c).  For a shorthand notation for fusion, we will delete the outer 
boundary.  The notation shows the intended fusion by an implicit boundary, the 
same type of implicit boundary used for wholes.  

	 	 fuse(a|b|c)  =notation=  a|b|c

The act of fusion converts the notation above into a fused whole by removing the 
separating bars,

	 	 a|b|c = abc

Thus the notation (a|b|c) is a partition containing different spaces, the 
notation a|b|c is an instruction to fuse the contents by removing bars, and the 
notation abc represents the result of the fusion instruction.

We continue to explicitly write sub(...,...,...) and fuse(...|...|...) when 
emphasis is desired.

Special Cases
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As well as the three types of substitution invariance, there are special cases 
that often permit substitutions to be simplified.  We consider total 
substitutions and void substitutions.

Self and Universe

Substitution rules include two specific base cases that are justified by the 
definition of substitution itself:

	 	 [A E E] = A		 	 	 	 global substitution
	 	 [A A E] = E		 	 	 	 self substitution

Global substitution replaces the entire in-form by the put-form.  It is a 
maximal substitution, a replacement of the universe from the context of E.

Self substitution replaces the put-form by a for-form that is an identical 
replicate.  Since the replicate is indistinguishable from the original, self 
substitution is the null substitution operation.

Void Substitution

Void-substitution (i.e. substitution of void for a given non-void form) is 
primary method of spatial form reduction via deletion:

	 	 [>< C E] = delete(C,E)	 	 put-void substitution

"Delete(C,E)" means to delete all literal occurrences of the pattern C within 
the form E.  Deletion of a form C will usually change the value of form E.  The 
only case when it would not change the value is when the put-form is equal to 
the for-form.  In the case of void-substitution,

	 	 [>< C E] = E  iff  C = ><

Formally, deletion is void-substitution, substituting nothing for a syntactic 
something.  Informally we say that form C is erased.  The value of E is 
maintained only when a deleted form is void-equivalent.

For example, let us preview a void-equivalent equation that will be explained 
later:

	 	 	 • ◊ = ><
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Consider this equation to be a pattern, without interpretation.  An example of 
void-substitution is:

	 	 [>< •◊ ••◊•◊•] = ••

Substituting an existent put-form for a void for-form is also valid, since this 
is void-substitution in the constructive direction.  In a calculus which permits 
some forms to be equated with void, those void-equivalent forms can be 
constructed in place of Void (i.e. anywhere) in an expression. 

	 	 [A >< E] = construct(A,E)	 	 for-void substitution

Using the void-equivalent equation above, here are several equivalent 
substitutions:

	 	 [•◊ >< ••] = ••◊• = •◊•••◊ = ••◊•◊• = •◊•◊•◊•◊•◊•◊••

One obvious subtlety with void-substitution is that void-equivalent forms can be 
inserted without limit, in any space within or outside of E.  This is never a 
difficulty, since the choice to insert a void-equivalent form can be made solely 
on pragmatic grounds.  Void-equivalent forms are formally irrelevant to value, 
or meaning, in that construction of a void-equivalent form in E does not change 
the value of E.  Thus void-equivalents can be constructed anywhere, but they are 
constructed only where they are desired.   

The only way to modify a void in-form by substitution is when the for-form is 
also void.  In this case only, the for-form will match the in-form, resulting in 
substitution of the put-form:

	 	 [A C ><] = ><	 	 	 	 in-void substitution

But

	 	 [A >< ><] = A	 	 	 	 global void substitution

This type of substitution provides a base case of global substitution.  For 
example,

	 	 [•◊ >< ><] = •◊

Value Maintenance

We have defined above a general concept of substitution.  Substitution must be 
restricted whenever the value of the in-form is to be maintained.  This 
important constraint permits substitution to be used freely within an algebra. 
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We are usually interested only in maintaining values during substitution.  Thus 
a general restriction of the use of substitution is that the put-form is 
equivalent to the for-form.  This equivalence is commonly stated in the form of 
an equation that serves as a rule or a pattern substitution template.

	 	 [A C E] = E  iff  A = C		 	 value maintenance

Substitution of equals for equals maintains the value of the in-form, although 
the syntactic structure is changed. For example:
	
===============================================================================
Fig. %%%:  a = three in a spatial form, c = three also, put each into E
===============================================================================

Self substitution is the base case for value maintenance.  The value maintenance 
constraint further restricts void-substitution to permit only those 
modifications of the in-form that maintain value.  In particular,

	 	 [>< C E] = E  iff  C = ><
	 	 [A >< E] = E  iff  A = ><	

An issue is whether or not a substitution is possible at all.  When the for-form 
is not contained somewhere within the in-form, a substitution is not possible.  
This is called "failure to match".  For the application to unit ensembles, we 
will assure that failure to match never occurs.

Global Replacement

Global replacement of a form for another maintains the value of an in-form that 
asserts an equality.

	 	 [A C E=F]  =  [A C E]=[A C F]		 	 distribution

The substitution of A for C distributes over the assertion of equality.  This 
conventional rule for term rewriting bears a strong resemblance to functional 
substitution over in-forms:

	 	 [A C E] = [A C F]	 iff  E = F		 	 in-equality	

===finish
We see hear a link between Leibniz' rule of functional substitution, also known 
s %%%, and the predicate calculus inference rule of replacement 
===
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Associativity of Substitution

For composed operations of one type, associativity gives permission to perform 
these operations in any order.  It is commonly expressed as

	 	 	 a ⊙ (b ⊙ c) = (a ⊙ b) ⊙ c

where the circled dot, ⊙ , stands in place of any associative binary operator.   

Substitutions can be composed in several distinct ways.  The first set of 
substitutions below apply the substitution of b for d to another substitution, 
and then to each of the arguments of that substitution.

	 	 [b d [a c e]]           outer-composition
	 	 [[b d a] c e]	 	 put-composition
	 	 [a [b d c] e]	 	 for-composition
	 	 [a c [b d e]]	 	 in-composition

This, and other varieties that apply parts of a substitution function to another 
substitution, fall broadly under the rule of functional substitution in 
equations.  In the next set, the arguments of an outer substitution are 
sequentially composed in groups of three.  If we assume that each of the labeled 
forms are disjoint, then each group of substitutions is an equivalence set.

	 	 [[a c b] d e]	 	 put-first
	 	 [a [c b d] e]	 	 for-first
	 	 [a c [b d e]]	 	 in-first

  For our application to unit ensembles, we will see that all of these forms of 
associativity of substitution are equivalent.

Distribution of Fusion over Substitution

Fusion combines the contents of multiple spaces into the singular contents of a 
single space.  Since the parts of a fusion are disjoint, fusing substituted 
parts into a whole is the same as substituting the fused whole in the first 
place.  That is,

	 [a|b c e] = [a c e]|[b c e]
	 [a c e|f] = [a c e]|[a c f]
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Since the put-form and the in-form are independent, the two varieties of 
distribution above can be combined into a single rule:

	 [a|b c e|f] = [a c e]|[b c e]|[a c f]|[b c f]  

Here is an example of distribution of fusion over substitution.  Let

	 	 a = •      b = •••
	 	 c = ••     d = ••
	 	 e = ••     f = ••••

	 [a|b c e]       = [•|••• •• ••]         = [•••• •• ••] = ••••
	 [a c e]|[b c e] = [• •• ••]|[••• •• ••] =   •|•••      = •••• 

	 [a c e|f]       = [• •• ••|••••]          = [• •• ••••••] = •••
	 [a c e]|[a c f] = [• •• ••]|[• •• ••••]   =   •|••        = •••

	 [a|b c e|f]	    = [•|••• •• ••|••••] = [•••• •• ••••••] = ••••••••••••
	 [a c e]|[b c e]|[a c f]|[b c f]
	 	 	     = [• •• ••]|[••• •• ••]|[• •• ••••]|[••• •• ••••]
	 	 	                          = •|•••|••|••••••  = ••••••••••••
Note that

	 [a c|d f] ≠ [a c f]|[a d f] 

since the for-form must be treated as a single Whole.  We demonstrate failure of 
for-form distribution using the same values as above, 

	 [a c|d f]       = [• ••|•• ••••]          = [• •••• ••••] = •
	 [a c f]|[a d f] = [• •• ••••]|[• •• ••••] =   ••|••       = ••••

Another restriction is that distributed substitution cannot be applied 
partially:
	
	 [a c e|f] ≠ e|[a c f]

since the substitution of a for c can change the value of e|f.   For example, 
using the values above:
	
	 [a c e|f] = [• •• ••|••••] = [• •• ••••••] = •••
	 e|[a c f] = ••|[• •• ••••] =   ••|••       = ••••

Substitution Relations
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We now consider the conventional properties of relations as applied to 
substitution.  Since substitution is a three place operator, we will consider a 
simpler version for which the put-form is not a parameter, but rather held 
constant.

	 substitute-put(<for-form>, <in-form>)

We will, however, continue to use the three argument condensed notation for 
consistency.

===============================================================================
Axiomatic Structures                ---FIX---
	 Closure
	 Existence
	 Uniqueness
Self-Structures
  Reflexive/Irreflexive   	 Rxx	 	 [P x x]        	 yes
  Idempotent	 	 	 Rxx = x	 [P x x] = P       no not =x
  Identity	 	 	 	 RxG = x	 [P x g] =?= x   	 G=E
  Invertable	 	 	 Rxx' = G	 [P x x'] =?= E  	 x'=x
Symmetry Structures
  Symmetric/Asymmetric	 	 Rxy = Ryx	 	 [x y E] =?= [y x E]
  §Antisymmetric	 	 Rxy and Ryx --> x=y	 [x y E] and [y x E] -?-> x=y
Ordering Structures
  Associative (NESTING)	Rx(Ryz) = R(Rxy)z		 [x [y z E] E] =?= [[x y E] z E]
  §Transitive	 	 Rxy and Ryz --> Rxz	 [x y E] and [y z E] -?-> [x z E]
Mixing Structures
  Distributive	 	 R(Sxy)(Szw) = S(Rxy)(Rzw)
	 	 	 	 	 [x|y z|w E] =?= [x y E]|[z w E]
===============================================================================
what is identity? inverse?

where does this leave us?  subinE  G=E  x'=x  antisym  assoc-as-nesting
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=============================================================================== 
SUMMARY of SUBSTITUTION RULES  (extended notation)

	 if A=B then  sub(A,C,E) = sub(B,C,E)	 	 put-equality
	 if C=D then  sub(A,C,E) = sub(A,D,E)	 	 for-equality
	 if E=F then  sub(A,C,E) = sub(A,C,F)	 	 in-equality	

	 sub(A,E,E) = A	 	 	 	 	 	 global substitution
	 sub(A,A,E) = E	 	 	 	 	 	 self substitution

	 sub(A,C,E) = E   iff  A = C	 	 	 	 value maintenance

	 sub(A,C,E=F)  =  sub(A,C,E)=sub(A,C,F)	 	 distribution over equality

	 sub(«void»,C,E) = delete(C,E)		 	 	 put-void substitution
	 sub(A,«void»,E) = construct(A,E)	 	 	 for-void substitution
	 sub(A,C,«void») = «void»	 	 	 	 in-void substitution	
===============================================================================

===============================================================================
SUMMARY of SUBSTITUTION RULES  (condensed notation)

	 [A C E] = [B C E]  iff  A = B		 	 put-equality
	 [A C E] = [A D E]	 iff  C = D		 	 for-equality
	 [A C E] = [A C F]	 iff  E = F		 	 in-equality	

	 [A E E] = A		 	 	 	 	 global substitution
	 [A A E] = E		 	 	 	 	 self substitution

	 [A C E] = E  iff  A = C		 	 	 value maintenance

	 [A C E=F]  =  [A C E]=[A C F]		 	 distribution over equality

	 [>< C E] = delete(C,E)	 	 	 	 put-void substitution
	 [A >< E] = construct(A,E)	 	 	 for-void substitution
	 [A C ><] = ><	 	 	 	 	 in-void substitution
===============================================================================
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WHOLES AND HOLES

In preparation for mapping to integers, we introduce a second type of unit, ◊, 
that annihilates the unit •.  In a spatial calculus, unit annihilation results 
in void.  Later we will interpret diamond, ◊, as -1.

        	 fuse(•|◊)  =  • ◊  =  void   		 Annihilation

Two Sorts

By adding the new type of unit, we also add two new sorts.  We keep the W sort 
to describe ensembles composed of either • or ◊ units, and specialize new sorts 
for ensembles that are composed entirely of one type of unit only.

	 	 S(•)	 	 	 Solid unit
	 	 H(◊)	 	 	 Hollow unit

	 	 S(a)	 	 	 Solid ensemble
	 	 H(a)	 	 	 Hollow ensemble

An ensemble is Solid, or S, if it consists only of S units.  Similarly, an 
ensemble is Hollow, or H, if it consists only of H units.  Later, we will assign 
the property P, for Positive, to be an interpretation of S, and the property N, 
for Negative, to be an interpretation of H.

Note that void does not have a Sort, since Void has no properties.  There is 
sometimes a philosophical confusion that "the property of having no properties 
is itself a property".  This comes about only from an initial error of assigning 
the property of existence to void.  By accepting that Void does not exist, this 
confusion reduces to: "the property of not existing is itself a property".  Such 
a position has two major flaws.  First, we would then be in a position of having 
to assign properties to all non-existent things (thus bringing the inconceivable 
into existence), and second, Void does not support identification, so we would 
be in the awkward position of assigning a property to something that we cannot 
refer to.

Void-based Models

The annihilation rule is analogous to the creation of particles and 
antiparticles in atomic physics.  Pairs of units and anti-units arise out of 
potentia and return to nothingness.  Structure is what happens in between.
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Unit annihilation permits a calculus for which unit value is maintained at 
"zero", here at non-existence.  This type of calculus does not permit direct 
construction of units.  Direct construction would require a permission such as

	 	 • = «void»

This permission in fact undermines the idea of value.  Instead, all structure is 
brought into existence from Void, value is maintained at Void, and when all 
structure is fused, unit annihilation would return any representation to void.  

A system with only two sorts has Boolean characteristics.  However, annihilation 
reduces replicates of the two unit types to a third possibility, that of having 
no sort at all (i.e. void).  Here is an example of a void-based rule that 
extends the two-sorted system beyond the two sorts.  We have in effect, values 
for Solid and Hollow units, and implicit values for absence of units.

No Coexistence

Ensembles now come in three varieties:  Pure Solid, Pure Hollow, and a mixture 
of S and H units.  However, due to the unit annihilation rule, a mixture of 
Solid and Hollow units is unstable in that it can exist only prior to reduction 
via Unit Annihilation.  We will not need a Mixed Sort so long as we include Unit 
Annihilation within an extended concept of fusion.  Thus, to fuse ensembles, we 
will place their parts in the same space and apply Unit Annihilation.  Formally 
then an ensemble will always be pure.

	 	 W(a)    iff  S(a) xor H(a)
	 	 W(a|b)  iff  W(a) and W(b)

We use the shorthand notation •a for Solid a, and ◊a for Hollow a, and a non-
prescripted a for cases when the type of a is unknown or irrelevant.  Thus

	 	 •a  iff  S(a)  
	 	 ◊a  iff  H(a)
	 	  a  iff  W(a)

ChangeUnit

We introduce a specialization of substitution for which every unit of one type 
is exchanged for a unit of the other type.

	 changeUnit(E)  =def=  in parallel, sub(◊,•,E)  and  sub(•,◊,E) 
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Let us abbreviate concurrent changing of units as 

	 ∆E  =def=  [•/◊ ◊/• E]

The diagonal slash is shorthand for applying two different substitutions at the 
same time.

The base cases of changeUnit are

	 	 ∆• = ◊
	 	 ∆◊ = •

An example application is

	 	 ∆•••◊◊•◊ = ◊◊◊••◊•

ChangeUnit does not maintain the value of E, since it converts E into its 
inverse.  Thus,

	 	 ∆E = E  iff  E = ><

Under an interpretation for integers, changeUnit does maintain the absolute 
value of an ensemble.  At this point, we have not yet introduced the concept of 
magnitude, so that changeUnit can be seen purely as a type changing operation.  

We can say that ∆E is the inverse of E with respect to Solid and Hollow units.  
It will become the Additive Inverse when interpreted for integers.  However, 
under the integer interpretation, changeUnit is also the "Subtractive Inverse".  
By introducing two distinct types of units, we have unified addition and 
subtraction into the single concept of fusion.  

With exactly two types of units, changeUnit is its own inverse:

	 	 ∆∆E = E	 	 	 	 	 	 inverse changeUnit

Since changeUnit is an application of substitution, it distributes over fusion.  
In condensed notation,

	 	 ∆.A|B = ∆A|∆B

The dot indicates that the scope of changeUnit extends over the entire fusion.

Identity

Fusing a Whole with its inverse results in void:
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	 	 a|∆a = ><

Consider any unit in a.  Every unit of either type will be fused with its 
inverse unit to form a •◊ pair which will then annihilate into void.  This is an 
example of a parallel rather than an iterative execution of proof.  We do not 
need to iterate through each •◊ pair, since every pair annihilates concurrently.  
All that is needed for a proof is the one-to-one correspondence between • and ◊ 
units.  This correspondence is given by the definition of ∆a.

Parallel annihilation is assured because units have no relational dependencies.  
The parallelism is deeper still, since immediately after fusion, Solid and 
Hollow units are not even coupled in pairs.  Any • can annihilate any ◊.  This 
type of concurrency is molecular.  An implementation analogy is precipitation of 
a salt from a liquid solution of ions.  Any pair of complementary ions that come 
into proximity bond together to form a precipitating molecule, removing the ion 
pair from the solution.

 
Equality

We take fusion-with-an-inverse as defining equality:

	 	 a=a  iff  a|∆a = ><
	 	 a=b  iff  a|∆b = ><

Conventionally b is a different structure than a, with an equivalent value.  
Structural equivalence is identity,

	 	 a=a  iff a|∆a = ><

Thus another form of equality as fusion is

	 	 a=b  iff  a|∆b = a|∆a

===
collect other pieces about =
===

Forced Type Matching

When an in-from contains no instances of the for-form, the substitution fails to 
match.  This is usually interpreted as no change to the in-form.  For 
application to unit ensembles, we desire an interpretation for which a match is 
always guaranteed, since wholes are composed of units and only units.  Units can 
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fail to match only when the type of unit that constitutes the for-form differs 
from the type of unit that constitutes the in-form.  Thus for example, the for-
form does not match the in-form in the substitution

	    	 [•• ◊ •••]

We can, however, apply changeUnit to assure that a match occurs.  In the 
example,

	 	 [•• ◊ •••] = ∆[•• ◊ ∆•••]
	 	 	      = ∆[•• ◊  ◊◊◊] 
	 	 	      = ∆••••••        
	 	 	      =  ◊◊◊◊◊◊

Forced type matching permits substitution to be interpretable regardless of unit 
types.  Forced type matching is defined as,  

	 	 when (•c and ◊e) or (◊c and •e),  
	 	 	 [a c e] ==> ∆[a c ∆e]

Since any whole consists of identical units, we can consider only the base case 
of each unit without loss of generality.  The four base cases which require 
forced type matching are:

	    	 [• • ◊] = ∆[• • ∆◊] = ∆[• • •] = ∆• = ◊
	    	 [• ◊ •] = ∆[• ◊ ∆•] = ∆[• ◊ ◊] = ∆• = ◊
	    	 [◊ • ◊] = ∆[◊ • ∆◊] = ∆[◊ • •] = ∆◊ = •
	    	 [◊ ◊ •] = ∆[◊ ◊ ∆•] = ∆[◊ ◊ ◊] = ∆◊ = •

In any substitution, the type of the put-form does not effect identification of 
a match, so that we only need consider the first two of the above cases, for 
which the for-forms and the in-forms differ in unit type.

The result of the substitution in all four cases is changeUnit applied to the 
put-form.  In general, the consequence of any application of forced type 
matching will be changeUnit applied to the substitution result.  That is to say, 
forced type matching is equivalent to changing the unit of the result of the 
substitution.  We will embed this result into the definition of substitution:

	 [a c e]  =def=  substitute a for c in e, ignoring the type of c and e;
	  should the type of c and e not match, apply changeUnit to the result

In other words, 

	 	 when (•c and •e) or (◊c and ◊e),  [a c e]

20



	 	 when (•c and ◊e) or (◊c and •e), ∆[a c ∆e]

Note that forced type matching does not imply forced matching. Even when the 
type of the for-form and the in-form match, there are cases for which no match 
will occur.  For example:

	 	 [• •• •]

In this case, there cannot be a for-form match within the smaller in-form.  In 
such cases, we will still not require that the failed match be equal to the 
unchanged in-form.  Instead, the failed substitution will simply not be enacted, 
and thus will not be reduced.  This is of advantage in cases where the context 
of the failed substitution may include an interaction with other forms that may 
later permit the substitution to occur.

Absolute Typing

Analogous to absolute value for integers, absolute typing treats the type of all 
units as the same.  Absolute typing, that is absence of typing, is an 
alternative to forced-type-matching that can clarify what it means to "ignore 
the type of a form".  Type-blind substitution treats all units as (nominally) 
Solid, assuring that forced type matching is never invoked.

Thus an alternative definition of substitution over different types would be to 
convert all for-forms and in-forms to Solid type, apply substitution, and then 
apply changeUnit to the result in cases that the types of the for-form and the 
in-forms do not match.

In the interpretation for integers, this approach is equivalent to the sign rule 
for multiplication.

Distribution of ChangeUnit over Substitution

ChangeUnit can also be applied across substitutions.  Two applications of 
changeUnit maintain the value of the substitution, regardless of which 
substitution form they are applied to:

	 [a c e] = ∆[∆a c e] = ∆[a ∆c e] = ∆[a c ∆e] 

As well,

	 [a c e] = [∆a ∆c e] = [a ∆c ∆e] = [∆a c ∆e]
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Two applications of changeUnit do not change the result of a substitution, 
regardless of which forms they are applied to.  We separate the possible 
substitution varieties into those that require forced type matching and those 
that do not, applying changeUnit when necessary to achieve forced type matching.

Without forced type matching, there are four possible base cases:

	    	 [• • •] = •
	    	 [◊ • •] = ◊
	    	 [• ◊ ◊] = •
	    	 [◊ ◊ ◊] = ◊

We consider all of them abstractly as [a c e].  Applying changeUnit twice 
results in six different patterns:

	 	 ∆[∆a c e]
	 	 ∆[a ∆c e]
	 	 ∆[a c ∆e]
	 	 [∆a c ∆e]
	 	 [∆a ∆c e]
	 	 [a ∆c ∆e]
	 	

∆[∆a c e]:  In all cases, the result of the substitution will be the put-form.  
Should the put-form a be changed to ∆a, the result will be ∆a.  Applying the 
outer changeUnit returns the result to a, since

	 	 ∆∆a = a

[a ∆c ∆e]:  In all cases, the result of the substitution will be the put-form.  
Changing units in c and e will not effect the result since the same substitution 
will occur.

∆[a ∆c e], ∆[a c ∆e], [∆a c ∆e], and [∆a ∆c e]:  For each of these cases, forced 
type matching will be triggered:

	 	 ∆[a ∆c e] ==> ∆∆[a ∆c ∆e] = [a ∆c ∆e]
	 	 ∆[a c ∆e] ==> ∆∆[a c ∆∆e] = [a c e]
	 	 [∆a c ∆e] ==> ∆[∆a c ∆∆e] = ∆[∆a c e]
	 	 [∆a ∆c e] ==> ∆[∆a ∆c ∆e]

The last of these results can be decomposed into single applications of the 
first and second results above.

The four cases that require forced type matching are shown in the previous sub-
section.  By applying forced type matching, each converts uniquely into a 
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natural substitution for which the types for the for-form and the in-form match.  
The result of a natural substitution will be the type of the put-form.  The 
final application of changeUnit toggles the type of the result.

A Simpler ChangeUnit

We have defined changeUnit as

	 	 ∆E  =def=  [•/◊ ◊/• E]

With substitution-with-forced-type-matching, we can say

	 	 ∆E =def= [• ◊ E]    with    [• ◊ E] = [◊ • E]

The application of changeUnit changes all units in a given ensemble: 

	 	 ∆•E = ◊E
	 	 ∆◊E = •E

Substitution with forced-type-matching compares the type of the for-form to the 
type of the in-form.  When they differ, the type of E is changed.  

	 	 when •E,  [• ◊ E] ==>  [• • ∆E] = ∆E
	 	 	     [◊ • E] = ◊E = ∆E
	 	 when ◊E,  [• ◊ E] = •E = ∆E
	 	 	     [◊ • E] ==>  [◊ • ∆E] = ∆E

This permits the simpler definition of changeUnit since forced-type-matching 
manages difference between for-form and in-form types. 

 
Fusion Composition/Decomposition via ChangeUnit

Applying function substitution to fusion yields:

	 if a=b then a|n = b|n

With changeUnit, Fusion Decomposition can be proved directly. 

	 Assume	 a=b

	 	 	 a|∆b = ><
	 	 	 a|∆b|n|∆n = ><
	 	 	 a|n|∆b|∆n = ><
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	 	 	 a|n|∆.b|n = ><

	 	 	 a|n = b|n

When equivalent Wholes are each fused with the same Whole, equivalency is 
maintained.  This provides a composition rule for fusions.  The above algebraic 
proof reads in both directions, providing both composition and decomposition 
rules for fusion.  In all cases,

	 	 a=b  iff  a|n = b|n
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=============================================================================== 
COMPLETE AXIOMATIZATION of UNIT ENSEMBLES with Annihilation
	
	 S(•)	 	 	 	 	 	 	 	 sort
	 H(◊)	 	 	 	 	 	 	 	 sort	 	
	 •a  =def=  S(a)	 	 	 	 	 	 type-of notation
      ◊a  =def=  H(a)	 	 	 	 	 	 type-of notation
	 W(a)  iff  S(a) xor H(a)	 	 	 	 sort

	 A = A		 	 	       	 	 	 equals identity
	 A = B  iff  B = A		 	 	 	 	 equals symmetry
	 A = B  and  B = C  iff  A = C		 	 	 equals transitivity

	 fuse(a|...|z)  =def=  a...z	 	 	 	 fusion definition
	 fuse(a) = a		 	 	 	 	 	 whole fusion
	 W(fuse(a|b))  iff  W(a) and W(b)         		 uniqueness
	 a = •  xor  a = ◊  xor  a = fuse(b|c)	 	 no void wholes
      fuse(•|◊) = • ◊  =  «void»	 	 	 	 annihilation
	 a=b  iff  fuse(a|c) = fuse(b|c)	 	 	 composition/decomposition

	 sub(«void»,C,E) = delete(C,E)		 	 	 put-void substitution
	 sub(A,«void»,E) = construct(A,E)	 	 	 for-void substitution
	 sub(A,C,«void») = «void»	 	 	 	 in-void substitution
	 sub(A,E,E) = A	 	 	 	 	 	 global substitution
	 sub(A,A,E) = E	 	 	 	 	 	 self substitution

	 if A=B then  sub(A,C,E) = sub(B,C,E)	 	 put-equality
	 if C=D then  sub(A,C,E) = sub(A,D,E)	 	 for-equality
	 if E=F then  sub(A,C,E) = sub(A,C,F)	 	 in-equality	

	 sub(A,C,E) = E  iff  A = C	 	 	 	 value maintenance
	 sub(A,C,E=F)  =  sub(A,C,E)=sub(A,C,F)	 	 distribution

	 sub(fuse(a|b), C, fuse(e|f)) = 
	 	 fuse(sub(a,C,e)|sub(b,C,e)|sub(a,C,f)|sub(b,C,f))	 distribution

	 changeUnit(E) = ∆E  =def=  [• ◊ E] = [◊ • E]	 changeUnit definition

	 ∆• = ◊	 	 	 	 	 	 	 base case changeUnit
	 ∆◊ = •	 	 	 	 	 	 	 base case changeUnit
	 fuse(a|∆a) = «void»	 	 	 	 	 identity changeUnit
	 ∆fuse(a|b) = fuse(∆a|∆b)	 	 	 	 distribution
	 a=b  iff  a|∆b = «void»		 	 	 	 equality
===============================================================================
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=============================================================================== 
COMPLETE AXIOMATIZATION of UNIT ENSEMBLES with Annihilation (condensed notation)
	
	 S(•)	 	 	 	 	 	 	 	 sort
	 H(◊)	 	 	 	 	 	 	 	 sort	 	
	 •a  =def=  S(a)	 	 	 	 	 	 type-of notation
      ◊a  =def=  H(a)	 	 	 	 	 	 type-of notation
	 W(a)  iff  •a xor ◊a	 	 	 	 	 sort

	 A = A		 	 	       	 	 	 equals identity
	 A = B  iff  B = A		 	 	 	 	 equals symmetry
	 A = B  and  B = C  iff  A = C		 	 	 equals transitivity

	 a|...|z  =def=  a...z	 	 	 	 	 fusion definition
	 (a) = a	 	 	 	 	 	 	 whole fusion
	 W(a|b)  iff  W(a) and W(b)         		 	 uniqueness
	 a = •  xor  a = ◊  xor  a = b|c	 	 	 no void wholes
	 a=b  iff  a|c = b|c	 	 	 	 	 composition/decomposition

      •|◊ = • ◊  =  ><	 	 	 	 	 	 annihilation

	 [>< C E] = delete(C,E)	 	 	 	 	 put-void substitution
	 [A >< E] = construct(A,E)	 	 	 	 for-void substitution
	 [A C ><] = ><	 	 	 	 	 	 in-void substitution
	 [A E E] = A		 	 	 	 	 	 global substitution
	 [A A E] = E		 	 	 	 	 	 self substitution

	 [A C E] = [B C E]	 iff  A = B		 	 	 put-equality
	 [A C E] = [A D E]	 iff  C = D		 	 	 for-equality
	 [A C E] = [A C F]	 iff  E = F		 	 	 in-equality	

	 [A C E] = E  iff  A = C		 	 	 	 value maintenance
	 [A C E=F]  =  [A C E]=[A C F]		 	 	 distribution

	 [a|b c e|f] = [a c e]|[b c e]|[a c f]|[b c f]	 distribution

	 ∆E  =def=  [• ◊ E]	 	 	 	 	 changeUnit definition
	 ∆• = ◊	 	 	 	 	 	 	 base case changeUnit
	 ∆◊ = •	 	 	 	 	 	 	 base case changeUnit
	 a|∆a = ><	 	 	 	 	 	 	 identity changeUnit
	 ∆.a|b = ∆a|∆b	 	 	 	 	 	 distribution

	 a=b  iff  a|∆b = ><	 	 	 	 	 equality
===============================================================================
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=============================================================================== 
AXIOMS of UNIT ENSEMBLES with Annihilation 
	
	 S(•)	 	 	 	 	 	 	 	 sort
	 H(◊)	 	 	 	 	 	 	 	 sort	 	
	 W(a)  iff  S(a) xor H(a)	 	 	 	 sort

	 a|...|z  =def=  a...z	 	 	 	 	 fusion definition
	 W(a|b)  iff  W(a) and W(b)         		 	 uniqueness
      •|◊ = • ◊  =  ><	 	 	 	 	 	 annihilation

==============
GIVEN EQUALITY
	 A = A		 	 	       	 	 	 equals identity
	 A = B  iff  B = A		 	 	 	 	 equals symmetry
	 A = B  and  B = C  iff  A = C		 	 	 equals transitivity
	 [A C E] = [B C E]	 iff  A = B		 	 	 put-equality
	 [A C E] = [A D E]	 iff  C = D		 	 	 for-equality
	 [A C E] = [A C F]	 iff  E = F		 	 	 in-equality	
	 [A C E] = E  iff  A = C		 	 	 	 value maintenance
	 [A C E=F]  =  [A C E]=[A C F]		 	 	 distribution
	 [a|b c e|f] = [a c e]|[b c e]|[a c f]|[b c f]	 distribution
Consequences
	 (a) = a	 	 	 	 	 	 	 whole fusion
	 ∆• = ◊	 	 	 	 	 	 	 base case changeUnit
	 ∆◊ = •	 	 	 	 	 	 	 base case changeUnit
	 [A C ><] = ><	 	 	 	 	 	 in-void substitution
	 [A E E] = A		 	 	 	 	 	 global substitution
	 [A A E] = E		 	 	 	 	 	 self substitution
Provable?
	 a = •  xor  a = ◊  xor  a = b|c	 	 	 no void wholes
	 a=b  iff  a|c = b|c	 	 	 	 	 composition/decomposition
	 a|∆a = ><	 	 	 	 	 	 	 identity changeUnit
	 ∆.a|b = ∆a|∆b	 	 	 	 	 	 distribution
	 a=b  iff  a|∆b = ><	 	 	 	 	 equality
Definition
	 [>< C E] = delete(C,E)	 	 	 	 	 put-void substitution
	 [A >< E] = construct(A,E)	 	 	 	 for-void substitution
	 ∆E  =def=  [• ◊ E]	 	 	 	 	 changeUnit definition
===============================================================================
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THEORIES

===
The Structure of Domain Theories

A domain theory (or abstract knowledge structure) consists of a domain of objects, and axioms and 
rules which define the symbolic interaction between the symbolic form of these objects.  In 
particular, a domain theory consists of:

 1.  A collection of symbols, including  
  constants
  variables naming arbitrary forms
  functions
  relations

 2.  Generation axioms
  These define the typing hierarchy of forms

 3.  Uniqueness axioms  
  These define how forms stay the same when they are manipulated, and how forms 

are composed of atomic units.

 4.  Special axioms 
  These define the characteristics of special types.

 5.  An Induction Principle
  This rule template is the mechanism which allows construction and 

deconstruction of arbitrary forms, and provides an algebraic (abstract) 
approach to domain forms.

For proof and for programming, several composition tools are then proved/provided for 
construction and deconstruction.

 6.  Decomposition
  Permission to take apart an arbitrary form into atomic components and functions 

to do the construction/deconstruction.

 7.  Equality under Decomposition
  Equal forms don't change if you do equivalent things to them.  Generally, forms 

are mappable, you can map a function across the atomic parts.

 8.  Special functions as theorems
  With the above basis (1-7), we now begin to build specialized functions 

(macros) which make it easier to take large steps while manipulating forms.  A 
recursive definition axiom says what we mean by the new function in terms of 
the basis functions.  Then other theorems relate all the other mechanisms to the 
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new function.  Generally each new function has analogous axioms for each item 
above.

===
Domain Theories

A domain is the collection of simple objects which are of (mathematical) interest.  Generally the 
labels of objects in a domain refer, or point, to concrete objects in reality.  A domain theory 
consists of a collection of objects, together with a particular set of functions and relations which 
define and constrain the generic behavior of both simple and complex objects in the domain.

Domain theories have a specific mathematical form which not only identifies how the objects in that 
domain behave, but also provides all the information needed to write processing algorithms for the 
domain objects.  The prototypical components of a domain theory are 

 •  a representation of the elementary unit or constants, the base of the structure 

(also called the carrier set)

 •  recognizer predicates which identify the particular types of structure

 •  a constructor function which builds compound structures from simple units

 •  an accessor function which gets parts of a compound structure

 •  a collection of functions which transfer between domain objects

 •  a collection of invariants, or equations, which define the structure's behavior

 •  an induction principle which specifies how to verify correct manipulations

In an algebraic theory, you usually also have variables, names which are generic, standing in place of 
an arbitrary member of the domain base.

Domains with Internal Structure

To add descriptive complexity, we add internal structure to propositions.  There are two general 
classes of structure:  relations and functions.  Relations are connections, or structures, holding 
together pairs of simple objects.  Functions are a restricted type of relation, one that permits 
functions to stand in place of object names.  Functions are relations which name objects in a 
domain by using other object names.

In computer science, we refer to complex objects as data structures, and the set of relational 
constraints on these objects as abstract data types.

The important idea is that all data structures, all domains, have the same organizational structure.  
All domains and data types consist of a collection of these axiomatic principles:
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 Labels
 Recognizers
 Constructors
 Accessors
 Functions
 Invariants  (relations)
 Induction Principle

In object-oriented approaches, the abstract data type includes all algorithmic functionality.  That is, 
using oo-techniques, the above principles define the entirety of an object, and thus the entirety of 
a program.

Three examples of domain theories follow.  These examples are schematic outlines, intended to 
suggest both mathematical approach and coding technique.  Each domain has additional functions 
and relations which are not included here.

The Domain Theory of Non-negative Integers

Base    0

Objects   {positive integers}

Recognizer   integer[n]

Constructor   +1[n], inc[n]

Accessor   -1[n], dec[n]

 Decomposition axioms  (integer[n] and not[n=0]) -> (+1[-1[n]] = n)
    integer[n] -> (-1[+1[n]] = n)

Uniqueness axiom  (+1[n1] = +1[n2]) iff n1=n2

 Functions   +: (associative, commutative, identity=0)
    n+0 = n
    n1 + +1[n2] = +1[n1+n2]
    (n1=n2) -> (n1+n3) = (n2+n3)

     -:  
    n-0 = n 
    +1[n1] - +1[n2] = n1-n2

     *: (associative, commutative, identity=1)
    n*0 = 0
    n1*(n2+1) = n1*n2 + n1

^:
    n^0 = 1
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    n1^(n2+1) = (n1^n2)*n1

Some invariants  integer[n] or not[integer[n]]
     integer[+1[n]]
     integer[0]
     not[+1[n] = 0]
     integer[n1+n2]
     +1[0] = 1
     n+1 = +1[n]
     n^1 = n
     if not[n=0] then 0^n = 0

Induction   if (F[0] and (F[n] -> F[+1[n]])) then F[n]

Decomposition Induction if (F[0] and (F[-1[n]] -> F[n]) then F[n]

The Domain Theory of Sets

Set Base   {} Phi (the empty set)

Element Base   {a,b,c,...} from some domain

Objects   {S1,S2,...}     Universe = PowerSet[elements]

Recognizers   atom[a]  set[S]

Constructor   a•S, insert atom a into set S

 Accessor   member[a,S]
     member[choice[S],S]
     not[member[choice[S],rest[S]]]

Decomposition axiom  (not[S=Phi]) -> (S = (choice[S] • rest[S]))

Uniqueness axiom  (member[a,b•S] iff (a=b) or member[a,S]

 Functions 
Equality:

     S1=S2 iff (choice[S1]=choice[S2] and
    member[choice[S1]] and member[choice[S2]])

Intersection:    (associative, commutative, idempotent, identity=Universe)
  intersect[Phi,S] = Phi
  intersect[a•S1,S2] = if member[a,S2] 

then (a•intersect[S1,S2]) else intersect[S1,S2]

  Symmetric-difference: (associative, commutative, identity=Phi)
  sym-diff[S1,Phi] = Phi
  sym-diff[S1,S2] = if (member[a,S1] and not[member[a,S2]])

  or (member[a,S2] and not[member[a,S1]])
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  then member[a,sym-diff[S1,S2]]

Cardinality, #:
  #[Phi] = 0
  if not[member[a,S]] then #[a•S] = #[S] + 1

 Some invariants   set[Phi]
     set[a•S]
     not[member[a,Phi]]
     (intersect[{a},{b}] = Phi) -> (not[a=b])
     intersect[S,Phi] = Phi
     member[a,intersect[S1,S2]] iff
         member[a,S1] and member[a,S2]
     S1 intersect (S2 sym-diff S3) =
         (S1 intersect S2) sym-diff (s1 intersect S3)

 Induction      if F[Phi] and if not[member[a,S]] then (F[a] -> F[a•S])
           then F[S]
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===

The foundations of arithmetic define mathematical objects in terms of set theory 
and predicate calculus.  A mathematical system consists of a set of objects and 
specific relations and functions associated with these objects.  Relations and 
functions are defined in terms of mappings between a set of objects called the 
domain and a set of objects called the range.  The axioms and definitions that 
define the behavior of a mathematical system are called a theory.  Both proof 
and computation rely heavily on the Induction Principle.

In this section we will consider several conventional theories that incorporate 
sets of integers and functions and relations over the integers.  They include 
comparison, addition, multiplication, subtraction, division, exponents, and 
fractions.  We will show the mappings between the system of unit ensembles and 
the conventional axioms of integer arithmetic.  

The objective is to demonstrate that unit ensembles fully cover the well-known 
theories of rational arithmetic, and further that unit ensembles cover rational 
arithmetic elegantly.  Elegance means fewer and more intuitive concepts and more 
efficient mechanisms for computation.

The theory of unit ensembles is an algebraic theory with 

	 equality as the primary relation
	 ensembles of identical units as models of integers 
	 two types of units (Solid and Hollow)
	 one comparison predicate (greater-than)
	 one variary operation (fusion)
	 one ternary operation (substitution), and 
	 one utility function (changeunit).  

Axioms provide existence and uniqueness theorems for constructing ensembles, and 
are generally expressed algebraically.  Computation proceeds by algebraic 
substitution, following a collection of equality rules, and one special void-
based rule, annihilation.  Proof is algebraic and incorporates no additional 
principles.

In comparison, the theories of rational arithmetic are also algebraic, with 

	 equality as the primary relation
	 one set of unique objects (integers) with one type of object (integer)
	 one set of object pairs (fractions)
	 one comparison predicate (usually weak less-than)
	 one unary operator (negative)
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	 five binary operators (add, subtract, multiply, divide, power)
	 several utility functions (max, min, ...%%%), and
	 Predicate Calculus and Set Theory as semantic context.

Axioms provide existence and uniqueness theorems for objects joined by 
operators, and are expressed in Predicate Calculus.  Computation proceeds 
following collections of both inferential and equational rules. Proof 
incorporates the rules of inference and the Induction Principle.  

We can see that these two representational structures are quite simiular.  Their 
substantive differences include:

Structure	 	 Unit Ensemble Arithmetic	 	 Set Theory

  Integers	  	 identical unit replicates 	 infinite classes of sets 
	 	 	 	 	 	 	 	 	 with the same cardinality

  Signs	 	 two discrete unit types		 one type and one operator

  Operations	 fusion and substitution		 +,-,*,÷,^

  Tools	 	 algebraic substitution	 	 substitution, induction, 
	 	 	 	 	 	 	 	 	 inference

  Concepts	 	 void, flatness, concurrent	 associative, commutative, 
	 	 	 	 	 	 	 	 	 zero, inverses

The essential pragmatic differences:

	 	 spatial, visual, 		 	 	 abstract
	 	 	 kinesthetic, intuitive	
	 	 parallel	 	 	 	 	 sequential
	 	 two operations	 	 	 	 five operations
	 	

Group Theory

From the perspective of group theory, systems of integers are commutative rings 
(associative, commutative, distributive) with zeros and inverses.  Systems of 
unit ensembles do not fit conventional group theoretic structures.  Ensembles 
are not set theoretic objects.  Although ensembles are unique, their parts are 
not.  There are two types of units that mutually annihilate.  There is no 
additive zero, and addition is pre-associative and pre-commutative.  Addition 
and subtraction are differentiated by unit types rather than by inverse 
operations.  Multiplication and division are also joined into one operation, 
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that of substitution.  Multiplication-as-substitution unites the concept of 
multiplication with algebraic substitution rules provided by equality.  This 
leaves only one multiplication axiom, that of commutativity of substitutions.  
Figure %%% shows the group theoretic description of arithmetic, while Figure %%% 
shows the axioms of unit ensemble arithmetic.

===
Group Theory

Algebraic systems ((S,f), where S is a set and f is a binary function on that set)  can be classified 
into groups having similar structural characteristics.  This additional level of abstraction is called 
group theory, or modern algebra.  

The essential distinguishing characteristics of algebraic systems (S,f):

 Let  a,b,c inS and e, the identity element, inS

 Closed binary operation: f(a,b) = c

 Associativity:   f(f(a,b),c) = f(a,f(b,c))

 Identity element:  Exists e inS. f(e,a) = f(a,e) = a

 Inverse element:  Exists y inS. f(a,y) = f(y,a) = e

 Commutativity:  f(a,b) = f(b,a)

Types of Algebraic Systems

 Groupoid: (S,f) such that S =/= { }

 Loop:  Groupoid and
    All a,b,c in S. if f(a,b) = f(a,c) then b=c
          if f(a,c) = f(b,c) then a=b

 Semigroup: Groupoid and 
    S is closed under f
    f is associative on S

 Monoid: Semigroup and 
    (S,f) has an identity element

 Group:Monoid and 
    every element in S has an inverse.
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Each type can be combined with the commutative property, to give 

  commutative loop
  commutative groupoid
  commutative semigroup
  commutative monoid
  commutative group  (boolean algebra is an example in this category)

===
	 additive 
	 	 inverse	 	 a + (-a) = 0       minus a is a new object
	 	 identity	 	 no operation
	 	 commutative		 not representative, not relevant
	 	 associative		 not representative, not relevant

	 multiplicative 
	 	 inverse	 	 a * (1/a) = 1	  reciprocal of a is a new object
	 	 identity	 	 a * 1 = a
	 	 commutative		 a * b = b * a
	 	 associative		 a * (b * c) = (a * b) * c
	
	 distributive	 	 a * (b + c) = a*b + a*c
===

Successors and Induction

Doing without Relations, Mathematical Induction and Iteration

a > b   does not require a difference, just the sign of the difference:

	 a – b > 0    or  Positive[a–b]

a = b   can be tested by

	 a – b = 0

Each • in b gets ◊,  apply     • ◊ = void

• is a number
If a and b are numbers, so is a b    (sharing the same space)

Every number has many names, but only one cardinality.

Peano
	 N0
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========================

M. Kline (1980) Mathematics:  the Loss of Certainty.  Oxford

R. Descartes (1641)  Meditations

P. Benacerraf and H. Putnam (eds) (1983) Philosophy of Mathematics (second 
edition)  Cambridge
===

===
Proof

Boolean algebra axioms and theorems (valid transformations) provide a way to explore decision 
spaces without making the actual decisions.  This is called logical or algebraic proof.  However, the 
situation remains complex because now we must select which theorem to apply and where to apply 
it.  Although the search space is more abstract, it is still intractable and inconvenient.  Although 
Boolean algebra abstracts the physical properties of decisions, it is still a real world problem to use 
Boolean algebra efficiently.

      Mathematical:

 if (base-case is true) then base-value else F[recursive-step]

Mathematical Induction

Induction depends on a order relation over a domain U.  The idea is to demonstrate truth for the 
base case (the simplest member of the ordered set), and then to demonstrate the truth for an 
arbitrary member of the set, assuming the truth of the member next to it in the order relation.

 If N is an ordered set and property P isTrue for
  1) the minimal member of N, and
  2) if P(x) then P(next(x))
 then P isTrue for all members x of N.

Using the natural numbers,  N = {1, 2,...}:
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 If P(1) isTrue, and 
assuming P(x) we can show that P(x+1) isTrue, then

 P(x) isTrue for all members of N.

Some Inductive Definitions

 Base case: the value of the most elementary case

  Examples: 

zero  the additive identity
   one  the multiplicative identity
   Phi   the empty set
   nil  the empty list, the empty tree
   false the logical ground

 Generating rule:  the transform which defines the next case, given an arbitrary case

  Examples:

successor[n] = current[n] + 1
   power-of-2[n] = 2 * current[n]
   summation[n] = n + current[n]
   last[list]  = rest[list] = nil
   length[list]  = length[rest[list]] + 1
   member[x,S] = x=select[S] or member[x,rest[S]]
   power-set[S] = current[S] * S
   cardinality[S] = cardinality[rest[S]] + 1
   node[btree]  = left[btree] + right[btree]
   logic-form[lf] = current[lf] implies next[lf]
   parenthesis[pf] = "(" + current[pf] + ")" or 
        current[pf] + next[pf]

An inductive definition consists of three components:

 • a base case, the simplest possible application of the induction

 • an inductive case which assumes an arbitrary member of the domain, 
and constructs the adjacent member.

•  an ordering principle which provides a structure for inferring that when one 
member can be constructed from adjacent member, then all members can be 
constructed.

12



Induction Principles

When the three components of an inductive definition are combined, they produce an Induction 
Principle for the particular domain.  Inductive principles are second order functions, or functionals.  
We are most familiar with first-order functions, which vary over domain objects (ie variables).  
Second-order functions vary over other functions;  the domain is a set of functions rather than a 
set of objects.  Sometimes second-order functions are called functional schema, they are patterns, 
or schema, which specify relations between objects which hold for a set of functions.  Each schema 
can be instantiated to many (often infinite) specific induction rules for specific functions.

Generic Induction Schema

Primitive recursive schema without parameters for the integer domain:

 f[n] =def= 
if n=0 then k else h[n-1,f[n-1]]

A function acting on an integer argument n can be generically thought of as follows:  

 If n is 0, return some constant k,
  otherwise apply function h with the arguments one step closer to 0
   [that is, with arguments (n-1) and f applied to (n-1) ].

Example:  the factorial function

  f = fac k = 1 h = * h[p,q] = (p+1)*q

  fac[n] =def= 
if n=0 then 1 else n*fac[n-1]

Primitive recursive schema with parameters for the integer domain 
(for simplicity, only one parameter is shown here):

 f[n,m] =def= 
if n=k then g[m] else h[n-1,m,f[n-1,m]]

 Example:  the times function

  f = * k = 1 g[m] = m h = + h[p,q,r] = q*(r+1)

  *[n,m] =def= 
if n=1 then m else +[m,*[n-1,m]]
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Predicate Logic

Notation:  truth symbols = {T,F} 
constant symbols = {a,b,...}
variable symbols = {x,y,...}
function sysmbols = {f,g,...}
relation symbols = {p,q,...}

Terms: Constants and variables are terms.
  If {t1,t2,...} are terms, and f has arity n, then f[t1,...,tn] is a term.
 
Relations: Truth symbols are relations.
  If {t1,t2,...} are terms, and p has arity n, then p[t1,...,tn] is a relation.
 
Sentences: Terms are sentences.
  Relations are sentences.
  If S1 and S2 are sentences, then so is S1->S2.
  If S is a sentence, then so is (all x.S)

Integers

Notation:  Successor[n] = n’

  integer[1]
  if integer[x] and integer[y] then integer[x+y]

Counting:  not[x’=0]
 1      = 0’

  n + 1  = n’

Addition:  m + 0  = m
  m + n’ = (m + n)’

Multiplication:m * 0  = 0
  m * n’ = (m * n) + n

Exponentiation: m ^ 0  = 1
  m ^ n’ = (m ^ n) * n

  sum[0] = 0
  sum[i’] = sum[i] + i’

  fac[0] = 1
  fac[i’] = fac[i] * i’

  sumfac[0] = 1
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  sumfac[i’] = fac[i’] + sumfac[i]

  fib[1] = fib[2] = 1
  fib[i’’] = fib[i’] + fib[i]

  power-of-2[0] = 1
  power-of-2[n’] = 2*power-of-2[n]

  0 = 0
  m’ = n’ iff m = n

Sets

 {} is a set.
 If S is a set, then so is u•S

  powerset[{}] = {{}}
  powerset[S+{e}] = powerset[S]*(S+e)

  member[u,{}] = F
  member[u,v•S] iff u=v or member[u,S]

  add-to-set[u,{}] = {u}
  add-to-set[u,v•S] = if u=v then S else add-to-set[u,S]

  {} = {}
  u•S1 = v•S2 iff u=v and S1=S2

  union[{},S] = S
  union[u•S1,S2] = if member[u,S2] then union[S1,S2] 

else u•union[S1,S2]

  intersection[{},S] = {}
intersection[S,{}] = {}

  intersection[u•S1,S2] = if member[u,S2] then u•intersection[S1,S2] 
else intersection[S1,S2]

  subset[{},S2] = T
subset[S1,{}] = F

  subset[u•S1,S2] = member[u,S2] and subset[S1,S2]

  proper-subset[S1,S2] iff subset[S1,S2] and not[S1=S2]

  cardinality[{}] = 0
  cardinality[u•S] = if [member[u,S]] then cardinality[S] + 1 

else cardinality[S]

===
Proof Needs Semantics
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This example illustrates why automated proof (and intelligent computation) is very unlikely.  We 
must design programming and verification systems to be interactive, so that they augment human 
intelligence rather than attempting to emulate it.  Note that conventional programming puts the 
interaction in a batch mode.

For any natural number n>=2, (n^3-n)/6 is an Integer

  <[n,2] or isInt[div[minus[power[n,3],n],6]]

  L[n,2] or P[Q[R[S[n,3],n],6]]

where the semantics is L is <  less than
P is isInt type check, to be proved

     Q is /  divide
R is -  subtract
S is ^  power

A person may elect to factor the expression in question, in order to understand more:  

(n^3-n) = n*(n^2-1) = n*(n+1)*(n-1) = (n+1)*n*(n-1)

A machine can do this, not in order to understand, but as part of a set of automated  
transformations to be explored.  

R[S[n,x],n]  =>  T[n,R[S[n,R[x,1]],1]]

   =>  T[n,T[U[n,1],S[n,1]]]

where T is *  multiply
U is +  add

Note how very specific these patterns are.  These rules could be generalized, but it is difficult to 
know in advance in which direction the generalization should be formulated.

Number Facts

A human might next retrieve a collection of esoteric number facts:  

For any three numbers in a row, 
there must be at least one even number
and at least one number divisible by three
and these two numbers are not the same number.

  so, the product contains divisors of 2 and 3 (i.e. 6)

A machine can’t make this step, because there are too many esoteric number facts.  Even with very 
sophisticated meta-knowledge to steer the selection of which number facts to explore first, finding 
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the correct set of facts which leads to a proof is generally not possible.  The problem, for example, 
may be only slightly different, but would then require entirely different esoteric number facts:

  if n is odd, then (n^3-n)/8 is an Integer

   div[n,2]
or

isInt[div[minus[power[n,3],n],8]]

   Q[n,2] or P[Q[R[S[n,3],n],8]]

Induction

We simply do not know if there are automated paths, using different proof strategies, which reduce 
all mathematical problems to trivialities.  For example, machines can do induction.  Rather than 
recalling esoteric number facts to generate a natural, intelligent proof, we could have gone blindly 
forth in the above problem, trying an inductive proof:

For any natural number n>=2, (n^3-n)/6 is an Integer

[[n • n • n]|∆n 6 •]  = [n • n • n 6 •]|[∆n 6 •]

= [n • n 6 n]|[∆n 6 •]

show   [[k|• • k|• • k|•]|∆.k|• 6 •]

 

o

  base:  (2^3-2)/6 isInt   (the base case is not n=0)

  general: (k^3-k)/6 isInt

  show:  ((k+1)^3 - (k+1))/6 isInt

   ((k+1)^3 - (k+1))/6 

= (k^3 +3k^2 + 3k +1 - k - 1)/6

   = (k^3-k)/6 + 3(k^2+k)/6 

  if A isInt and B isInt, then (A + B) isInt

   (k^3-k)/6 isInt   assume general

   3(k^2+k)/6 isInt   to show

   k(k+1)/2  isInt   lemma
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   ((k+1)^3 - (k+1))/6 isInt QED

  Lemma: k(k+1)/2 isInt

   base:  2(2+1)/2 isInt

   general: k(k+1)/2 isInt

   show:  (k+1)(k+1+1)/2 isInt

    (k+1)(k+2)/2

= (k^2 + 3k + 2)/2

    = k(k+1)/2 + 2(k+1)/2

   k(k+1)/2 isInt   assume general

2(k+1)/2 isInt   k isInt

(k+1)(k+2)/2 isInt  QED

Existence Proof

An existence proof demonstrates that a particular object, or solution, does exist, but the proof 
does not identify exactly what that object is.  Automated systems cannot conduct existence 
proofs.

Essentially, existence proofs demonstrate universal principles, whereas computational proofs 
demonstrate a verification of a particular principle.

Prove there exists a function that is both odd and even.

Odd function:  F[-x] = -F[x]  e.g.  sine

Even function: F[-x] = F[x]  e.g.  cosine

Find an F[x] such that:

 E[F[R[0,x]], R[0,F[x]]]  and  E[F[R[0,x]],F[x]]

   where E is = and R is -

An example of such a function is: F[x] = 0
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For pattern-matching, we are looking for two different matches to the second argument of E.  
Equivalently, we can eliminate F[-x] algebraically, so that we are looking for the single pattern:

 F[x] = -F[x]

 E[F[x], R[0,F[x]]]

From here, the example of F[x]=0 is easy to identify, since R[0,0]=0 and E[0,0] isTrue.  In 
general, the problem is to show:

  Exists F. E[F[x],R[0,F[x]]]

One problem is that the existential quantifier is over *functions*, not variables.  This requires 
Second Order Logic, for which theorem provers are not yet well developed.  What is the Domain of 
all Functions?  How do we enumerate, even recursively, all possible functions?

===

Peano's axiomatization of whole numbers is based on incremental units (the 
successor, or +1, function), defining whole numbers as a sequence of nested 
successor functions, similar to counting in unit increments.  Proofs call upon 
mathematical induction over successor strings.  Mathematic induction is a 
technique for assuring the correctness of a mathematic argument.  Its simplest 
form utilizes the succession of integers from 1 to say N.  Induction an Peano's 
successor function are intimately connected.

To use induction two cases are required, a ground, or base case, and an 
inductive case.  The inductive ground is the explicit zero of our number system.  
When we make a mathematical assertion based on induction, we first show that the 
assertion is true for zero.  The inductive step requires choosing an arbitrary 
number, called N, to assume the assertion true for.  Then, through algebraic and 
logical argument, the assertion is shown to be true for the next number N+1, 
also called s(N) for "successor function applied to N".  If we assume that the 
assertion is true for N, and we can show that it also true for N+1, then 
induction is simply the idea of taking that incremental step again to N+2, and 
again to N+3, and continuing until as far as desired.  Since we began showing 
the assertion true for zero, and have selected an arbitrary N that could be any 
number, then in sum we have shown that the assertion is true for all numbers.  
Sort of:  If I can get started at 0 and then get to 1, I'll do the same thing to 
get to 2, and so on. 

For an example of conventional induction, we will show that the sum of any two 
positive numbers is always greater than or equal to one of those numbers.  Yes, 
this seems obvious, but the program of mathematical formalism is to eliminate 
what "seems" in favor of what can be rigorously proven.

	 	 x + y ≥ x     ? x+z=y iff x≤y		 x≤x+z
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	 	 	 	 	 x=0, 0≤0+z  let z=1
	 	 	 	 	 x<0, no x
	 	 	 	 	 x>0, induct y is arbitrary
	 	 	 	 	 	 assume x+z=y-1 iff x<y-1
	 	 	 	 	 	 show x≤y iff x+z'=y
	 know 	x=y  or  x≤y-1 from def of ≤
	 	 case x=y	 	 x + z' = x    yes when z'=0
	 	 case x≤y-1	 	 assume x+z=y-1, x+z+1=y-1+1 
	 	 	 	 	 	 => x+z+1=y, let z'=z+1 in x+z'=y

The example induction will be on the number x, that is, we will vary x from 0 to 
N.  First the base case of zero:

	 	 0 + y ≥ 0

Yes, this statement is true, since zero adds nothing to y, and the definition of 
the comparison relation, ≥, is consistent with the assumption that y is a 
positive number.

	 	 y ≥ 0		 	 	 known

At this point we know that y is a legitimate positive number.  Now we assume 
that the assertion is true for N,

	 	 N + y ≥ N	 	 	 assumed

And from there, we need to show that the assertion is true for N+1:

	 	 (N+1) + y' ≥ (N+1)	 	 ?

	 	 N + 1 + y' ≥ N + 1	 	 ?

===junkV?
The natural tendency is now to "subtract one to each side" of the comparison.  
But in the realm of foundations, we can use only what is known and assumed.  
Here, subtract-one is not permitted because we have defined a successor 
function, not a predecessor function.   Why not just define a predecessor 
function?  Well that is properly pragmatic, but the particular foundational game 
here is to use the absolute minimum of tools and structure.  

We can not, for example, apply add-one to each N-1, since this would be 
returning to the assumption, N, directly, without having addressed what is being 
defined.  Here, the concept of "adding one to any number" is the inverse of the 
concept "subtracting one from any number".  There is also an analogous 

20



application of induction starting at N and descending to N-1, and on and on 
until 0.
===^

Induction treats positional notation strictly as a notational convenience.  
Peano arithmetic is, however, strictly linear; although proof can bypass 
counting through the use of the Induction Principle, computation must iterate 
through each number from 1 to N in unit increments.  The formal axiomatization 
of arithmetic incorporates induction as a technique to render unit arithmetic 
tractable for proof, but pragmatic usage incorporates place-value notation as a 
technique to render arithmetic tractable for computation.  

===
PROOF OF THE LEAST NUMBER PRINCIPLE WITHOUT INDUCTION
William Bricken
December 2006

	 equivalent to the complete induction principle

if forsome-integer x  G[x]

then  forsome-integer y    G[y]
                           and
                           forall-integer z  if z < y
                                              then not G[z]

ie

if a statement G[x] is true for some integer x, then there must be a least 
integer y for which it is true.

lessthan  defined by not-exists z

forall-integer x,y  x < y iff x ≤ y and not(x=y)

weak lessthan

forall-integer x  x ≤ 0  iff  x = 0

forall-integer x, 
forall-positive y   x ≤ y iff  x=y  or x ≤ y - 1

Prove:

forall-integer x,y  x ≤ y  iff  forsome-integer z  x + z = y
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	 x ≤ y  iff  x|z = y

	 x=y  or  x ≤ y|◊  iff  x|z = y

	 x=y  or  x|• ≤ y  iff  x|z = y

            x≠y  since  x|z

	 x|• ≤ y  iff  x|z = y

	 	 let z = •
===

===
Not Algebra

As stated, these rules do not incorporate the concepts of

1.  arity  --  addition (and multiplication) is defined as a collection of 
partitions of a number.  The number of partitions is not constrained.

Example:

	 ••••••  =  •••/••/•        by partition removal

That is, partitions can be removed concurrently, any number at a time.

2.  associativity -- there is no ordering of application of partition joining or 
removal

	 •••  ••  •  =  ••••••           by concurrent joining

NOTE:  partitioning removal and joining are the same thing.

3.  commutativity --  removing a partition does not specify or require a 
privileged side.

4.  zero -- there is no zero in this system.  Zero, as absence, is absent.

NOTE:  One is also the absence of change:
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	 	 "subst • for • in A" = do not "subst • for • in A"

5.  inverse:

	 a + ainv-a = <void>

	 • ◊ = <void>

ainv-a = "subst ◊ for * in A"

	 a * minv-a = •	 	 "subst • for A in A"

a * minv-a =  "subst  minv-a  for  •  in  A"

	
	

	 "subst  "subst • for A in A"  for  •  in  A" = •

===
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===============================================================================
  Fig %%%: Modern Algebra of Rational Numbers

Additive Group
	 	 x+e = x	 	 	 	 identity	 	 e = 0
	 	 x+x' = e	 	 	 	 inverse	 	 x' = -x
	 	 (x+y) + z = x + (y+z)	 	 associativity
	 	 x+y = y+x	 	 	 	 commutativity
	 	 x = y  iff  x+z = y+z	 	 decomposition theorem
Multiplicative Group
	 	 x*e = x	 	 	 	 identity	 	 e = 1
	 	 x*x' = e	 	 	 	 inverse	 	 x' = 1/x
	 	 (x*y)*z = x*(y*z)		 	 associativity
	 	 x*y = y*x	 	 	 	 commutativity
	 	 x = y  iff  x*z = y*z	 	 decomposition theorem
Ring 
	 	 x(y+z) = x*y + x*z	 	 distribute
===============================================================================

===============================================================================
Formal Description of Unit Ensemble Arithmetic

Fusion
	 	 x|∆x = ><	 	 	 	 changeunit	 	 ∆x = 
	 	 x|y|z		 	 	 	 flat
	 	 x = y  iff  x|z = y|z	 	 decompose
Substitution
	 	 [x e e] = x		 	 	 global	 	 e = •
	 	 [x x e] = e		 	 	 self
	 	 [x • y • z]		 	 	 super-associativity
	 	 [x • y] = [y • x]		 	 commutativity
	 	 x = y  iff  [x • z] = [y • z] decompose
Distribution
	 	 [x|y • w|z] = [x • w]|[y • w]|[x • z]|[y • z]
===============================================================================

The primary differences between group theoretic arithmetic and unit ensemble 
arithmetic are

	 -- fusion does not have an identity
	 -- flat fusion incorporates both associativity and commutativity
	 -- substitution directly incorporates an inverse
	 -- substitution is super-associative.

Each will be discussed in detail in the sequel.
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UNIT ENSEMBLE ARITHMETIC

We now map unit ensembles onto elementary arithmetic.  Different wholes are 
named by different numerals; positive and negative integers are Solid and Unit 
units; addition and subtraction combine into fusion of different unit types; and 
both multiplication and division are substitution of ensembles for units.  We 
will use the notation 

	 	 <conventional-form>  ==  <boundary-form>

to denote the transcription process in converting between systems.  All such 
mappings are morphisms.

In Section %%%, unit ensembles were not associated with the concept of number, 
since the theory of unit ensembles can be interpreted in a wider scope.  Here we 
map unit ensembles to integers, calling the theory unit ensemble arithmetic. 

A number is denoted by a collection of identical marks, and computed by counting 
of marks.  Counting is placing the units of a Whole into one-to-one 
correspondence with the sequence of integers.  Conventional numerals are 
abbreviations for the "dot-pictures" that constitute the ensembles of unit 
arithmetic.  For example, the numeral 5 is represented by the dot-picture •••••.

===============================================================================
	
	 -n	 ◊n	 	 	 --typing or sign?--
	 ...
	 -3	 ◊◊◊
	 -2	 ◊◊
	 -1	 ◊
	  0	 no representation, void, ><
	  1    •
	  2	 ••
	  3	 •••
	  4	 ••••
	 ...
	  n	 •n

Figure :  Representation of Integers as Ensembles
===============================================================================

In Section %%%, we introduce various abbreviated notations for unit ensembles 
that are more tractable for manipulation.  The structural and operational 
principles in a theory of unit ensembles depends upon the syntax;  in fact, the 
interpretation as integer arithmetic is purely structural.  Simplification is 
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lost when a notation incorporates unnecessary substructure.  For example, unit 
ensembles apply to conventional integers only to the extent that the addition of 
two digits is taken as shorthand for fusion of ensembles.  This shorthand can be 
extended to the addition and multiplication rules of digits less than the base 
of the numerical representation system.  In our base-10 system, shifting from 
one order of magnitude to the next requires additional mechanism (carrying, 
borrowing, etc.) that further undermines the simplification provided by concept 
of fusion.  The original form of addition, some 6,000 years ago was based on 
fusion-like principles that were abandoned in favor of base-10 positional 
notations.  We keep the idea of a consistent base, but exchange identifying the 
power of a base by sequential position (place-value) for associating power with 
the idea of structural nesting (depth-value).  We later provide succinct depth-
value notations in base-2 and in base-10.  

This section addresses the structural mechanisms of fusion and substitution 
based on pattern-matching of unit ensembles.  By disassociating the particular 
representation of integers (but not of operations!) from the transformational 
theory, we can keep syntax much closed to the intended semantics of ensembles of 
identical objects in an identified space.

Operations

Addition is by direct composition (fusion), obeying the Additive Principle that 
the representation of a sum consists of the representations of its parts.  
Multiplication is by substitution of ensembles for units.  

	 a+b  =def=  fuse(a|b)	 	   a|b		 place a and b in the same
	 	 	 	 	 	 	  	    space, forming the fusion ab

	 e*a  =def=  sub(a,•,e) 	   	 [a • e]	 substitute a for each • in e

Unit arithmetic has no zero; that is, the absence of an object "denotes" 
nothing. For fusion, there are no principles of ordering, of grouping, or of the 
arity of operations, since ensembles reside in a spatial representational space 
that allows all operations to occur in parallel.  Substitution is a ternary 
operation, yet within this restriction, ordering and grouping of substitutions 
is also irrelevant. And there is no principle of induction.  Finally, there are, 
as yet, no notational principles of grouping by magnitude or of place-value 
notation.    

Examples

	 a = •••	 	 	 	 	 	 	 called "3"
	 b = ••••	 	 	 	 	 	 	 called "4"
	 a + b = •••|•••• = •••••••	 	 	 	 called "7"
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	 a * b = [•••• • •••]  = ••••••••••••	 	 called "12"
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Negative Numbers

Negative numbers provide an inverse for positive numbers, so that for every 
positive integer a, 

	 	 a + -a = 0

The base case of the additive inverse is

	 	 1 + -1 = 0

We represent the positive unit as dot, • , and the negative unit as diamond, ◊ .  
The unit ensemble analog of the base case of the Additive Inverse is then the 
Unit Annihilation Rule:

	 	 •|◊  =  • ◊  =  void

The idea of using discrete unit types is incorporated in conventional 
representation for imaginary and real units, i and 1, but not for the two 
integer units 1 and -1.  Instead, conventional systems have evolved using a 
unary operation, "negative", in conjunction with the positive integer 1 to 
generate the negative integer -1.  This results in some clumsiness in the 
interaction of negative numbers with both subtraction and multiplication of 
negative units.  In particular, changeunit (a substitution operation) operates 
on both types of ensemble units in the same manner.  

	 	 ∆• = ◊
	 	 ∆◊ = •

Unit Annihilation can be generated from positive unit identity and the 
definition of equality, and from negative unit identity and equality:

	 	 • = •		 	 	 ◊ = ◊
	 	 •|∆• = ><	 	 	 ◊|∆◊ = ><
	 	 •|◊  = ><	 	 	 ◊|•  = ><
	 	 •◊   = ><	 	 	 ◊•   = ><

The unit ensemble definition of equality easily generalizes to any ensemble, 
regardless of type:

	 	 a|∆a = ><

In a void-based unit ensemble arithmetic, inverses annihilate into the absence 
of a representation, rather than generate an explicit representation (i.e. zero) 
that stands in place of the concept "nothing".   Since all ensembles are 
ensembles of units, only the positive unit itself requires an inverse.  In the 
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case of an ensemble, a, consisting of multiple units, the inverse is simply ∆a.  
That is, instead of an inverse for every number, there is only one inverse, for 
the unit, while changeunit generalizes the idea of an unit inverse to any whole.

The mapping to unit integers is naturally

	 	 +1  ==  •
	 	  0  ==  ><
	 	 -1  ==  ◊

Sorts are mapped as follows:

	 	 P(a)  ==  S(a)        positive
	 	 N(a)  ==  H(a)        negative
	 	 I(a)  ==  W(a)        integer other than zero

	 	   0   ==  ><        no zero

Solid ensembles are positive numbers;  Hollow ensembles are negative numbers;  
and Whole ensembles are integers, with the exception that 0 does not have a unit 
ensemble representation.  Zero is the absence of a mark. 

The relationship between the Solid and Hollow units defines a Boolean-like 
domain, for which negation and changeunit have the same meaning:

	 	 not •a  ==  ∆•a = ◊a
	 	 not ◊a  ==  ∆◊a = •a

Note that (not •a) does not include the possibility that a=><.  A typed ensemble 
is presumed to exist, so that its negation also exists.  Void cannot be 
attributed properties, so that technically the expression (not void) is ill-
formed.  This position is somewhat philosophical, and various mathematical 
theories have encountered substantial difficulties distinguishing between 
existence and non-existent objects.  For example, in order to avoid a non-
existent intersection between disjoint sets, set theory includes an existent 
empty set.  Unit ensembles, in contrast, are disjoint by definition, so that 
intersection is not defined.  Fusion is similar to the union operation, but due 
to Unit Annilihation, fusion can effect operations similar to intersection.

There is no impact of two different unit types on the fusion operation, other 
than the necessity of the Unit Annihilation rule.  Substitution is broadened to 
incorporate two regimes:

	 	  e*a  ==  [a • e]
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	 	 -e*a  ==  [a ◊ e]

The latter regime is value preserving, when seen as two applications of 
changeunit.  The first application converts the Hollow unit for-form, which is 
as yet uninterpreted for multiplication, into a Solid unit which is 
characteristic of multiplication.  The second global application restores the 
value of the result:

	 	 [a ◊ e] = ∆[a ∆◊ e] = ∆[a • e]

This then provides a syntactic definition for a Hollow for-form.

We now consider in detail the structure of integer operations (comparison, 
addition, subtraction, multiplication, division, exponents, fractions) in light 
of the theory of unit ensembles.

Numerals as an Abbreviation

Sometimes it is convenient to represent an ensemble in a short-hand notation.  
Rather than writing, or rather drawing, 8 units, •••••••• , we would prefer to 
simply write the numeral 8 to stand in place of the ensemble of 8 units.  We 
will use this short-hand judiciously, since we do not want to include or to 
imply the conventional mechanisms of addition and multiplication.  It is 
possible to express the rules of unit ensemble arithmetic, using numerals rather 
than unit dots, so long as we remember that such numerals must be composed as if 
they represented ensembles rather than convention numbers.

For example, the factors of 30 can be written concisely as

	 	 30 = 2*3*5

We can provide an explicit dot picture of this factorization using unit 
ensembles:

	  (•••••|•••••|•••••|•••••|•••••|•••••)            6 partitions of 5
	  (•••|•••|•••|•••|•••|•••|•••|•••|•••|•••)       10 partitions of 3
	  (••|••|••|••|••|••|••|••|••|••|••|••|••|••|••)  15 partitions of 2

However, this many units do not necessarily make the point of factorization 
clear.  The short-hand notation using numerals is more helpful:

	  (5|5|5|5|5|5)            	 	 	  6 partitions of 5
	  (3|3|3|3|3|3|3|3|3|3)       		 	 10 partitions of 3
	  (2|2|2|2|2|2|2|2|2|2|2|2|2|2|2)  	 	 15 partitions of 2
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===
OR
	 	 30 = (15|15)
	 	 15 = (5|5|5)

	 	 30 = (10|10|10)
	 	 10 = (5|5)

	 	 30 = (6|6|6|6|6)
	 	  6 = (3|3)
===

	  (•••|•••|•••|•••|•••|•••|•••|•••|•••|•••)       10 partitions of 3

subst • for ••• in ^

	   [• ••• (•••|•••|•••|•••|•••|•••|•••|•••|•••|•••)]
	 = (•|•|•|•|•|•|•|•|•|•)
	 = (••••••••••)

reverse is

	 [••• • (••••••••••)]    =30

	 [••• • [• ••• (•••|•••|•••|•••|•••|•••|•••|•••|•••|•••)]]

	   [• •• (••••••••••)]
	 = (•••••)

	 [•• • •••••]            =10

	 [•• • [• •• (••••••••••)]]

	 [••• • [•• • •••••]]    =30  (3*2*5)
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Structure of Comparison of Wholes

==umbrella more up?==
Additionally, conventional relational structure is phrased with an implicative 
bias, constructing a distinction between the antecedent and the consequent.  We 
prefer the biconditional form that asserts an equivalence between the components 
in a statement of symmetry or asymmetry. 
===

The void-equivalent definition of equality that is insensitive to the unit type 
of a Whole:

	 a=b  iff  a|∆b = ><

The definition uses inverse units to establish a one-to-one correspondence 
between units in a and those in b.  Only under such a one-to-one correspondence 
of Solid and Hollow units will the resultant form be void-equivalent.  In the 
simplest case:

	 a = b = •
	 •|∆• = •|◊ = •◊ = >< 

Absence of void-equivalence serves to define comparison operators, > and <, 
between two ensembles, regardless of unit type.  Without loss of generality, we 
assume that S>H.  The four possible cases are:

	 	 when (•a and ◊b),  	 a>b,      •.a|∆b  
	 	 when (◊a and •b),		 not a>b,  ◊.a|∆b = not •.a|∆b
	 	 when (•a and •b),		 a>b  iff  •.a|∆b
	 	 when (◊a and ◊b),		 a>b  iff  •.a|∆b

When two ensembles are of the same type, it is sufficient to apply changeunit to 
one and then fuse the results.  The type of unit remaining after fusion defines 
the result of the comparison operation.  When two ensembles are of a different 
type, if a is Solid, it is always larger, and if a is Hollow, it is always not 
larger.  Combining these cases, we arrive at:

	 	 a>b  iff  •.a|∆b	 	 	 	 	 greater-than

Trichotomy

The trichotomy principle for integers states that any given integer is either 
greater-than, equal-to, or less-than another.
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	 	 if I(a) and I(b) then ((a > b) xor (a = b) xor (a < b))

The unit ensemble arithmetic analogue to the trichotomy principle is:

	 	 if W(a) and W(b) then  •.a|∆b 
	 	 	 	 	  xor   a|∆b = ><
                               xor ◊.a|∆b

We elect to base the axioms of comparison on the conventional strict greater-
than relation.  As is well known, only one comparison operation need be 
axiomatized, the others are logical variations.  In specific, given a definition 
of strict greater-than, >, and a definition of equivalence, =, then the other 
comparison relations are:

	 strict less-than	 	 a < b  	 not a>b and not a=b   
	 weak greater-than		 a ≥ b  	 not a<b   
	 weak less-than	 	 a ≤ b  	 not a>b 

Due to the non-existence of void, 

	 	 not •a = ◊a

Therefore

	 	 not •.a|∆b = ◊.a|∆b

In the formulation of unit ensembles that follows, we use trichotomy to define 
three mutually exclusive comparison operations, listing them explicitly whenever 
a concept such as weak greater-than is needed.

The five comparison relations are thus defined as:  

	 	 a > b  iff  •.a|∆b	 	 	 	 greater-than
	 	 a ≥ b  iff	 •.a|∆b or a=b   	 	 	 weak greater-than
	 	 a = b  iff    a|∆b = ><		 	 equal
	 	 a ≤ b  iff	 ◊.a|∆b or a=b 	 	 	 weak less-than
	 	 a < b  iff  ◊.a|∆b	 	 	 	 less-than

Comparison of Axioms and Theorems

Figure %%%   presents the conventional axioms and theorems of a theory of 
comparison for positive integers.  Fig %%% presents the axioms and theorems of 
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comparison for unit ensembles.  Since Solid unit ensembles map directly onto 
positive integers, the two collections of rules are equivalent.  Yet due to the 
difference in how each theory is formulated, the rules look significantly 
different.  We address in particular the absence of zero, successor, and right/
left structures in unit arithmetic.

===============================================================================
Figure %%%:  
===============================================================================

No Zero

Unit ensembles have no zero, so that a zero rule does not occur.  Should we 
transcribe the conventional right zero rule into the concepts of unit ensembles, 
we arrive at:

	 	 	 x > 0  iff  x ≠ ><

Structurally, the form (x > 0) is represented in unit arithmetic simply as x, 
while its type is •x.  When addressing only positive ensembles (as the 
conventional axioms do here), a unit ensemble x is necessarily greater-than 
zero.  Notationally, existence is confounded with not being void (zero in the 
interpretation).  The ensemble x is trivially not equal to void as soon as we 
observe it.  Rather than placing a definition of greater-than-zero into a token-
string that must be read and understood, the spatial system calls upon visceral 
information, if there is an x, then it is greater-than there not being an x.

No Unit Successor

The right successor axiom defines greater-than in terms of a unit incremental 
increase in the number x.  This comes from the conventional axiomatic 
perspective of defining numbers as unit increments, using a successor function.  
The disjunction 

	 x > y  iff  x = y'  or  x > y'         

is to prepare the definition for induction, x is either equal to one more than y 
(i.e. y'), or it is more than one greater.  With this representation it is not 
possible to state that x is simply greater by some arbitrary amount, it is 
necessary instead to iterate through successors.  Partially transcribing the 
right successor rule literally:

	 x > y  iff  x = y|•  or  x > y|•

Completing the transcription,
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	 •.x|∆y  iff  x|∆.y|• = ><  or  •.x|∆.y|•
	 •.x|∆y  iff  x|∆y|◊  = ><  or  •.x|∆y|◊

The unit ensemble approach is not specifically limited to a unit increment.  An 
ensemble a is greater-than an ensemble b whenever there are any units within a 
that are not replicated within b, regardless of how many.  We would write

	 	 a > b  iff  a = b|n 

Since void odes not participate in fusion, n must exist,  N must be positive 
since

	 	 a = b|n  iff  •.a|∆b|n

This changes the idea of successor from a sequential incremental approach, using 
the smallest unit increment, to a observational approach of looking for any 
additional units in one ensemble.  Solid units in a and Hollow units in ∆b are 
put in one-to-one correspondence, so that incremental counting is not necessary 
in order to determine whether or not there are remaining Solid or Hollow units 
after pairs of Solid and Hollow units annihilate.  Of course, should a = b, then 
it is again obvious that nothing remains.  So the concept of a successor is 
modified in two distinct ways:  a difference between x and y can be of any 
magnitude, and that difference is determined by one-to-one correspondence rather 
than by incremental counting.

We can algebraically manipulate the unit ensemble definition to see the 
conventional definition of > in a different light:

	 	 a|∆.b|• = ><  or  •.a|∆.b|•
	 	 a|∆b|∆• = ><  or  •.a|∆b|∆•
	 	 a|∆b|◊ = ><   or  •.a|∆b|◊
	 	 a|∆b|◊|• = •    or  •.a|∆b|◊ 
	 	 a|∆b = •        or  •.a|∆b|◊

The first form is trivially Solid, the second reverts back to the third line, 

	 	 a|∆b|◊ = ><

Since we have shown that this equation is Solid, it follows that the second form 
on the last line is Solid.  The disjunction is now no longer necessary, since we 
can generalize the specific statement that a is one larger than b to a statement 
that the type of unit left after fusion of a with ∆b is Solid.  That is, the 
disjunction is needed solely to provide a recursive definition so that 
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comparisons can be iterated over successors to arrive at a ground.  However, the 
recursion is not needed when the definition of comparison can perform parallel 
one-to-one annihilations.  All that is needed is

	 	 a > b  iff  •.a|∆b

or equivalently

	 	 a > b  iff  a = b|c

The ensemble a is greater than the ensemble b whenever we can partition a into 
two existent parts, one of which is b.  That is, we need only an existent c to 
demonstrate a>b.  In the transcription of the conventional definition,

	 	 a|∆.b|• = ><
	 	 a = b|•
	 	 c = •

The disjunction in the conventional definition extends c to be other than •, an 
extension that the unit ensemble definition incorporates directly.

The latter definition is in fact a direct transcription of the conventional 
axiom of right addition: 

	 	 x > y  iff  x = y + z

That is,

	 	 x > y  iff  x = y|z

To summarize, the incremental right successor axiom can be converted into the 
right addition axiom when using unit ensembles because we do not need to 
distinguish between the successor function and the addition operation.  The 
successor function is unnecessary because we do not need to invoke the Induction 
Principle to define addition as recursive incrementation.

No Right/Left Theorems

We do not need to distinguish between right zero (or right successor or right 
addition) and left zero/successor/addition because fusion does not support 
commutativity, or for that matter, any positional property of parts being fused 
together.  Consider the literal transcriptions, with "not" interpreted as 
changeunit:
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  left zero:  not 0>x	 	 	   ∆•.><|∆x
	 	 	 	 	 	 = ∆•∆x	 	 void is not fused
	 	 	 	 	 	 = ∆◊x		 	 x began Solid
	 	 	 	 	 	 =  •x		 	 x ends Solid

Right zero asserts that x is Solid (Positive), and yes that is all it can be, 
since if it were void it would not exist.

  left addition:	 x + y > x	 	   x|y > x
	 	 	 	 	 	 = •.x|y|∆x
	 	 	 	 	 	 = •y

Left addition asserts that whatever we have added to x exists (again the 
conventional theorems are restricted to positive integers).  We can see that 
both conventional theorems are built into the concepts of void and fusion.  

===FIX
The right successor axiom and the left successor theorem,

  right successor axiom:	 x > y  iff  x = y'  or  x > y'

  left successor theorem:	 x' > y  iff  x = y or x > y	 	

are structurally interchangable (not implicatively equivalent) in unit 
arithmetic:

===============================================================================
	 	 x > y  iff  x = y|•  or  x > y|•

	 	 •.x|∆y  iff  x|∆.y|• = ><  or  •.x|∆.y|•

	 	 	 	 x|∆.y|• = ><
	 	 	 	 x|∆y|∆• = ><
	 	 	 	 x|∆y|◊  = ><
	 	 	 	 x|◊ = y

	 	 x|• > y  iff  x = y  or  x > y

	 	 •.x|•|∆y  iff  x|∆y = ><  or  •.x|∆y

	 	 	 	 x|∆y = ><
	 	 	 	 x|∆y|•|◊ = ><
	 	 	 	 x|•|∆.y|• = ><
	 	 	 	 x|• = y|•
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Figure %%%:  
===============================================================================

But more fundamentally, the incremental successor does not actually support a 
positional distinction.  Transcribing

	 	 a|• > b  iff  a=b or a>b

	 	 •.a|•|∆b  iff  a|∆b = ><  or  •.a|∆b

This is equivalent to saying

	 	 when a|∆b = ><, ••   or   when •.a|∆b, •.a|•|∆b

The first case is the definition of the Unit Solid type, while the second case 
says that fusing a Solid Unit to a Solid ensemble does not change the Solid 
type, again just the definition of Solid.

Another approach is to use substitution of equals:

	 	 a|• > b  iff  a=b or a>b

	 	 when a>b, a|• > b

Both of these cases are trivially true.   The first case above is simply the 
theorem,

	 	 when a=b, a|• > a		

	 	 a|• > a
	 	 a|•|∆a > a|∆a
	 	 • > ><
===
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===============================================================================
	 	 	 	 Strict Greater-Than

Conventional Axioms and Theorems of Comparison for Positive Integers

	 x > 0  iff  x ≠ 0                      right zero
	 x > y  iff  x = y'  or  x > y'           right successor
	 x > y  iff  x = y + z                    right addition

	 if x > y  and  y > z  then  x > z        transitivity
	 not x>x                                  irreflexivity
	 if x > y  then  not y>x                  asymmetry
	 x' > x                                   adjacent
	 not 0>x                                  left zero
	 x + y > x                                left addition
	 x' > y  iff  x = y  or  x > y            left successor

===============================================================================

===============================================================================
	 	 Axioms and Theorems of Comparison for Solid Unit Ensembles
                
	 a>b  iff  •.a|∆b
	 a>b  iff  a = b|c

===============================================================================

Total Ordering

What remains are the conventional relations that define a total ordering:  
irreflexivity, asymmetry and transitivity.  Transcribing each:

	 not x>x 	 	 	 	 not •.a|∆a
	 if x>y then not y>x 	 	 if •.a|∆b then not •.b|∆a
	 if x>y and y>z then x>z		 if •.a|∆b and •.b|∆c then •.a|∆c

Each of these, rather than being axiomatic to the concept of total ordering, is 
provable for unit ensembles.  To do so, we need to interpret the logic 
connectives in terms of unit ensembles.  

Irreflexivity
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Irreflexivity for comparison of unit ensembles states that there will be no 
remaining units when an ensemble a is fused with another ensemble ∆a composed of 
annihilating units.  There is an obvious one-to-one correspondence, and under 
annihilation, the fused ensemble will vanish.  This ==fix== is not a relational 
interpretation in which an object shares a particular relation (the comparison 
relation) with a replica of itself.  Instead an ensemble is fused with a 
different ensemble that happens to be constituted of units that have been 
modified to be in one-to-one correspondence to their annihilators.  This ==fix== 
is exactly the pigeon-hole principle, for which each pigeon (unit) occupies one 
cubby (annihilating unit).  In comparing the two ensembles, the cardinality of 
each is never determined.  As well, neither a nor ∆a is iterated to compare 
units of each recursively, one at a time.  

	 	 not •.a|∆a	 	
	 	 not •><	 	 	 a|∆a = void
	 	 TRUE	 	 	 	 Void does not have a type

==clearer==
Relations abstractly map members of a set to those of the same or another set.  
Irreflexive relations have no mapping arrows connecting identical objects.  In 
unit ensemble comparison, no ensembles are mapped onto themselves either.  But 
there is no requirement that the set of possible ensembles be identified or 
mapped.  Rather, the entire structure of the comparison relation is subsumed by 
the operation of fusion with annihilation.
===

Asymmetry

Orderings are not symmetric;  the comparison relation forces directionality in 
the structure of the set of objects being compared.  Thus,

	 	 	 •.a|∆b iff not •.b|∆a
	 	 	 •.a|∆b iff     ◊.b|∆a

The unit ensemble comparison operation is known not to be reflexive, which is to 
say that two ensembles being compared are not equal.  Consider two cases.  For 
the structure a|∆b to be Solid, asymmetry asserts that the structure b|∆a must 
be Hollow.  Should we fuse a Solid ensemble with a Hollow ensemble, the one with 
the predominant unit types will prevail.  When we fuse the two "asymmetric" 
structures,

	 	 a|∆b|b|∆a = ><

both are fully annihilated.  Thus neither has a predominance of any type of 
unit.  However, for either to have existed, at least one must have been Solid 
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and the other must have been Hollow.  This is exactly the assertion of unit 
ensemble asymmetry, i.e. that one structure is Solid iff the other is Hollow.  
Again there is no consideration of cardinality and no iteration over set 
members.

===fix
Conventional asymmetry

	 	 a > b iff  not b > a

is failure of the symmetry of unit annihilation.  For the cases of •x or ◊x, a 
non-void form has somewhere been introduced.  total ordering is accounting for 
non-void addition over every a>b.  Non-void can be any c, not just •.
===

Transitivity
	
Again we convert the implicative statement of transitivity to one of 
biconditionality:

	 	 if •.a|∆b and •.b|∆c then •.a|∆c
	 	    •.a|∆b and •.b|∆c iff •.a|∆c

Here we have two structures that are known to be Solid.  We also know that 
fusion of two Solid ensembles will also be Solid:

	 	    •.a|∆b|b|∆c = •.a|∆c

Thus we know that the result, a|∆c is necessarily Solid.

From the perspective of b, transitivity is saying 

	 	 b|b = ><

which is true of all b, not just a specific b associated with a.

===============================================================================
Figure %%%:  transitivity spatial form

	 a>b  "&"  b>c  "iff"  a>c

	 a|∆b  "&"  b|∆c  "iff"  a|∆c

where b|∆b = ><  (use this appeal)
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===============================================================================

===
Conventionally, transitivity applies across two instances of a relation when 
each share an argument.  The common argument provides a "glue" that establishes 
the same relation between the two unmatched arguments.  transitivity is of 
course central to the definition of a comparative relation, since the basis of 
the comparison is an ordering on the domain of arguments.

For unit ensembles, should we interpret the logical conjunction as another 
fusion...
===finish
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STRUCTURE OF UNIT ADDITION 

We now compare the conventional axiomatic structure of addition to that of solid 
unit ensemble addition.  Addition is transcribed as the fuse operation

	 	 x + y  ==  a|b
with

	 	 I(x+y)  ==  S(a|b)

Here the separator bar designates that we have begun by considering a and b to 
be in different spaces.  Addition combines them into the same space via fusion.  
Thus, unit ensemble addition explicitly accounts for the act of designating and 
collecting ensembles that are to be added together.  Once fused, units in a 
common space form a Whole.  

A conventional interpretation iterates over units, for example
	
	 	 5  =  1+1+1+1+1

In unit ensemble arithmetic the decomposition of the Whole into unit parts is 
explicit rather than implicit as within a numeral such as 5:

	 	 5  =  •••••  =  •|•|•|•|•

This permits the Whole to treated as an individual.  All partitions into 
constituent wholes (i.e. parts) are on equal footing.  The partition 
corresponding to iterated successors is the maximal partition of the Whole, but 
it is not privileged since any fused partition defines a whole.  The set 
theoretic concept is that a Number is the class of sets with the same 
cardinality.  Here, a Number is not only a cardinality, it is also the fusion of 
other Numbers that as parts sum to that cardinality.  Associating a particular 
collection with a cardinal number, in both conventional and unit ensemble 
theories, is necessary for determining the unique value of the cardinality.  
However, in set theory, an infinity of classes of the same cardinality is 
presupposed, while in unit arithmetic Number is spatial structure, not numerical 
value.  Cardinality is constructive, determined at the time of counting.  Unit 
arithmetic is finite;  not only does infinity not play a role, but an arbitrary 
large number, in order to be determined to exist, must be actively constructed 
via fusion from Numbers known to exist, or alternatively, must be assumed and 
then shown to partition into known Numbers.  Unit ensemble arithmetic does not 
provide a ladder of inductions leading to infinity.

We adopt this perspective in order to study a theory of integers with concrete 
utility and intuitive structure, based in axioms that a young student would 
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understand.  Here, a theory not designed to reach Cantor's paradise is an 
advantage rather than a weakness.

================================================================================
	 Unit Ensemble Axioms of Whole Number Arithmetic Addition

Unary predicate   	 S(a)        	 	 positive integer sort
Variary function	 	 fuse(a|...|z) = a...z	 addition function

Generation	 	 	 S(•)
	 	 	 	 S(a|b)
Uniqueness              a=b  iff  a|c = b|c	 functional substitution
Decomposition theorem	 a = •  xor  a = b|c     composition/decomposition

===============================================================================
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================================================================================
	 	 Conventional Axioms of Whole Number Arithmetic Addition

forall-positive-integer x, y:

Constant symbol (zero)	 	
	 0	 	 	 	 	 	 	 	 ><
Unary function (successor)	 	 	
	 x'	 	 	 	 	 	 	 	 x|•
Unary predicate (positive integer)	
	 I(x)        	 	 	 	 	 	 S(x)
Generation axioms
	 zero	 	 	 I(0)	 	 	 	 	 ><
	 successor	 	 I(x')		 	 	 	 S(x|•)  
Uniqueness axioms
	 zero	 	 	 x' ≠ 0	 	 	 	 x|• ≠ ><	  
	 successor	 	 if x'=y' then x=y		 	 x|• = y|•  iff  x=y

Addition function
	 right zero	 	 x + 0 = x	 	 	 	 x = x
	 right successor	 x + y' = (x+y)'	 	 	 x|y|• = x|y|•

Theorems
	 right functional substitution		 	
	 	 	 	 if x=y then z+x = z+y	 	 x=y  iff  z|x = z|y
	 sort	 	 	 I(x+y)	 	 	 	 S(x|y)
	 right one	 	 x+1 = x'	 	 	 	 x|• = x|•
	 commutativity	 x+y = y+x	 	 	 	 x|y = x|y
	 associativity	 (x+y)+z = x+(y+z)		 	 x|y|z = x|y|z
	 annihilation	 if x+y=0 then x=y=0	 	 x|y = ><  iff  x=y=><
	 right cancellation	
	 	 	 	 if x+z = y+z then x=y	 	 x|z = y|z  iff x=y
  	 decomposition 
	 	 	 forsome-positive-integer z  
      	 	 	 if x≠0 then x=z'	 	 x ≠ • iff x=z|•	

Induction	 	 	   	 	 	 	
    forall-sentences F(x)
	 if F(0) and (if F(x) then F(x')) then F(x)

================================================================================
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Comparison of Axioms and Theorems of Addition 

The conventional axioms of addition are expressed here for positive whole 
numbers only.  Although the tools of unit ensembles apply equally well to all 
integers, we address only positive integers, the Solid type of unit.  Negative 
integers, corresponding to the Hollow unit type, are addressed in the next 
section on subtraction.

Following the observations from the axioms of comparison, we suppress analysis 
of right/left theorems and have included only one of the pair in the list of 
theorems for addition.  We also do not transcribe the zero axioms, since they 
cannot be expressed in unit ensemble arithmetic. We abandon the concept of a 
successor function, as well as associativity and commutativity.  And we move 
away from implicative definitions, in favor of algebraic definitions 
incorporating logical equivalence (iff).

The objects of the conventional theory of addition can be transcribed into unit 
ensembles:

	 	 0     ==  ><
	 	 x'    ==   x|•	 	
	 	 I(x)  ==  S(x)

It is not possible to assert a zero generation axiom; fusion provides a more 
general unit ensemble generation axiom that does not require incrementation:

	 	 P(x')	 ==   •.a|• = •a|••	
	 	 P(x+y) ==   •.a|b = •a|•b

With no Hollow type, these read:

	 	 P(x')	 ==   a|• = a|•	
	 	 P(x+y) ==   a|b = a|b

Similarly, there is not a zero uniqueness axiom.  The axiom

	 	 x' ≠ 0	 	

transcribes directly into

	 	 a|• ≠ >< 

which is true by definition.  Thus in unit ensemble arithmetic there is no 
additive identity.  More accurately, the analogous unit ensemble axiom would not 
call upon void,
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	 	 a|• ≠ • 

A direct transcription of the successor uniqueness axiom would be

	 	 if  x|• = y|•  then  x=y

The unit ensemble version is stronger in two respects.  The fused constant can 
be of any magnitude, and the relationship is bidirectional.

	 	 a=b  iff  a|c = b|c

In the conventional decomposition theorem, the existence of a z is asserted 
whenever x is not 0.  This transcribes directly into

	 	 if x ≠ >< then  x = z|•

However, the decomposition theorem in unit ensemble arithmetic is the uniqueness 
axiom above.  (This is not unexpected since decomposition is a theorem, not an 
axiom.)  Decomposition is analogous to the exhaustive type theorem, which itself 
is a simple consequence of the sort definitions:

	 	 a = •  xor  a = b|c

The analogous statement of the conventional decomposition theorem is:  This 
statement is true by virtue of the definition of fusion, i.e. the void cannot be 
fused.

	 	 a ≠ •  iff  a = b|c

===============================================================================
show
a=• xor a=/=b|c      =       a=/=• iff a=b|c

Figure %%%:  
===============================================================================

Due to the absence of a successor function, the above axioms of unit ensemble 
addition already incorporate the addition function.  That is,

	 	 x+0 = x        ==   a = a	 	 	 identity
	 	 x+y' = (x+y)'  ==   a|b|• = a|b|•	 	 identity

In summary, each of the conventional theorems for addition listed above is 
incorporated directly into the unit ensemble axioms and theorems.
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Absence of Induction

Most surprisingly, we have not required an Induction Axiom as yet.  For purposes 
of comparison, the unit ensemble induction axiom would read:

	 	 if F(0) and (if F(x) then F(x')) then F(x)
	 	 if F(•) and (if F(a) then F(a|b)) then F(a)
	 	 if F(•) and (not F(a) or F(a|b)) then F(a)

===
if Fa then  F•  &  Fa->Fab

Fa iff  F•  &  Fa iff Fab   !?

===
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STRUCTURE OF UNIT SUBTRACTION

We interpret the Hollow unit type, ◊, as negative one, -1.  

	 	 -1  ==  ◊

With a negative unit, subtraction requires no additional mechanism, it is simply 
addition that is generalized over the two exclusive types of units. 

We can also use changeunit to express a negative number:

	 	 -1  ==  ∆• = ◊

	 	 -a  ==  ∆a 

In unit ensemble arithmetic, there is no distinction between the unary property 
of being negative, and the binary operator of subtraction:

	 	 a +  b  ==  a|b
	 	 a + -b  ==  a|∆b
	 	 a -  b  ==  a|∆b

===
Changeunit is equivalent to a unary "negative", but subtraction is fusion.  MORe
===

A negative number is added by fusing the changeunit of the positive number.  Any 
number is subtracted also by fusing the changeunit of the number.  Changeunit is 
the general operator that converts a given Whole into its additive inverse, its 
negative. These forms derive from the definition of equality:

	 a = b  iff  a - b = 0   ==   a = b  iff  a|∆b = ><	

Note that these definitions are sufficient regardless of the unit types of both 
a and b:

	 	 (+a) - (+b)  ==  •a|∆•b = •a|◊b =  a|∆b
	 	 (+a) - (-b)  ==  •a|∆◊b = •a|•b = •.a|b
	 	 (-a) - (+b)  ==  ◊a|∆•b = ◊a|◊b = ◊.a|b
	 	 (-a) - (-b)  ==  ◊a|∆◊b = ◊a|•b =  b|∆a

Subtraction Axioms
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The conventional axioms of subtraction presented below are limited to positive 
numbers rather than to all integers.  The accompanying transcriptions show that 
only annihilation is added to unit ensemble subtraction.

================================================================================

	 	 Conventional Axioms of Positive Number Subtraction

for all positive-integer x,y,z:

predecessor		 	 	 	 annihilation
	 (x+1)-1 = x		 	 	 	 x|•|◊ = x
	 	 	
zero	 	 	 	 	 	 identity
	 x-0 = x	 	 	 	 	 x = x
	 	 	
successor	 	 	 	 	 changeunit, annihilation
	 (x+1) - (y+1) = x-y	 	      x|•|∆.y|• = x|•|∆y|∆• = x|•|∆y|◊ = x|∆y
	 	
decomposition	 	 	 	 annihilation
	 x = (x-1) + 1	 	 	 	 x = x|◊|•

================================================================================

Unit ensembles include the features of subtraction directly, by establishing a 
notational identity between the operation of subtraction and the property of 
negativity of numbers. Conventionally these operator perspective and the 
property perspective are the same, however conventional concept and notation 
require that the two perspectives be treated differently, and then asserted to 
have the same value.  In unit ensembles, there is no formal or conceptual 
difference in these perspectives, and this is supported by not being able to 
distinguish them notationally. 

The idea of predecessor decomposition (N down to 0 in unit increments) is 
usually incorporated within a theory of subtraction, while successor composition 
(0 up to N in unit increments) falls under the theory of addition. 
===say more===
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STRUCTURE OF UNIT MULTIPLICATION

The interpretation of substitution-as-multiplication for unit arithmetic is:

	 	   e*a   ==  [a • e]  
	 	 -(e*a)  ==  [a ◊ e]

with

	 	 W([a • e])  and  W([a ◊ e])

Put/In Symmetry

The interpretation for multiplication places only one additional structural 
constraint on the substitution operation, that of commutativity, or symmetry, 
between put-forms and in-forms:

	 	 [a • e] = [e • a]		 	 	 	 put/in symmetry

With commutativity of substitution, the semantics of substitution presented 
earlier provides all remaining conventional structural axioms of multiplication.  
The property that distinguishes the general concept of substitution from the 
concept of a multiplication operation is that in multiplication the put-form and 
the in-form commute without changing the value of the resultant Whole. 

During substitution, we expect to find a replicate of the for-form within the 
in-form substitution environment.  Put/in symmetry introduces a substantial 
modification to the idea of substitution:  we expect also to find a replicate of 
the for-form within the put-form.  Unit ensembles facilitate this symmetry since 
the for-form that defines multiplication is a single Solid unit, replicates of 
which constitute the parts of both the put-form and the in-form.
===say better ^===

Although the put-form and the in-form are symmetrical with regard to a result, 
the process of substitution does distinguish differential effort.  Substitution-
as-multiplication is symmetrical in space but not in the transformation steps 
required to implement the substitution.  For example, consider the simple case 
of 2*3 vs 3*2:

	 	 a = •••
	 	 e = ••

	 	 2*3 =  [••• • ••]  ==>  •••|•••  ==>  ••••••

	 	 3*2 =  [•• • •••]  ==>  ••|••|•• ==>  ••••••
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2*3 requires two substitution actions, while 3*2 requires three substitutions.  
In both cases the multiple substitutions can be implemented in parallel.  In 
effect, both cases require the same amount of time; however, 3*2 requires one 
more device (a "substitution-module") than does 2*3.

We can collapse this difference by making fusion blind to arity:

	 	 •••|•••  =  ••|••|••

The additional effort associated with 3*2 comes from construction of three 
Wholes rather than two, as is the case of 2*3.  Axioms of integer arithmetic do 
not usually address implementation costs, taking commutativity as an identity

	 	 3*2 = 2*3

Pragmatic differences occur only within implementation algorithms, a topic 
considered to be mathematically distinct from pure structure.  With 
substitution-as-multiplication, these implementation issues cannot be avoided, 
since carrying out the substitution requires an implementation step.
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================================================================================
Conventional Axioms of Whole Number Arithmetic Multiplication

forall-positive-integer x, y, z:

right zero	 	 	 	 in-void substitution
	 x*0 = 0	 	 	 	 [>< • x] = ><	        
	 	  	           
left fn substitution	 	 in-equality	          
	 if x=y then x*z = y*z 	  	 [z • x] = [z • y]          

right fn substitution	 	 put-equality
  	 if x=y then z*x = z*y         [x • z] = [y • z]	    

right successor	 	 	 distribution, self substitution
	 x*(y+1) = x*y + x		     [y|• • x] = [y • x]|[• • x] = [y • x]|x
                                                                	
Properties

Integer sort	 	 	 Whole sort
  	 I(x*y) 	 	 	 	 W([y • x])	 	 	  
	 	                                  
left zero	 	 	 	 in-void substitution
  	 0*x = 0 	     	 	 	 [x • ><] = ><	 	 	  
	 	 	 	 	           
left one	 	 	 	 global substitution
  	 1*x = x	 	      		 [x • •] = x		 	 	  
	 	 	 	 	 	           
right one	 	 	 	 self substitution
  	 x*1 = x	 	 	 	 [• • x] = x		 	 	      
	 	 	 	 	 	           
left successor	 	 	 in-distribution, global substitution
  	 (x+1)*y = x*y + y		    [y • x|•] = [y • x]|[y • •] = [y • x]|y       
     
commutativity	 	 	 put/in symmetry
  	 x*y = y*x	 	 	 	 [y • x] = [x • y]		 	  
	 	 	 	 	 	      
associativity	 	 	 super-associativity
  	 (x*y)*z = x*(y*z)	 	 	 [z • [y • x]] = [[z • y] • x]   	  
 	 	
right distribute	 	 	 put-distribution
  	 x*(y+z) = x*y + x*z	 	 [y|z • x] = [y • x]|[z • x]
	 	      
left distribute	 	 	 in-distribution
  	 (x+y)*z = x*z + y*z  	 	 [z • x|y] = [z • x]|[z • y]
================================================================================
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================================================================================
	 Unit Ensemble Axioms of Whole Number Multiplication

Whole sort
	 	 	 	 	 W([a • e])

put/in-symmetry
	 	 	 	 	 [a • e] = [e • a]		 	  
	 	 	 	 	 	     
put/in-void substitution
	 	 	 	 	 [>< • e] = [a • ><]	 = ><	     
	 	  	           	
self/global substitution	     
	 	 	 	 	 [x • •] = [• • x] = x

put/in-equality	       	 [a • e] = [b • e]  iff  a=b

super-associativity
	 	 	 	 	 [a • [c • e]] = [a [• c •] e] = [[a • c] • e]

put/in-distribution
	 	 	 	 	 [a|b • e|f] = [a • e]|[b • e]|[a • f]|[b • f]

	 	 	 	 Hollow Units

Solid/Hollow sorts
	 	 	 	 	 S(•)
	 	 	 	 	 H(◊)
	 	 	 	 	 W([a ◊ e])

changeunit
	 	 	 	 	 [a • e] = ∆[a ◊ e]

================================================================================
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Comparison of Axioms and Theorems of Multiplication

The axiom comparison table for multiplication includes void and right/left 
theorems since they have corresponding unit ensemble substitution forms.  This 
table does not include conventional axiomatization of multiplication by negative 
numbers, however the axioms of multiplication for unit ensembles cover integers 
in general.

Each of the rules of substitution for put/in-forms, developed earlier 
independently of the interpretation for integers, occurs in the table of 
mappings.  Those rules addressing the for-form do not;  for-equality and for-
void substitution are addressed under the interpretation for division.  

Value maintenance and distribution of equality also do not occur within the 
axioms of multiplication.  Instead, these rules are part of the deductive sub-
structure of all axioms.  It is for this reason that substitution-as-
multiplication can be deeply integrated into the algebraic structure of 
arithmetic.

The substitution rules found in predicate calculus are shown below in a more 
limited form for which the generalized for-form is replaced by a unit, for 
interpretation as multiplication:  

	 [a • e] = e  iff  a = •		 	 	 value maintenance
	 [a • e=f]  =  [a • e]=[a • f]		 	 distribution over equality

The general idea of value maintenance (substitution of equals) degrades into an 
application of self substitution.  The general idea of distribution over 
equality remains an application of functional substitution.

Commutativity as the Pivot

The axiomatic structure of substitution-as-multiplication differs from that 
developed without an interpretation for integers by only one additional rule, 
that of put/in symmetry, which is interpreted as the commutativity of 
multiplication.  This rule is pivotal since it alone converts generic 
substitution into a model for multiplication.  Thus, contrary to conventional 
axiomatizations which prove commutativity as a theorem, we take it as 
fundamental.  All varieties of left/right rules can be seen as application of 
put/in symmetry, as can the special rules of void, self, and global 
substitution.  Further, put/in symmetry provides the necessary basis for super-
associativity, which permits virtually free exchange of put-forms and in-forms 
over any composition of substitutions.
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from the point-of-view of implementation, symmetry transformations are 
directional steps in a temporal computational process that can be precompiled. 
That is, the put-form and the in-form can be pre-ordered for preferred 
computational sequences.  Thus, right and left substitution functions are 
necessary for pragmatics but not for axiomatization.  

For example, the "left one" rule (i.e. the multiplicative identity) corresponds 
to global substitution,

	 	 1*x = x	 	      	[x • •] = x	

while the "right one" rule corresponds to self substitution,	 	 	           

  	 	 x*1 = x	    	 	 [• • x] = x

Both are equivalent under the commutativity of substitution:

	 	 [x • •] = [• • x] = x

Three other pairs of substitution rules combine under commutativity of 
substitution.  Put-void substitution and in-void substitution correspond 
respectively to right and left zero rules:

	 	 [>< • x] = [x • ><] = ><

Put-equality and in-equality correspond to right and left function substitution:

	 	 [x • z] = [y • z]  
	 	 [z • x] = [z • y]

Put-distribution and in-distribution correspond to the right and left successor 
rules:

	 	 [y|• • x] = [y • x]|[• • x] 
	 	 [y • x|•] = [y • x]|[y • •] 

The conventional successor model is more restricted than the unit ensemble model 
since addition and multiplication rules are defined in terms of unit increments.  
In the restricted case, put- and in-distribution collapse by self/global 
substitution:  

	 	 [y|• • x] = [y • x]|x   
	 	 [y • x|•] = [y • x]|y
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In unit ensemble arithmetic, successors are not used, they are generalized to 
distribution of fusion over substitution.  The more general form of put/in 
fusion distribution over substitution:

	 	 [a|b • e|f] = [a • e]|[b • e]|[a • f]|[b • f]

Associativity

We have seen that associativity of substitution can take many forms.  For the 
particular interpretation of substitution-as-multiplication, together with put/
in commutativity, associativity takes on a limited form.

	 	 [a • [b • e]] = [[a • b] • e]

All variables are in an odd positional index; they stand in place of arbitrary 
forms.  Unit for-forms are in all even indexed positions.

With regard to the interpretation, substitution can be in any order.  That is, 
we can substitute b for units in e, and then substitute a for units in the 
result.  These units can be provided only by b, since the first substitution 
replaced all units in e by b.  Alternatively, we can substitute a for units in 
b, and then substitute that result for units in e.

Here is an example:

	 a = ••    b = •••    e = ••••

	 [•• • [••• • ••••]] = [••     • ••••••••••••] = ••••••••••••••••••••••••
	 [[•• • •••] • ••••] = [•••••• • ••••]         = ••••••••••••••••••••••••

This transcribes as

	 2*(3*4) = (2*3)*4 = 24

Note again the pragmatic difference in implementation.  2*12 is well-suited for 
a bitwise binary implementation, whereas 6*4 is better wuited for a half-byte 
implementation.

Multiplication of Unit Types

We now consider in detail the multiplication of ensembles of differing types.  
The goal is to understand the difference of interpretation between

	 	  e*a  ==  [a • e]     and     -e*a  ==  [a ◊ e]
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and to understand the special interpretation of failure-to-match-units, which is 
to force a match via changeunit and then adjust the change in value by another 
application of changeunit to the result.  This special interpretation assumes 
that both the for-form and the in-form are pure, consisting of one type of unit 
only.  We have assured this because fusion incorporates Unit Annihilation.  We 
do not address here operations on partitions, prior to fusion, which may contain 
both unit types.  However, changeunit is defined to address both unit types and 
thus applies to any partitioned or whole form.  

We begin with some examples:

	 	 sa = •••	 	 ha = ◊◊◊
	 	 se = ••	 	 he = ◊◊

	 	  se*sa =  3*2      ==   [••• • ••] = ••••••
	 	  se*ha = -3*2      ==   [◊◊◊ • ••] = ◊◊◊◊◊◊
	 	 -he*sa = -(3*-2)   ==   [••• ◊ ◊◊] = ••••••
	 	 -he*ha = -(-3*-2)  ==   [◊◊◊ ◊ ◊◊] = ◊◊◊◊◊◊

Hollow Unit Substitution

The interpretation of [a ◊ e] for multiplication, i.e. "substitute a for ◊ in 
e", is directly derivable from the definition of substitution-as-multiplication, 
[a • e], using two applications of changeunit, which preserves the value of the 
substitution:

	 	 [a ◊ e] = ∆[a ∆◊ e] = ∆[a • e]

Consider two cases:

	 	 when ◊[a ◊ e],  •[a • e]  ==    e*a
	 	 when •[a ◊ e],  ◊[a • e]  ==  -(e*a)

In the first case, when the substitution [a ◊ e] results in a Hollow ensemble, 
changeunit converts it into a Solid ensemble, which is interpreted as e*a.  When 
the substitution results in a Solid ensemble, changeunit converts it into a 
Hollow ensemble, which is then interpreted as -(e*a).  These interpretations are 
thus independent of the unit type of both a and e.

Failure to Match Units
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Failure to identify a unit match for substitution, such as in [a • ◊] is handled 
in the same manner as is [a ◊ e], that is by two applications of changeunit:

	 	 [a • ◊] = ∆[a ∆• ◊]] = ∆[a ◊ ◊] = ∆a
	 	 [a ◊ •] = ∆[a ∆◊ •]] = ∆[a • •] = ∆a

The use of changeunit assures that a substitution never fails to match.

In each of the four interpreted examples in the prior section, the types of the 
for-form and the in-form match.  There are four other possibilities for which 
the for-form does not occur within the in-form: 

	 -se*sa = -(3*2)    ==   [••• ◊ ••] = ∆[••• • ••] = ∆•••••• = ◊◊◊◊◊◊
	 -se*ha = -(-3*2)   ==   [◊◊◊ ◊ ••] = ∆[◊◊◊ • ••] = ∆◊◊◊◊◊◊ = ••••••
	  he*sa = 3*-2      ==   [••• • ◊◊] = ∆[••• ◊ ◊◊] = ∆•••••• = ◊◊◊◊◊◊
	  he*ha = -3*-2     ==   [◊◊◊ • ◊◊] = ∆[◊◊◊ ◊ ◊◊] = ∆◊◊◊◊◊◊ = ••••••

These failure-to-match-units cases invoke forced-matching via changeunit, and 
thus permit the substitution to proceed.  These examples illustrate how 
multiplication of signed integers is incorporated into substitution.  We now 
examine substitution over different unit types in depth.

Substitution over Different Unit Types

Consider all eight possible cases of unit substitution:

	    	 [• • •]
	    	 [• • ◊]
	    	 [◊ • •]
	    	 [◊ • ◊]
	    	 [• ◊ •]
	    	 [• ◊ ◊]
	    	 [◊ ◊ •]
	    	 [◊ ◊ ◊]

There are three types of structure within these cases,  natural substitution, 
put/in symmetry, and failure-to-match-units:

Natural Substitutions

Four substitutions have a natural interpretation of replacing occurrences of the 
for-form within the in-form.  In these, the type of the for-form matches the 
type of the in-form.  For example, the first substitution below calls for the 
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(trivial) operation of replacing all occurrences of the for-form • within the 
in-form • by the put-form •.

	    	 [• • •] = •
	    	 [• ◊ ◊] = •
	    	 [◊ • •] = ◊
	    	 [◊ ◊ ◊] = ◊

Each of these cases follows the pattern of global substitution, 

	 	 [A E E] = A

while two also follow the pattern of self substitution,

	 	 [A A E] = E

Put/in Symmetry Identities

	    	 [• • ◊] = ◊
	    	 [◊ ◊ •] = •

These two cases have the structure of failure-to-match-units, as well as the 
structure of self substitution.  We demonstrate that the forced-matching 
procedure is consistent with values expected from put/in symmetry.

	 	 [• • ◊] = ∆[• ∆• ◊]
	 	 	   = ∆[•  ◊ ◊]
	 	 	   = ∆•        
	 	 	   =  ◊

Interpreting put/in symmetry as commutativity of multiplication, we would expect 

	    	 [• • ◊] = [◊ • •] = ◊
	    	 [◊ ◊ •] = [• ◊ ◊] = •

The result of this substitution is consistent with that derived using 
changeunit.  For these two cases, forced-matching, self substitution, and put/in 
symmetry all behave in the same manner.

Unavoidable Failure-to-Match-Units

The remaining two cases,

	    	 [• ◊ •]
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	    	 [◊ • ◊]
	
obey commutativity by default, so that in all cases, put/in symmetry holds.  
These two cases, though, could generate a potential model contradiction.  Due to 
failure-to-match-units, we would intuitively expect the in-form to remain the 
same:

	    	 [• ◊ •] = •
	    	 [◊ • ◊] = ◊

For example, substituting the put-form • for the for-form ◊ fails since there 
are no instances of ◊ within the in-form •.  A failed substitution would leave 
the in-from unchanged.  However, under the interpretation for multiplication, we 
have

	 	 (-1)(-1)  ==  [◊ • ◊] = •
	 	 -(1)(1)   ==  [• ◊ •] = ◊

These two cases are brought into consistency by removing the possibility of 
failure-to-match-units using forced-matching via changeunit.  Two applications 
of changeunit maintains value:

	 	 [• ◊ •] = ∆[• ∆◊ •]
	 	 	   = ∆[•  • •] 
	 	 	   = ∆•         
	 	 	   =  ◊

Similarly,

	 	 [◊ • ◊] = ∆[◊ ∆• ◊] 
	 	 	   = ∆[◊  ◊ ◊] 
	 	 	   = ∆◊         
	 	 	   =  •

Finally we could examine the value of [• ◊ •] algebraically.  In general,

	 	 [a [a c e] e] = c

	 	 	   [a [a c e] e] 
	 	 	 = [[a a c] e e]
	 	 	 = [     c  e e]
	 	 	 =       c  

Therefore, 

	 	 [• [• ◊ •] •] = ◊
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Consider the middle substitution structure, 

	 	 either  [• ◊ •] = •   or   [• ◊ •] = ◊

Case 1:  [• ◊ •] = •

By substitution, we find that case 1 generates a contradiction. 

	 	 [• [• ◊ •] •] = [• • •] ≠ ◊

Case 2:  [• ◊ •] = ◊

By substitution, case 2 generates a consistent solution

	 	 [• [• ◊ •] •] = [• ◊ •]	
	 	 	 	   =  ◊

The net result of this analysis is that the single changeunit rule for Hollow 
substitution is sufficient to incorporate the multiplication rules for positive 
and negative numbers. 

Factoring Whole Numbers

Whole numbers are either prime or composite.  We will not address prime numbers 
directly;  indirectly a number is prime if it is not composite.  Factors of 
whole numbers identify the ways numbers are composed by multiplication.  In 
contrast to fused partitions (which identify ways in which whole numbers are 
composed by addition), the factors of a number are unique.  Partitions are 
decompositions of a fusion, we now explore decompositions of a substitution.

For example, the number 6 has the same value as the product 2*3.  In ensemble 
notation,

	 	 6    ==  •••••• = [• • ••••••] = [•••••• • •]
	 	
	 	 2*3  ==  [••• • ••]

An ensemble can always be written as self substitution of units, and as a global 
substitution of a unit, equivalent to 1*6 and 6*1 respectively. 

Factoring is then an inverse of self/global substitution:

	 	 2*3 = 1*6   ==   [••• • ••] = [•••••• • •]
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Diagrammatically, the forms in the put-form position and the in-form position 
are factors for a substitution having a unit in-form (alternatively, put-form).  

Factors identify equal partitions,

	 	 •••••• = (•••|•••) = (••|••|••)

It is not necessary to "count" the number of times that a part "divides-into" a 
whole, rather it is sufficient to identify the prime factor equal-part 
partitions, those that cannot be partitioned further (excluding maximal unit 
partitioning).  

Factor Trees

Decomposition of integers into prime factors requires successive factoring of 
component factors until all are prime.  Fig %%% shows a factor tree for the 
integer 60.

===============================================================================
Figure %%%:  factor tree for 60 	 	 	 --also on page 11--
2*3*5  (•••••••••••••••|•••••••••••••••)
	  (••••••••••|••••••••••|••••••••••)
	  (••••••|••••••|••••••|••••••|••••••)
	  (•••••|•••••|•••••|•••••|•••••|•••••)           prime
	  (•••|•••|•••|•••|•••|•••|•••|•••|•••|•••)       prime
	  (••|••|••|••|••|••|••|••|••|••|••|••|••|••|••)  prime
===============================================================================

Two different partial factorings can be shown to be equal to the same integer 
simply by reducing both to prime factors.  For example,

	 4*15 = 10*6 = 60

We will show how successive factoring can be achieved within the substitution-
as-multiplication structure.  When

	 	 [a • e] = [b • f]

we can apply the fusion definition of equality,

	 	 [a • e]|∆[b • f] = ><
	 	 [a • e]|[b ◊ f] = ><

To solve the void-equivalence, we need each substitution to annihilate.  This 
requires the substitutions to be fused at the put-form or at the in-form.  To 
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fuse the substitutions, we need two of the three substitution forms to be 
identical.  We illustrate this process with an example,  4*15 = 10*6.  

The first method uses put-equality:

	 	 [•••• • •••••••••••••••] = [•••••••••• • ••••••]
	 	 [••|•• • •••••|•••••|•••••] = [•••••|••••• • •••|•••]
	 	 [[•• • ••] • [••••• • •••]] = [[•• • •••••] • [•• • •••]]
	 	 [•• • •• • ••••• • •••] = [•• • ••••• • •• • •••]
	 	 [     •• • ••••• • •••] = [     ••••• • •• • •••]
	 	 [     •• • •••••      ] = [     ••••• • ••      ]
	 	       ••                =               ••      
	 	 	            ••|◊◊  =  ><

The second method uses direct fusion:

	 	 [•••• • •••••••••••••••] = [•••••••••• • ••••••]
	 	 [•••• • •••••••••••••••]|[•••••••••• ◊ ••••••] = ><

	 	 [••|•• • •••••|•••••|•••••]|[•••••|••••• ◊ •••|•••] = ><
	 	 [[•• • ••] • [••••• • •••]]|[[•• • •••••] ◊ [•• • •••]] = ><
	 	 [•• • •• • ••••• • •••]|[•• • ••••• ◊ •• • •••] = ><
	 	 [•• • •• • ••••• • •••]|[•• • •• • ••••• ◊ •••] = ><
===FINISH?===

Generally

	 if a*e = b*1  then  a*1 = b/e  and  b*1 = a/e

	 if [a • e]=[b • •]  then  [a • •]=[b e •]  and  [b • •]=[a e •]

The substitution structure of division is presented in the next section.
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STRUCTURE OF UNIT DIVISION

Multiplication calls for substitution of an ensemble a for each unit in a second 
ensemble e.  Division is the inverse of multiplication, calling for substitution 
of a single unit for each entire put-form that can be partitioned out of the in-
form.  Replacing units by an ensemble defines multiplication; replacing 
ensembles by units defines division.  The asymmetry of divide is incorporated in 
the relationship between the put/in-forms and the for-form within substitution.

	 	 e*a  ==  sub(a,•,e)	 	 -(e*a)  ==  sub(a,◊,e)

	 	 e/a  ==  sub(•,a,e)           -(e/a)  ==  sub(◊,a,e)

so that

	 	 [a • [• a e]] = e		 	 [a ◊ [◊ a e]] = e
	 	 [• a [a • e]] = e		 	 [◊ a [a ◊ e]] = e

An example:

	 	 a = ••
	 	 e = ••••••
	 	 e/a  ==  [• •• ••••••] = •••

The unit ensemble model implements division via partitioning.  In the example, 
all •• forms within •••••• are identified, and each replaced by a unit.  

	 	 e = •••••• ==> (••|••|••)

	 	   [• •• ••••••] 
	 	 = [• •• ••|••|••]
	 	 = [• •• ••]|[• •• ••]|[• •• ••]
	 	 = •|•|• 
	 	 = •••

We first examine the conventional structures of exact divide, quotient, and 
remainder, as they relate to the substitution operation.  We then discuss the 
impact of the interpretation as division on the concept of substitution, and 
finally show that quotient and remainder functions are convenient names for 
aspect of the division process, but are not necessary for a definition of unit 
ensemble division.

The Divide Function
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The conventional definition of the divide function incorporates two component 
definitions, quotient and remainder:

	 	 quotient(y,x)  = y//x      ==  q[• x y]

	 	 remainder(y,x) = rem(y/x)  ==  r[• x y]

We provide shorthand notation for the conventional functions, and specialized 
substitution forms for the unit arithmetic functions.  The substitution forms 
are minor modifications of general substitution-as-multiplication for which some 
special cases have special reductions.  These special substitution operations 
are represented by square brackets with a prefix label.

The definition of the divide function, incorporating quotient and remainder, is:

	 y/x = q + r/x  iff  y = x*q + r  and q = y//x  and r = rem(y/x)

Transcribing this into substitution notation:

	 [• x y] = q|[• x r]  iff  y=[x • q]|r  and  q=q[• x y]  and r=r[• x y]

The unit arithmetic representation can be condensed by expanding the specialized 
q and r substitution operations:
     		
	 [• x y] = [• x q[• x y]|r[• x y]]  iff  y = [x • q[• x y]]|r[• x y]

The quotient function defines exact division whenever the remainder is zero.  
The remainder function contributes to the definition of a proper fraction.  We 
will later show that the unit arithmetic definition of divide does not require 
fragmentation into an exact division with a possible remainder.  

Quotient and Remainder

The quotient and remainder functions subdivide the divide function into an exact 
division and a remainder.  In the case that an ensemble cannot be partitioned 
into parts all equal to a given whole (the divisor), a remainder will be 
present.  Consider for example the unit ensemble substitution structure 
corresponding to 7/2:

	 	 7  == ••••••• 
	 	
	 	 7/2  ==  (••|••|••|•)
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We first partition the "numerator" ensemble into wholes that are equivalent to  
the "denominator" ensemble.  This can be a parallel process.  The algebraic 
computation of the division proceeds as follows:

	   [• •• •••••••] 		 	 	 	 	 division-as-substitution
	 = [• •• ••|••|••|•]	 	 	 	 	 partition the in-form
	 = [• •• ••]|[• •• ••]|[• •• ••]|[• •• •]	 	 distribute the fusion
	 = •|•|•|[• •• •]	 	 	 	 	 	 apply global substitution
	 = •••|[• •• •]	 	 	 	 	 	 fuse the result

Division is a substitution process within which an in-form (or a put-form by 
put/in symmetry) is partitioned, distributed, and reduced.  The fused result 
will consist of a whole (called the quotient) and possibly an incipient 
substitution (called the remainder) that represents a proper fraction.

The above example simplifies to a partition consisting of a whole and a 
substitution that cannot be carried out.  In general, division-as-substitution 
partitions an ensemble into a whole which counts the partitions of an in-form 
into a for-form, and a remaining substitution for which the for-form is larger 
than the in-form.  Algebraically,

	 	 y = x*q + r

becomes

	 	 y = [x • q[• x y]]|r[• x y]

which can be read as

	 <in-form> = [<for-form> • <quotient-whole>]|<incipient-substitution>

The conventional axioms of the quotient function include by a base case and a 
recursive model of successive addition (or subtraction) of the divisor that 
counts the addition steps.  We include the literal transcription to unit 
arithmetic for comparison.

	 if x>y then y//x = 0	 	 •.x|∆y  iff  q[• x y] = ><
	 (x+y)//x = y//x + 1	   	 q[• x y|x] = q[• x y]|•

The conventional axioms of the remainder function include by a base case and a 
recursive model of successive addition (or subtraction) of the divisor that 
ignores the addition steps.

	 if x>y then rem(y/x) = y   	 •.x|∆y  iff  r[• x y] = y
	 rem((x+y)/x) = rem(y/x)		 r[• x y|x] = r[• x y]
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Whenever the number being divided is less than the divisor, we have a proper 
fraction.  In this case the quotient function is zero, while the remainder 
function returns the numerator of the proper fraction.

Should the number being divided be larger than than the divisor, then the 
divisor is subtracted once, the division count is incremented by one, and the 
division process recurs.  The remainder in this case is adjusted to reflect the 
new number being divided. 

The unit arithmetic transcription of the quotient function shows that division 
is an application of fusion distribution followed by global substitution.  

	 	 q[• x y|x] = q[• x y]|q[• x x] = q[• x y]|•

Thus far quotient substitution and unrestricted substitution are the same.  The 
base case modifies an incipient substitution to be void

	 	 •.x|∆y  iff  q[• x y] = ><

We can embed the less-than condition for the quotient base case directly into 
the substitution by comparing the substitution to unity:

	 	 x>y  iff  y/x < 1

This permits a type check to determine the base case for division-as-
substitution:

	 	 y/x < 1  ==  ◊.[• x y]|∆• = ◊.[• x y]|◊ 

The comparison x>y is true whenever y/x is less than 1.  

	 	   [• x y]|◊ 
	 	 = [• x y]|[• • ◊] 
	 	 = [• x y]|[• [• x x] ◊]
	 	 = [• x y]|[• [x x •] ◊]
	 	 = [• x y]|[• x [x • ◊]]
	 	 = [• x y|[x • ◊]]
	 	 = [• x y|∆x]

Thus, using the decomposition version of division iteration,

	 	  if ◊.[• x y|∆x]
	 	 	 	 q[• x y] = ><
	 	 	 	 r[• x y] = y   
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	 	  else		 q[• x y] = q[• x y|∆x]|•
	 	 	 	 r[• x y] = r[• x y|∆x]	

================================================================================
	 Conventional Axioms for Divide, Quotient and Remainder Functions

divide
	 y/x = z + r/x  iff  y = x*z + r  and z = y//x  and r = rem(y/x)

	 [• x y] = z|[• x r]  iff  y=[x • z]|r  and  z=q[• x y]  and r=r[• x y]
     		
	 [• x y] = [• x q[• x y]|r[• x y]]  iff  y = [x • q[• x y]]|r[• x y]

less-than quotient
	 if x>y then y//x = 0	 	 •.x|∆y  iff  q[• x y] = ><
one quotient*
	 if x=y then y//x = 1	 	 x|∆y = ><  iff  q[• x y] = •
addition quotient
	 (x+y)//x = y//x + 1	   	 q[• x y|x] = q[• x y]|•

less than remainder
	 if x>y then rem(y/x) = y   	 •.x|∆y  iff  r[• x y] = y
zero remainder*
	 if x=y then rem(y/x) = 0	 x|∆y = ><  iff  r[• x y] = ><
addition remainder
	 rem((x+y)/x) = rem(y/x)		 r[• x y|x] = r[• x y]

================================================================================
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Exactly Once

In the base case where the number being divided is equal to the divisor, the 
quotient function returns one while the remainder function returns zero.

	 one quotient*
	 	 if x=y then y//x = 1	 	 x|∆y = ><  iff  q[• x y] = •

	 zero remainder*
	 	 if x=y then rem(y/x) = 0	 x|∆y = ><  iff  r[• x y] = ><

Iterative Decomposition

Here we have expressed the division of y by x incrementally.  The quotient of 
the sum x+y when divided by x is one more than the quotient of y divided by x.  
The number x+y is consequently reduced to y,

	 	 (x+y) - x = y

The remainder function for x+y is the same as the remainder function for y.  

In substitution semantics, the quotient is simply a distribution of fusion of 
the substitution.  Subtraction does not enter into the definition, it is 
converted into a global substitution of a unit for x:

	 	 q[• x y|x] = q[• x y]|q[• x x] = q[• x y]|•

Thus, with respect to distribution over fusion, substitution and the specialized 
quotient function are identical.  The difference is in the proper fraction base 
case, for which the quotient function terminates with void rather than returning 
the proper fraction.  This component is instead returned by the remainder 
function.  Thus, symmetrically, the remainder function returns void rather than 
the unit under global substitution:

	 	 r[• x x] = ><

	 	 r[• x y|x] = r[• x y]|r[• x x] = r[• x y]

From this we can see that the one-quotient and zero-remainder rules are theorems 
derivable from a variant definition of global substitution:

	 	 q[   ===finish

We discuss the axioms of division after making some observations about the 
substitution structures of division.
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Exact Division

We discuss the interpretation of unit ensembles for divides, quotient, and 
remainder functions, concentrating first on the simplest case when the remainder 
of a division is zero.  Proper fractions, for which the in-form is smaller than 
the for-form, are considered in a following section.

When the in-form is larger than the for-form, division can be interpreted to 
take place by the conventional technique of successive subtraction.  An 
ensemble, e, is exactly divisible by another ensemble, c, when it is possible to 
partition e into parts that all match the for-form.  That is, exact division is 
defined by partitioning a whole into equal parts.  Unit partitioning, for which 
each partition consists of one unit, is the maximal partition characteristic of 
all unit ensembles that defines the number of the whole.  Maximal partitioning 
corresponds to division by 1, while no partitioning corresponds to division by 
the number itself.  A prime number, of course, is one for which the divides 
function always includes a remainder, excluding maximal and no partitioning.

Substitution-as-Division

The interpretation of substitution-as-division casts new light on the 
substitution-as-multiplication process.  The substitution rules interpreted for 
multiplication do not change, however put-void substitution must be undefined 
under the interpretation for division: 

	 	 undefined  ==  [a >< e]

The reason this substitution is undefined, from the perspective of unit 
ensembles, is that the for-form must exist in order to identify a match within 
the in-form.  Although void-equivalent forms are permitted within substitutions, 
no void-equivalent forms are permitted under the interpretation for integers.

The axiomatic structures of global and self substitution find explanation when 
interpreted as division:

	 	 e*a/e = a	 ==   [a e e] = [e e a] = a	 	  	
	 	 e*a/a = e   ==   [e a a] = [a a e] = e	 	

Self substitution is simply multiplying the in-form by 1 (i.e. a/a).  Global 
substitution is multiplying the put-form by 1.  Put/in symmetry unifies these 
two apparently different forms of substitution.
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Reciprocal Symmetry

The substitution operation incorporates a model of division as well as 
multiplication.  There is reciprocal symmetry between the put-for and the for-
form.  Substituting a for c in e combines multiplication and division into one 
function:

	 	 e*a/c  ==  [a c e]

Put/in symmetry is commutativity of multiplication, while put/for symmetry is 
reciprocality of division.

	 	 a/c  ==  [a c •] = [• c a]

A unit reciprocal is constructed by changing the place of the put-form with the 
for-form.  

	 	 a/1  ==  [a • •] = [• • a] = [a ◊ ◊] = [◊ ◊ a]
	 	 1/a  ==  [• a •] = [◊ a ◊]

These definitions are positive when the two unit forms participating in the 
substitution are of the same type, and negative when they differ.

	 	 -a/1  ==  [a • ◊] = [◊ • a] = [a ◊ •] = [• ◊ a]
	 	 -1/a  ==  [• a ◊] = [◊ a •]

Reciprocals

The substitution structure for a reciprocal is

	 	 1/c  ==  [• c •]

Replacing an even indexed form directly by its reciprocal is improper, since 
this substitution shifts the even indexed form into an odd index position.  The 
proper form is to construct the multiplication of odd index forms by the 
reciprocal, that is:

	 	 [a c e] = [a • [[• c •] • e]] 
	 	 	   = [a • [• [c • •] e]]
	 	 	   = [a • [•  c      e]]
	 	 	   = [a [• •  c]     e ]
	 	 	   = [a       c      e ]

In order to construct a proper substitution form, the reciprocal for-form must 
be bracketed with one or the other of the put/in-forms, thus the reason for the 
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second set of inner brackets.  However, within the flat substitution notation 
this is a moot point, since

	 	 [a • [[• c •] • e]] = [a  • •  c • •  e]
	 	 	 	 	   = [a  • • [c • •] e]
	 	 	 	 	   = [a  • •  c      e]
	 	 	 	 	   = [a [• •  c]     e]
	 	 	 	 	   = [a       c      e]

A Tighter Interpretation

Substitution for a Hollow for-form was previously interpreted as converting a 
multiplication result to its negative:

	 	 -(e*a)  ==  [a ◊ e]

This interpretation is now no longer needed;  instead it is a consequence of the 
interpretation for division, specifically division by -1:

	 	 (e*a)/(-1)  ==  [a ◊ e]

We then have a quite powerful mechanism for proving substitution equivalence.  
The interpretation of unit substitutions becomes:

	 	 (1*1)/1     ==  [• • •] = •
	 	 (1*-1)/1    ==  [◊ • •] = ◊
	 	 (-1*1)/1    ==  [• • ◊] = ◊
	 	 (-1*-1)/1   ==  [◊ • ◊] = •

	    	 (1*1)/-1    ==  [• ◊ •] = ◊
	    	 (1*-1)/-1   ==  [• ◊ ◊] = •
	    	 (-1*1)/-1   ==  [◊ ◊ •] = •
	    	 (-1*-1)/-1  ==  [◊ ◊ ◊] = ◊

That is, an odd number of Solid forms within a substitution structure gives a 
Positive result, while an even number gives a Negative result.

Super-associativity of Substitution

The associative rule for substitution as multiplication,

	 (e*b)*a = e*(b*a)

	 [a • [b • e]] = [[a • b] • e]
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can be generalized to include substitution as division:

	 [a c [b d e]] = [[a c b] d e]

which transcribes as

	 (a/c)*(b*e/d)  =  (a*b/c)*(e/d)

We might also note that the equality can be rewritten as

	 [a [c b d] e]

which is

	 (a*e)/(c*d/b) 

That is, given a nested composition of substitutions, the interpretation does 
not change when the substitution is shifted over the arguments to the right or 
to the left.  When this is combined with put/in symmetry, and with variable 
reordering derived from associativity, substitution becomes super-associative.  
We have 

	 [a c [b d e]] = [a [c b d] e] = [[a c b] d e] 

	 [a c e] = [e c a]

	 [a c [b d e]] = [[b d e] c a]

	 [a c [b d e]] = [b c [e d a]] = [e d [a c b]]

That is, variables located in odd numbered locations are multiplied, while 
variables in even numbered locations are multiplied as reciprocals.  This is 
sufficiently general that, regardless of nested substitutions to any depth, a 
variable in an odd indexed location can be placed in any odd location, while a 
variable in an even indexed location can be placed in any even location.

Flat Substitution

Keeping in mind that substitution operations require three arguments (the put-, 
for-, and in-forms), we can construct the bracket notation reflect super-
symmetry, by eliminating all inner brackets.  A form such as

	 	 [a c b d e]
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can represent two applications of substitution, the grouping of three sequential 
arguments is discretionary.  This notation is particularly useful as a 
representation of exponentiation.

For proper form, the number of structures enclosed in brackets should be 2n+3, 
with n+2 structures in odd indexed (multiplication) positions, and n+1 in even 
indexed (division) positions.  Those in even positions can be thought of as 
multiplying by their reciprocal.   A proper application of substitution would 
take two structures from the even group and one structure as the for-form from 
the odd group.  Results would be returned into the even group.

Within these repeated choosing restrictions, substitution is now also a flat 
function.  The consideration of the order in which triplets are reduced by 
substitution is an important factor for the pragmatics, but not the semantics, 
of an implementation.

===============================================================================
Figure %%%:  pick one form this bag and two from this one
===============================================================================

Sequential and Parallel Substitution

Fusion is a one-step process mapping parts to a Whole, so that the idea of 
applying fusion in sequential steps is not inherent within the conceptualization 
of the operation.  In comparison, multiple substitutions are usually considered 
to require sequential implementations.  In general, 

	 	 [a c [b d e]] ≠ [[a c b] d e]]

Consider this case in which e = cd, b = c, and all other letters stand for 
themselves:

	 	 [a c [c d cd]] = [a c cc] = aa
	 	 [[a c c] d cd] = [a d cd] = ca

Composition of substitutions is often restricted so that the for-form of one 
substitution and the put-form of another do not share identifiers.  However, the 
super-symmetry that comes with the interpretation of substitution-as-division 
assures the ordering of substitutions does not change the result.  For example,

	 a = ••
	 b = •
	 c = ••
	 d = ••••
	 e = ••••
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	 [[a b c] d e] = [[•• • ••] •••• ••••] = [•••• •••• ••••] = ••••
	 [a [b c d] e] = [•• [• •• ••••] ••••] = [•• •• ••••]     = ••••
	 [a b [c d e]] = [•• • [•• •••• ••••]] = [•• • ••]        = ••••

Substitution has fixed arity, it requires three arguments.  Therefore 
applications of substitution can reduce a collection of arguments three at a 
time.  However, nestings can be composed so that substitutions can be applied in 
parallel or in sequence.  For the case of four applications of substitution, the 
nestings could be arranged to take four time steps, or three or two time steps.  

	 	 [a b [c d [e f [g h i]]]]	 	 four steps, one module
	 	 [a b [c [d e f][g h i]]]	 	 three steps, two modules
	 	 [[a b c][d e f][g h i]]		 	 two steps, three modules

In a resource constrained implementation, arguments may be combined in any 
groupings of three and in any hierarchical order.  Naturally, algebraic 
simplification is beneficial prior to actual substitution.  For example,

	 	 [[a c e] • [b d c]]
	 	 [ a c e  •  b d c ]
	 	 [ a • e  c  c d b ]
	 	 [ a • e       d b ]

Deep nesting permits recycling the same "substitution module" resource.  In 
general, given unlimited resources, a purely sequential implementation of 
substitution-as-multiplication for k substitutions requires k temporal steps, 
while a parallel implementation provides a logarithmic reduction of temporal 
steps. 

Normal and Applicative Order

[[a c e] d f]  as  do [a c e] and then subst

	 	 	 vs subst [a c e] for d in f.

For example,

	 [[a b c] d e] = [[•• • ••] •••• ••••] = [•••• •••• ••••] = ••••
	 [[a b c] d e] = [[•• • ••] •••• ••••] = [•• • ••] = ••••

	 [a b [c d e]] = [•• • [•• •••• ••••]] = [•• • ••]        = ••••
	 [a b [c d e]] = [•• • [•• •••• ••••]] = [•••• •••• ••••] = ••••

	 [[c d e] b a] = [[•• •••• ••••] • ••] = [•• • ••]        = ••••
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	 [[c d e] b a] = [[•• •••• ••••] • ••] 
	 	 	   = [•• •••• ••••]|[•• •••• ••••] = ••|••   = ••••

Also have more uncommon middle-order

	 [a [b c d] [b c d]] = [•• [• •• ••••] [• •• ••••]|••] = •••• = ••••

================================================================================
 	 	 Theorems that Extend the Divide Function

sort
	 I(y//x)	 	 	 W(q[• x y])
	 I(rem(y/x))		 	 W(r[• x y])
right zero
	 0/x = 0	 	 	 	 [• x ><] = ><
left zero
	 not y/0	 	 	 	 not [• >< y]

subtraction quotient
	 if y>x then y/x = (y-x)/x + 1
	 	 	 	 	 	 if •.y|∆x then [• x y] = [• x y|∆x]|•
subtraction remainder
	 if y<x then rem(y/x) = rem((y-x)/x)
	 	 	 	 	 	 if •.y|∆x then r[• x y] = r[• x y|∆x]
greater-than
	 if x>y then not y//x	 	 	 if •.x|∆y then not e[• x y]

================================================================================

q[• x y] = q[• x y|∆x|x] = q[• x y|∆x]|q[• x x] = q[• x y|∆x]|•
r[• x y] = r[• x y|∆x|x] = r[• x y|∆x]|r[• x x] = r[• x y|∆x]

q[• x y|x] = q[• x y]|q[• x x] = q[• x y]|•
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================================================================================
 	 	 Conventional Axioms for Exact Divide

exact divide
	 y//x = z  iff  x*z=y     	 e[• x y] = z  iff  [x • z] = y
	 	 	 	 	                           
	 	 	 	 	 	 e[• x y] = z  iff  y = [x • q[• x y]]

exact remainder
if y//x = z  then  rem(y/x) = 0 	 e[• x y] = z  iff  r[• x y] = ><

addition   is distribution over exact divide
y///x and z///x  iff  y///x and (y+z)///x	   
	 	 	 	     e[• x y] and e[• x z]  iff  e[• x y] and e[• x y|z]

multiplication
if y///x or z///x then (y*z)///x	 e[• x y] or e[• x z] iff e[• x [y • z]]
	 	 	 	 	 	 e[• x y] or e[• x z] iff e[y x z]

transitivity
	 if y///x and z///y then z///x		 e[• x y] and e[• y z] iff e[• x z]
	 	 	 	 	 	 	 e[e[• x y] • e[• y z]] = e[• x z]

antisymmetry  not when integers
	 if y///x and x///y then x=y	 	 e[• x y] and e[• y x] iff x=y

reflexivity
	 x///x		 	 	 	 	 e[• x x] = •

gcd
	 gcd(x,0) = x
gcd remainder
	 gcd(x,y) = gcd(y, rem(x,y))
common divisor
	 x///gcd(x,y) and y///gcd(x,y)
greatest
	 if x///z and y///z then gcd(x,y)///z

================================================================================
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multiplication
if y///x or z///x then (y*z)///x	 e[• x y] or e[• x z] iff e[• x [y • z]]
	 	 	 	 	 	 e[• x y] or e[• x z] iff e[y x z]

	 [• x [y • z]]
	 [• x y • z]
	 [y x • • z]
	 [y x z]

	 e[• x y] or e[• x z] iff e[y x z]

e[y x z]  iff  e[• x y] or e[• x z]
e[y x z]  iff  not( [• x y] and [• x z] )
e[y x z]  iff  not( [• x q[• x y]|r[• x y]] and [• x q[• x z]|r[• x z]] )

[• x q[• x y]|r[• x y]] and [• x q[• x z]|r[• x z]]
[• x q[• x y]]|[• x r[• x y]] and [• x q[• x z]]|[• x r[• x z]]

y<x     [• x q[• x y]]|[• x r[• x y]] and [• x q[• x z]]|[• x r[• x z]]
•.x|∆y  [• x   ><  ]|[• x       y ] and [• x   ><  ]|[• x       z ]

•.x|∆y                 [• x       y ] and                [• x       z ]
===FINISH

addition
	 	 e[• x y] and e[• x z]  iff  e[• x y] and e[• x y|z]
	 	
	 	 e[• x y] and e[• x z]  iff  e[• x y] and e[• x y|z]
	 	 	 	 	 	 	 	     e[• x y]|e[• x z]
	 	 	 is just distribution over exact divide

multiplication is always exact divide
	 	 e[a • b]

transitivity over integers
	 if y///x and z///y then z///x		 e[• x y] and e[• y z] iff e[• x z]
use
	 	 e[e[• x y] • e[• y z]] = e[• x z]  not --true of all

	 	 	 e[e[• x y] • e[• y z]]   
	 	 	 e[e[• x y] e[• • y] z]?  
	 	 	 e[e[• x y]       y  z]   
	 	 	 e[• e[x y       y]  z]
	 	 	 e[•   x             z]  
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antisymmetry
	 if y///x and x///y then x=y	 	 e[• x y] and e[• y x] iff x=y

assume  e[e[• x y] • e[• y x]] = •

therefore have form of [unit • unit] = •

	 e[• x y] = e[• y x] = •
or
	 e[• x y] = e[• y x] = ◊

for antisymmetry, don't need x=y  (!)

	 if y///x and x///y then x=y

	 	 2/-2 and -2/2  but  x ≠ y
===

Division of integers (including negative numbers) is not antisymmetric

Factoring of Whole Numbers Revisited

We can now examine factoring as a structural relationship between substitution 
forms.  Factoring the number 30 will provide an example.  In flat substitution 
notation:

	 	 30 = 5*3*2   ==  [•• • ••• • •••••]

The substitution form reads "substitute 2 for each unit in 3 for each unit in 5"

===============================================================================
Figure %%%:  of structural divisions of 30

[• • 30] = [•• • 15] = [••• • 10] = [••••• • ••••••]
= [[•• • •••] • •••••] = [•• • [••• • •••••]] = [•• [• ••• •] •••••]

(15|15) = (10|10|10) = (5|5|5|5|5|5) 
	   = (3|3|3|3|3|3|3|3|3|3) = (2|...|2) = (1|...|1)
===============================================================================

Factors are computed via partitioning.  We begin with the ensemble of 30 units, 
and subdivide into equal parts.  Alternatively we could begin with the maximal 
partition of 30 into unit wholes, and remove partitions symmetrically by exact 
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division.  Since ensembles are spatial forms, the determination of factors can 
be done by spatial and well as symbolic symmetries.

===============================================================================
Figure %%%:  spatial division of 30  
===============================================================================

division decomposition

[a c e] = [a [c • n][e • n]]
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THEORY OF NONNEGATIVE INTEGERS

Constant:
	 0
Constructor Function:
	 x+   
Relation:
	 Integer[x]
Mixin equality:
	 =

Terms:
	 0, 0+, 0++, 0+++. ...

#  To shorten the notation, we count the number of +'s and call the term that number, to get 
0, 1, 2, ... (This is an example of swapping computation for definition.)  #

Axioms:
  Generate base:	 	 Integer[0] 
  Generate successor:	Integer[x+]

  Unique zero:		 not (x+ = 0)
  Unique successor:	 (x+ = y+)  ->  (x = y)
  
Computational Technique (Induction) (Loop):
	 	 	 	 S[0] and (S[x] -> S[x+])  ->  S[x]

#  Proof and Computation are defined by showing a base case, S[0] == true, and by assuming a 
general case, S[x], and then showing the next case, S[x+] == true.  This works because we know 
we can iterate over all numbers from 0 to x using only the stepping function +.

In recursive programming we do exactly the same thing (but usually in reverse, using a inverse 
theory that has Predecessor x- rather than Successor x+.  For example, to sum, we exit at a base case, 
and iterate over each of the others explicitly:

	 Sum[x]  ==  if (x = 0) then 0 else x + Sum[x-]

The computational technique can also be recognized as iteration:

	 Sum[x]  ==  loop from 0 to x doing  (result := result + x)

Now I know that the machine does all this stuff reliably and it seems silly to spend so much time on 
it, but the conventional machine requires instances, it needs bound variables to work.  The above 
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techniques work on symbols, variables, unknowns, as well as on values, instances, knowns.  Besides, 
it's not what the machine does that matters to us, it's what we understand about what the machine 
does from looking at i/o.  If you're serious about low level objects, here's how integer objects 
manage to count.  They don't flip bits, they pass "Add yourself to this" messages.  #

Computational techniques:
  Substitution in general
  Decomposition:	 	 	 (x = 0)  or  (x = y+)

#  The Decomposition rule lets us define x- for all x except 0.  It does this by introducing an 
arbitrary y.

Now we can expand to include addition and multiplication:  #

Axioms for Addition:
  Addition base:	 	 	 (x + 0) = x
  Addition loop:	 	 	 (x + y+) = (x + y)+

Rules for Addition:
	 Integer[(x + y)]
	 (x + 1) = x+

Computational techniques:
  Substitution
	 (x + z) = (y + z)  ==  (x = y)
	 (x + y) = 0  == (x = 0) and (y = 0)

Axioms for Multiplication:
  Multiplication base:	 	 (x * 0) = 0
  Multiplication loop:	 	 (x * y+) = (x * y) + x

Rules for Multiplication:
	 (x * 1) = x

#  When x and y are different structures (the theory is applied to different domains), + and * have 
different definitions.  The implementation changes (overloading) but the abstract organization stays 
the same.

I'm starting to abbreviate here, omitting the things that get inherited from other theories, and that are 
very much like theories previously described.  Don't forget that there are an infinite number of rules, 
and substitution creates an infinite number of expressions, so let's just concentrate on the essentials.  
#
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Mixin Associative Ordering:
	 <,  =,  ≤

#  Mix-in means build a world with both theories,  explicitly coupling the theories with mixed rules.  
The world is not organizationally different because the theories maintain their unique organization 
while working in concert.  This is how to achieve modularity of object-oriented systems.  Coupling 
rules specify communication protocols.  #

Structural extensions:
	 Positive[x]  ==  Integer[x] and not (x = 0)
	 Minimum[x,y]  ==  (if (x <= y) then y else x)

  Predecessor:		 (x + 1)- = x
  Subtraction base:	 	 (x - 0) = x
  Subtraction loop:	 	 (x+ - y+) = (x - y)
	 	 	 	 (x + y) - y = x

  Quotient base:	 	 (x < y)  ->  (x/y = 0)       
  Quotient loop:	 	 (x + y)/y = x/y + 1

  Remainder base:	 	 (x < y)  ->  (Remains[x,y] = x)
  Remainder loop:	 	 Remains[(x + y), y] = Remains[x,y]

  Quotient-Remainder:	(x = (y*(x/y)) + Remains[x,y]) and (Remains[x,y] < y)

  Divides:	 	 	 (x D y) == (x * z = y) and Integer[z]
	 	 	 	 (x D y) == (Remains[y,x] = 0) 
  Multiply-divide:	 	 (x D y) or (x D z)  ->  (x D y*z)

  GreatestCommonDivisor Base:	   Gcd[x,0] = x
  GreatestCommonDivisor Loop:	   (y = 0) or Gcd[x,y] = Gcd[y, Remains[x,y]]

	 (Gcd[x,y] D x)  and  (Gcd[x,y] D y)
	 (z D x) and (z D y)  ->  (z D Gcd[x,y])

#  In Divides, Integer takes care of the existence of the z, cause 

	 Integer[non-existing integer] == false

This could be written as

	 (x D y) == (x * Ez = y)
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STRUCTURE OF UNIT EXPONENTS

In substitution-as-multiplication, the square of a number a is a self-
substitution

	 	 a^2  ==  [a • a]

Higher powers are explicitly represented as a sequence of self-substitutions:

	 	 a^3  ==  [a • [a • a]]

a^4 can be represented in both the "repeated substitution" format and in the 
hierarchical substitution format:

	 	 a^4 = a*a*a*a  ==  [a • [a • [a • a]]]

	 	 a^4 = (a*a)^2  ==  [[a • a] • [a • a]]

The first form corresponds to sequential binary multiplication, the second to 
parallel binary multiplication.

Both versions require three substitutions, however two of the hierarchical 
multiplications can be achieved at the same time.  Thus the sequential version 
requires on "multiplication module" and three time steps, while the parallel 
version requires two multiplication modules and two time steps, a classic time/
space tradeoff.

For exponentiation, the flat substitution notation is more convenient, since 
exponentiation substitution structures show great regularity.

Substitution-as-multiplication does not have an explicit notation for 
exponentiation, so we will provide one.  The right superscript conventionally 
used to denote exponentiation is a shorthand that does not represent what it 
stands for.  Similarly our convenience notation does not directly represent the 
substitution structure of iterated (alternatively hierarchical) multiplications.  
However, powers of unit ensembles do have a distinct substitution structure, as 
is shown in Table %%%, and it is this structure that we will abbreviate.

	 	 a^b       ==  [a • b..]
	 	 a^-b      ==  [• a b..]

The encoded token b.. stands in place of the power b in a^b.  Using this 
notation, the example cases are shown in Figure %%%

================================================================================
Summary of Substitution Forms for Exponents
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	 	 a^-b  ==                         [• a b..]
	 	 a^-3  ==    [• a • a • a •]   =  [• a •••..]
	 	 a^-2  ==      [• a • a •]     =  [• a ••..]
	 	 a^-1  ==        [• a •]       =  [• a •..]
	 	 a^0   ==        [• a a]       =  [• a ..]
	 	 a^1   ==        [a • •]       =  [a • •..]
	 	 a^2   ==        [a • a]       =  [a • ••..]
	 	 a^3   ==      [a • a • a]     =  [a • •••..]
	 	 a^4   ==    [a • a • a • a]   =  [a • ••••..]
	 	 a^b   ==                         [a • b..]
================================================================================

The notation is awkward for unit ensembles, since we have not yet granted 
numeral abbreviations for ensembles. It is not intended to be useful for 
computation nor is it succinct.  We need the notation solely to conveniently 
express various axioms about exponents within the unit ensemble system.

Powers can be represented as substitutions in a variety of ways, each variety 
suggests an implementation strategy.  For example

	 a^4   ==  [a • a • a • a] = [a • [a • [a • a]]] = [a [• [a • a] •] a]

	 a^-3  ==  [• a • a • a •] = [• a [• a [• a •]]] = [• [a [• a •] a] •]

===
log

	 	 a^4           ==    [a • a • a • a]   =  [a • ••••..]

	 	 	 	 	 log [a • a • a • a] = ••••
	 	 loga a^4 = 4	 log [a • ••••..] = ••••..

===
SHOW

x^a • x^b = x^(a+b)
x^-a = 1/x^a
(x^a)^b - x^(a*b)
x^a * y^a = (x*y)^a
x^0 = 1
[[x • a..] • [x • b..]] = x • a|b..]
[• x a..] = [• [x• a..] •]
[x x •] = •
[[x • a..] • [y • a..]] = [[x • y] • a..]
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================================================================================

	 Unit Ensemble Axioms of Whole Number Arithmetic Exponentiation

for all integer x,y,z:

exponent zero	 	 	 	
	 	 x^0 = 1	 	 	 	 [• x x] = [• x ..] = •
exponent successor
	 	 x^(y+1) = (x^y)*x		 	 [x • y|•..] = [x • [x • y..]]

Properties

sort
	 	 I(x^y)	 	 	 	 W([x • y..])
exponent one	
	 	 x^1 = x	 	 	 	 [x • •] = [x • •..] = x
base zero
	 	 if y ≠ 0 then 0^y=0	 	 [>< • y..] = ><
exponent plus
	 	 x^(y+z) = (x^y)*(x^z)	 	 [x • y|z..] = [[x • y..] • [x • z..]]
exponent times
	 	 x^(y*z) = (x^y)^z		  	 [x • [y • z]..] = [[x • y..] • z..]

================================================================================

Comparison of Axioms

The zero and one rules reduce to simple substitution structures, although they 
can be written in the exponentiation notation.  Consistent with the intention of 
unit ensemble arithmetic, it is preferred not to introduce new notation for 
known forms, since having different syntactic forms of the equivalent 
substitutions only adds complexity that must then be reduced via transformation.  

Exponent successor is an applied case of exponent plus, and therefore 
unnecessary.  What is left of interest is only the distribution relations 
between exponentiation and both fusion and substitution.

In exponent plus, fusion of a power converts to substitution of the fused 
powers.  This rule asserts that the sum of exponents is equal to the product of 
the bases.  In exponent times, the substitution structure as a power converts to 
substitution of one put/in-form into the other.

Pure distribution of ".." over substitution helps to clarify the rules for 
nested exponents:
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	 	 a^b^c  as either  a^(b^c) or as (a^b)^c

	 	 a^(b^c)	 	 [a • [b • c..]..]
	 	 (a^b)^c	 	 [[a • b..] • c..] 

	 	 (a^b)^c = a^(b*c)  [[a • b..] • c..] = [a • [b • c]..]
	 	
=====

Examples

(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)

	 	 a^-2    ==  [• [a • a] •]

	 	 (-a)^2  ==  [[• ◊ a] • [• ◊ a]]
==DO
	 	 	   [[• ◊ a] • [• ◊ a]]
	 	 	 = [[• ◊ a] [• • ◊] a]
	 	 	 = [[• ◊ a] [◊ • •] a]
	 	 	 = [[• ◊ a]      ◊  a]

	 	 	 = [a [◊ • •] [a ◊ •]]
	 	 	 = [a    ◊    [a ◊ •]]
	 	 	 = [a    ◊    [• ◊ a]]
	 	 	 = [a   [◊     • ◊] a]
	 	 	 = [a          •    a]              ==  a^2

	 	 (a + b)^2  ==  [a|b • a|b]

	 	 	   [a|b • a|b]
	 	 	 = [a • a]|[a • b]|[a • b]|[b • b]
	 	 	 = [a • a]|[[a • b] • ••]|[b • b]   ==  (a^2 + 2ab + b^2)

	 	 (a + b)(a - b)  == [a|b • a|∆b]

	 	 	   [a|b • a|∆b]
	 	 	 = [a • a]|[a • ∆b]|[b • a]|[b • ∆b]
	 	 	 = [a • a]|∆[a • b]|[b • a]|∆[b • b]
	 	 	 = [a • a]|                 ∆[b • b]
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	 	 	 = [a • a]|∆[b • b]                 ==  a^2 - b^2

	 	 (x^2 + 3x - 4) = (x + 4)(x - 1)

	 	 	 [x • x]|[••• • x]|•••• =  

	 	 	   [x|•••• • x|◊]
	 	 	 = [x • x]|[◊ • x]|[•••• • x]|[•••• • •]
	 	 	 = [x • x]|[◊|•••• • x]|••••
	 	 	 = [x • x]|[••• • x]|••••

(a^2 + b^2)(c^2 + d^2) = (ad + bc)^2 + (bd - ac)^2

[[a • a]|[b • b] • [c • c]|[d • d]]

[[a • a] • [c • c]]|[[a • a] • [d • d]]|[[b • b] • [c • c]]|[[b • b] • [d • d]]
[[a • c] • [a • c]]|[[a • d] • [a • d]]|[[b • c] • [b • c]]|[[b • d] • [b • d]]

[[a • d]|[b • c] • [a • d]|[b • c]]|∆[[b • d]|[a • c] • [b • d]|[a • c]]

=====

Logarithms

log of a boundary form counts the number of nested parens

	 2^5 = 32	 	 	 (•)^((•))• = (((((•)))))
	 	 	
	 log2 32 = 5		 	 log2 (((((•))))) = ((•))•

Roots

The unit ensemble calculus requires discrete units, and thus cannot express 
irrational numbers.  (We have developed a boundary mathematics that addresses 
the full range of reals, the James calculus [ref].)  However, we should be able 
to determine the two square roots of square numbers.  That procedure is:
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STRUCTURE OF FRACTIONS

In conventional notation, fractions consist of two numbers.  Division of the two 
is not performed.  We might thus expect unit ensemble fractions not to resolve 
into a single Whole.  Consider the simplest case of the fraction 1/2:

	 	 1/2  ==  [• •• •]  

This illustrates another case of failure-to-match.  In general, when c>e,

	 	 [• c e] 

will not match, because there are more unit sin c than are in e.  In these 
cases, the substitution does not proceed.

This substitution could be considered to be implicit, the unresolved 
substitution operation itself representing the fraction.  (There are methods for 
constructing the division analogous to that of decimals that we will not discuss 
here.)

In general,

	 	   1/c   ==  [• c •] = [◊ c ◊]
	 	   a/c   ==  [a c •] = [• c a]
	 	 -(a/c)  ==  [a c ◊] = [◊ c a]

The axioms of rational number include the rules of adding and multiplying 
fractions.  We first consider the simpler case of equivalent fractions.

Equivalent Fractions

Equivalent fractions are those that share a divisor across both numerator and 
denominator.  For example:

	 	 1/2 = 2/4 = 3/6 = ...

	 	 [• •• •] = [• •••• ••] = [• •••••• •••] = ...

In general,

	 	 [• c e] = [• [c • n] [e • n]] = [• [c n •] [e n •]]

	 	 	   [• [c • n] [e • n]]
	 	 	 = [• [c • n] [n • e]]
	 	 	 = [[• c •] [n n •] e]
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	 	 	 = [[• c •]      •  e]
	 	 	 = [• [c •      •]  e]
	 	 	 = [•  c            e]

This relationship can also be illustrated using partitions:

	 	 [• (•|•) •] = [• (••|••) ••] = [• (•••|•••) •••] = ...

===
finish
===

Multiplying Fractions

The transformation rule governing multiplication of fractions is:

	 	 a/c * b/d = a*b / c*d 

Transcribing into unit ensemble notation:

	 	 a/c  ==  [• c a]
	 	 b/d  ==  [• d b] 
	 	 a*b  ==  [a • b]
	 	 c*d  ==  [c • d]

	 a/c * b/d  ==  [[• c a] • [• d b]]

	 a*b / c*d  ==  [a [c • d] b]

The left-hand-side is converted into the right-hand-side using substitution 
rules:

	   [[• c a] • [• d b]]
	 = [[a c •] • [• d b]]
	 = [ a [c • •][• d b]]
	 = [ a  c     [• d b]]
	 = [ a [c      • d] b]

Dividing Fractions

Conventionally, division is multiplication by the reciprocal.  In substitution-
as-division, the notion of reciprocal is achieved by exchanging the put-form 
with the for-form.  Division by fractions follows the same pattern.  For 
example,

8



	 1/3 ÷ 1/2 = 1/3 * 2/1 = 2/3

	 [• ••• •]/[• •• •] = [• ••• •]*[• • ••] 
	 	 	 	  = [• ••• [• • ••]]
	 	 	 	  = [• [••• • •] ••]
	 	 	 	  = [•  •••      ••]

Substitution-as-division permits direct expression of multiplication by a 
reciprocal:

	 [• ••• •]/[• •• •] = [[• ••• •] • [• [• •• •] •]]
	 	 	 	  = [[• ••• •] • [[• • ••] • •]]
	 	 	 	  = [[• ••• •] • [     ••  • •]]
	 	 	 	  = [[• ••• •] •       ••      ]
	 	 	 	  = [• [••• • •]       ••      ]
	 	 	 	  = [•  •••            ••      ]

Division can also be achieved by direct substitution into the for-form rather 
than the in-form:

	 	 [• ••• •]/[• •• •] = [• [••• • •] •]/[• •• •]
	 	 	 	 	  = [• [••• [• •• •] •] •]
	 	 	 	 	  = [• [••• • [•• • •]] •]
	 	 	 	 	  = [• [••• •  ••     ] •]

===============================================================================
Figure %%%:  
	 	 2/3 ÷ 5/6 = 2/3 * 6/5 =  12/15 = 4/5

	 	 [•• ••• •]/[••••• •••••• •] = [[•• ••• •] [••••• •••••• •] •]

	 	 	    [[•• ••• •] [••••• •••••• •]  •]
	 	 	 =  [[•• ••• •]  ••••• [•••••• • •]]
	 	 	 =  [[•• ••• •]  •••••  ••••••     ]
	 	 	 =  [•• ••• [•  •••••  ••••••]     ]
	 	 	 =  [•• ••• [••••••  •••••  •]     ]
	 	 	 =  [[•• ••• ••••••]  •••••  •     ]
	 	 	 =  [[•• ••• •••|•••] •••••  •     ]
	 	 	 =  [         ••|••   •••••  •     ]
	 	 	 =  [          ••••   •••••  •     ]
===============================================================================

For readability, we can replace each unit ensemble with the numeral that names 
it.  The substitution semantics remains the same:
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===============================================================================
Figure %%%:  
	 	 [2 3 •]/[5 6 •] = [[2 3 •][5 6 •] •]

	 	 	    [[2 3 •][5 6 •]  •]
	 	 	 =  [[2 3 •] 5 [6 • •]]
	 	 	 =  [[2 3 •] 5  6     ]
	 	 	 =  [2 3 [•  5  6]    ]
	 	 	 =  [2 3 [6  5  •]    ]
	 	 	 =  [[2 3 6] 5  •     ]
	 	 	 =  [[2 3 3|3] 5  •   ]
	 	 	 =  [     2|2  5  •   ]
	 	 	 =  [      4   5  •   ]
===============================================================================

In general, by the method of division as multiplication by a reciprocal:

	 	 a/c ÷ b/d = a/c * d/b = ad/cb
	
	 	 [a c •]/[b d •] = [a c •]*[d b •] 
	 	 	 	     = [a c [d b •]]     ==fix==
	 	 	 	     = [a c [• b d]]
	 	 	 	     = [a [c • b] d]

We can also formulate division directly as substitutions, without relying on a 
reciprocal:

	 	 x ÷ y  == [x y •]   with x = [a c •],  y = [b d •]

	 	 a/c ÷ b/d  ==    [[a c •] [b d •] •]
	 	 	 	    = [[a c •] b [d • •]]
	 	 	 	    = [[a c •] b  d     ]
	 	 	 	    = [a [c • b] d]

Adding and Subtracting Fractions

Substitution is blind to unit type, treating Solid and Hollow units as the same.  
We consider next addition of fractions with like and with unlike denominators

Like Denominators

Adding fractions with like denominators is a straightforward application of 
distribution of fusion over substitution:
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	 	 a/c + b/c = (a + b)/c

Transcribing:

	 	 a/c  ==  [• c a]
	 	 b/c  ==  [• c b]

	 	 	 [• c a]|[• c b] = [• c a|b]

Unlike Denominators

For addition of fractions, we will call upon distribution of fusion over 
substitution:

	 	 a/c + b/d = (a*d + b*c)/c*d

Transcribing:

	 	 a/c  ==  [• c a]
	 	 b/d  ==  [• d b]
	 	 a*d  ==  [a • d]
	 	 b*c  ==  [b • c]
	 	 c*d  ==  [c • d]

	 a/c + b/d  ==  [• c a]|[• d b] 

	 (a*d + b*c)/ c*d  ==  [•  [c • d]  [a • d]|[b • c]]

To apply fusion, as well as having the same for-form, the fused substitutions 
require either the put-form or the in-form to be the same.  We can construct 
this as follows:  To convert unit ensemble fractions to a common denominator, we 
construct a common for-form in both fused substitutions.  This permits 
distribution of substitution over fusion.

	 	              [•   c             a ]
	 	 	      = [• [ c  •       •] a ]
	 	 	      = [• [ c [• d  d] •] a ]
	 	 	      = [• [[c  • d] d  •] a ]
	 	 	      = [•  [c  • d][d  •  a]]
	 	 	      = [•  [c  • d][a  •  d]]

Each step of the above transformation is either an application of global 
substitution, or a rearrangement of triplets.  Using super-associativity, this 
can be more simply expressed as:
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	 	 	 	  [•           c a ]
	 	 	      = [•  • • d  d c a ]
	 	 	      = [•  c • d  d • a ]
	 	 	      = [• [c • d][d • a]]

Continuing for the other added fraction,

	 	              [•   d             b ]
	 	 	      = [• [ d  •       •] b ]
	 	 	      = [• [ d [• c  c] •] b ]
	 	 	      = [• [[d  • c] c  •] b ]
	 	 	      = [•  [d  • c][c  •  b]]
	 	 	      = [•  [d  • c][b  •  c]]
	 	 	      = [•  [c  • d][b  •  c]]

Fusing these,

	          [• c a]     |       [• d b]
	 = [• [c • d] [a • d]]|[• [c • d] [b • c]] 
	 = [• [c • d] [a • d] |[b • c]           ]

The requirement of "like denominators" for addition of fractions is reflected in 
substitution-as-division as the requirement of two identical substitution forms 
to achieve fusion.

	 	 [a c e]|[a c f] = [a c e|f]

===============================================================================
Figure %%%:  Axioms of Rational Numbers

n/1 = n	 	 	 	 [• • n] = n

0/n = 0   n ≠ 0   W[n]        [• n ><] = ><

n/-a = -n/a		 	 	 [• ∆a n] = [• a ∆n]

equivalent fraction reduction

	 x/y = (x/gcd(x,y)) / (y/gcd(x,y))     gcd(x,y) ≠ 1

	 x/y = x/gcd(x,y) * gcd(x,y)/y     gcd(x,y) ≠ 1
===============================================================================
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Unit Ensemble Algebra

We now consider algebraic manipulations in unit arithmetic.  Although 
transformation rules can be formulated over equations, here we focus on the 
decomposition as an algebraic technique,

	 	 a = b  iff  a|n = b|n

Combining Like Terms

Combining like algebraic terms calls upon conventional distribution of 
multiplication over addition.  For ensembles, it is distribution of substitution 
over fusion.  In general,

	 	 ax + bx = (a + b)x

	 	 [a • x]|[b • x] = [a|b • x]

Solving Linear Equations

Additive

	 x + 3 = 5

	 x|••• = •••••
	 x|••• = ••|•••
	 x = ••

A void-based method for solving this equation follows:

	 x|•••|∆••••• = ><

	 x•••◊◊◊◊◊
	 x◊◊
	 x|∆◊◊ = ><
	 x = ∆∆◊◊ = ••

Multiplicative

use   x=y  iff  [a c x]=[a c y]

	 2x = 6
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	 [•• • x] = ••••••
	 [•• • x] = [• • ••••••]
	 [•• • x] = [• • •••|•••]
	 [•• • x] = [•• • •••]
	 x = •••

The equivalent void-based method:

	 [•• • x]|∆•••••• = ><
	 [•• • x]|∆[• • ••••••] = ><
	 [•• • x]|∆[• • •••|•••] = ><
	 [•• • x]|∆[•• • •••] = ><
	 [•• • x]|[•• • ∆•••] = ><
	 [•• • x]|[•• • ◊◊◊] = ><
	 [•• • x|◊◊◊] = ><
	 x|◊◊◊ = ><
	 x|∆••• = ><
	 x = •••

Simple Linear Equation

	 2x + 3 = 7

	 [•• • x]|••• = •••••••
	 [•• • x]|••• = ••••|•••
	 [•• • x] = ••••
	 [•• • x] = [• • ••••]
	 [•• • x] = [• • ••|••]
	 [•• • x] = [•• • ••]
	 x = ••

void-based:

	 [•• • x]|••• = •••••••
	 [•• • x]|•••|∆••••••• = ><
	 [•• • x]|•••◊◊◊◊◊◊◊   = ><
	 [•• • x]|◊◊◊◊         = ><
	 [•• • x]|[• • ◊◊◊◊]   = ><
	 [•• • x]|[•• • ◊◊]   = ><
	 [•• • x|◊◊]   = ><
	 x|◊◊   = ><
	 x|∆••  = ><
	 x = ••
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Solving Proportions

	 	 6/9 = 2/x

	 	 [•••••• ••••••••• •] = [•• x •]
	 	 [••|••|•• •••|•••|••• •] = [•• x •]
	 	 [[•• • •••] [••• • •••] •] = [•• x •]
	 	 [•• [• ••• •••] [• ••• •]] = [•• x •]
	 	 [••  •          [• ••• •]] = [•• x •]
	 	 [•• [•           • •••] •] = [•• x •]
	 	 [••                •••  •] = [•• x •]
	 	 [•• ••• •] = [•• x •]
	 	 x = •••

Cross Multiply

	 	 [a c •]=[b d •]   iff   [a • d]=[b • c]

Quadratic Equation

Completing the Square

[x • x]|[a • x] = [x|[a •• •] • x|[a •• •]]|[[a •• •] • [a •• •]]

Pythagorean Theorem

	 [a • a]|[b • b] = [c • c]

	 [c|a b •] = [b c|∆a •]

cross-mult:

	 [c|a • c|∆a] = [b • b]

	 [c|a • c|∆a] = [c • c]|∆[a • a]

Systems of Equations

x+y = 1
x-y = 7
not intended for matrix techniques
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Already done as algebraic fusion and substitution rules.

===============================================================================
Figure %%%:  Integer Sum and Factorial

	 ∑1 = 1	 	 	 	 ∑• = •
	 ∑x = x + ∑(x-1)	 	 	 ∑x = x|∑.x|◊
	 ∑(x+1) = (x+1) + ∑x	 	 ∑.x|• = x|•|∑x

zero
	 0! = 1	 	 	 	 •! = •
successor
	 x! = x*(x-1)!	 	 	 x! = [x • x|◊.!]
	 (x+1)! = (x+1)*x!		 	 x|•.! = [x|• • x!] = [x • x!]|x!
 
===============================================================================
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STRUCTURE OF UNIT EXPONENTS  -REDO WITH {} 5/3/07

In substitution-as-multiplication, the square of a number a is a self-
substitution

	 	 a^2  ==  [a • a]

Higher powers are explicitly represented as a sequence of self-substitutions:

	 	 a^3  ==  [a • [a • a]]

a^4 can be represented in both the "repeated substitution" format and in the 
hierarchical substitution format:

	 	 a^4 = a*a*a*a  ==  [a • [a • [a • a]]]

	 	 a^4 = (a*a)^2  ==  [[a • a] • [a • a]]

The first form corresponds to sequential binary multiplication, the second to 
parallel binary multiplication.

Both versions require three substitutions, however two of the hierarchical 
multiplications can be achieved at the same time.  Thus the sequential version 
requires on "multiplication module" and three time steps, while the parallel 
version requires two multiplication modules and two time steps, a classic time/
space tradeoff.

For exponentiation, the flat substitution notation is more convenient, since 
exponentiation substitution structures show great regularity.

Substitution-as-multiplication does not have an explicit notation for 
exponentiation, so we will provide one.  The right superscript conventionally 
used to denote exponentiation is a shorthand that does not represent what it 
stands for.  Similarly our convenience notation does not directly represent the 
substitution structure of iterated (alternatively hierarchical) multiplications.  
However, powers of unit ensembles do have a distinct substitution structure, as 
is shown in Table %%%, and it is this structure that we will abbreviate.  
Consistent with the spatial approach, the abbreviation is a boundary, a new 
boundary {}.

	 	 a^b       ==  {a • b}
	 	 a^-b      ==  {• a b}

The encoded boundary {.. .. b} stands in place of the power b.  
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Importantly, commutativity of substitution does not hold with "power 
boundaries".

Using this notation, the example cases are shown in Figure %%%

================================================================================
Summary of Substitution Forms for Exponents

	 	 a^-b  ==                         {• a b}
	 	 a^-3  ==    [• a • a • a •]   =  {• a •••}
	 	 a^-2  ==      [• a • a •]     =  {• a ••}
	 	 a^-1  ==        [• a •]       =  {• a •}
	 	 a^0   ==        [• a a]       =  {• a ><}
	 	 a^1   ==        [a • •]       =  {a • •}
	 	 a^2   ==        [a • a]       =  {a • ••}
	 	 a^3   ==      [a • a • a]     =  {a • •••}
	 	 a^4   ==    [a • a • a • a]   =  {a • ••••}
	 	 a^b   ==                         {a • b}
================================================================================

The notation is awkward for unit ensembles, since we have not yet granted 
numeral abbreviations for ensembles. It is not intended to be useful for 
computation nor is it succinct.  We need the notation solely to conveniently 
express various axioms about exponents within the unit ensemble system.

The convenience of the power boundary is that all substitution transformation 
rules other than commutativity hold.

Powers can be represented as substitutions in a variety of ways, each variety 
suggests an implementation strategy.  For example

	 a^4   ==  [a • a • a • a] = [a • [a • [a • a]]] = [a [• [a • a] •] a]

	 a^-3  ==  [• a • a • a •] = [• a [• a [• a •]]] = [• [a [• a •] a] •]

===
log

	 	 a^4           ==    [a • a • a • a]   =  {a • ••••}

	 	 	 	 	 log [a • a • a • a] = ••••
	 	 loga a^4 = 4	 log {a • ••••} = ••••

===
SHOW

2



x^a • x^b = x^(a+b)
x^-a = 1/x^a
(x^a)^b - x^(a*b)
x^a * y^a = (x*y)^a
x^0 = 1
[{x • a} • {x • b}] = {x • a|b}
{• x a} = [• {x • a} •]
[x x •] = •
[{x • a} • {y • a}] = {[x • y] • a}

last is distribution of exponential over multiplication/substitution
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================================================================================

	 Unit Ensemble Axioms of Whole Number Arithmetic Exponentiation

for all integer x,y,z:

exponent zero	 	 	 	
	 	 x^0 = 1	 	 	 	 [• x x] = {• x ><} = •
	 	 x^0 = 1	 	 	 	 {x • ><} = {• x ><} = •
exponent successor
	 	 x^(y+1) = (x^y)*x		 	 {x • y|•} = [x • {x • y}]
	 	 x^(y+1) = (x^y)*x		 	 {x • y|•} = {{x • y} • {x • •}}

or reinterpret | inside {} as •  NO!
	 	 x^(y+1) = (x^y)*x		 	 {x • y|•} = {{x • y} | {x • •}}

Properties

sort
	 	 I(x^y)	 	 	 	 W({x • y})
exponent one	
	 	 x^1 = x	 	 	 	 [x • •] = {x • •} = x
base zero
	 	 if y ≠ 0 then 0^y=0	 	 {>< • y} = ><
exponent plus
	 	 x^(y+z) = (x^y)*(x^z)	 	 {x • y|z} = [{x • y} • {x • z}]
exponent times
	 	 x^(y*z) = (x^y)^z		  	 {x • [y • z]} = {{x • y} • z}

================================================================================

Comparison of Axioms

The zero and one rules reduce to simple substitution structures, although they 
can be written in the exponentiation notation.  Consistent with the intention of 
unit ensemble arithmetic, it is preferred not to introduce new notation for 
known forms, since having different syntactic forms of the equivalent 
substitutions only adds complexity that must then be reduced via transformation.  

Exponent successor is an applied case of exponent plus, and therefore 
unnecessary.  What is left of interest is only the distribution relations 
between exponentiation and both fusion and substitution.

In exponent plus, fusion of a power converts to substitution of the fused 
powers.  This rule asserts that the sum of exponents is equal to the product of 

4



the bases.  In exponent times, the substitution structure as a power converts to 
substitution of one put/in-form into the other.

Pure distribution of {} over substitution helps to clarify the rules for nested 
exponents:

	 	 a^b^c  as either  a^(b^c) or as (a^b)^c

	 	 a^(b^c)	 	 {a • {b • c}}
	 	 (a^b)^c	 	 {{a • b} • c} 

	 	 (a^b)^c = a^(b*c)  {{a • b} • c} = {a • [b • c]}
	 	
=====

Examples

(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)

	 	 a^-2    ==  [• [a • a] •]

	 	 (-a)^2  ==  [[• ◊ a] • [• ◊ a]]
==DO
	 	 	   [[• ◊ a] • [• ◊ a]]
	 	 	 = [[• ◊ a] [• • ◊] a]
	 	 	 = [[• ◊ a] [◊ • •] a]
	 	 	 = [[• ◊ a]      ◊  a]

	 	 	 = [a [◊ • •] [a ◊ •]]
	 	 	 = [a    ◊    [a ◊ •]]
	 	 	 = [a    ◊    [• ◊ a]]
	 	 	 = [a   [◊     • ◊] a]
	 	 	 = [a          •    a]              ==  a^2

	 	 (a + b)^2  ==  [a|b • a|b]

	 	 	   [a|b • a|b]
	 	 	 = [a • a]|[a • b]|[a • b]|[b • b]
	 	 	 = [a • a]|[[a • b] • ••]|[b • b]   ==  (a^2 + 2ab + b^2)
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	 	 (a + b)(a - b)  == [a|b • a|∆b]

	 	 	   [a|b • a|∆b]
	 	 	 = [a • a]|[a • ∆b]|[b • a]|[b • ∆b]
	 	 	 = [a • a]|∆[a • b]|[b • a]|∆[b • b]
	 	 	 = [a • a]|                 ∆[b • b]
	 	 	 = [a • a]|∆[b • b]                 ==  a^2 - b^2

	 	 (x^2 + 3x - 4) = (x + 4)(x - 1)

	 	 	 [x • x]|[••• • x]|•••• =  

	 	 	   [x|•••• • x|◊]
	 	 	 = [x • x]|[◊ • x]|[•••• • x]|[•••• • •]
	 	 	 = [x • x]|[◊|•••• • x]|••••
	 	 	 = [x • x]|[••• • x]|••••

(a^2 + b^2)(c^2 + d^2) = (ad + bc)^2 + (bd - ac)^2

[[a • a]|[b • b] • [c • c]|[d • d]]

[[a • a] • [c • c]]|[[a • a] • [d • d]]|[[b • b] • [c • c]]|[[b • b] • [d • d]]
[[a • c] • [a • c]]|[[a • d] • [a • d]]|[[b • c] • [b • c]]|[[b • d] • [b • d]]

[[a • d]|[b • c] • [a • d]|[b • c]]|∆[[b • d]|[a • c] • [b • d]|[a • c]]

=====

Logarithms

log of a boundary form counts the number of nested parens

	 2^5 = 32	 	 	 (•)^((•))• = (((((•)))))
	 	 	
	 log2 32 = 5		 	 log2 (((((•))))) = ((•))•

Roots

The unit ensemble calculus requires discrete units, and thus cannot express 
irrational numbers.  (We have developed a boundary mathematics that addresses 
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the full range of reals, the James calculus [ref].)  However, we should be able 
to determine the two square roots of square numbers.  That procedure is:

WORK ON quadratic formula

ax^2 + bx + c = 0

x^2 + (b/a)x + (c/a) = 0

x^2 + (b/a)x + (b^2/4a^2) + (c/a) - (b^2/4a^2) = 0

(x + b/2a)^2 + (4ac - b^2)/4a^2 = 0

(x + b/2a)^2 = (b^2 - 4ac)/4a^2
below

(x + b/2a) = +/- ((b^2 - 4ac)/4a^2)^(1/2)
x  = -b/2a +/- ((b^2 - 4ac)/4a^2)^(1/2)
x  = (-b +/- (b^2 - 4ac)^(1/2))/2a

above
(x + b/2a)^2 = (b^2 - 4ac)/4a^2

(x + b/2a)^2 = (b/2a)^2 - c/a

((2ax + b)/2a)^2 = (b/2a)^2 - c/a

(2ax + b)^2/4a^2 = (b/2a)^2 - c/a

(2ax + b)^2 = 4a^2( (b/2a)^2 - c/a )

(2ax + b)^2 = 4a^2( b^2/4a^2 - c/a )

(2ax + b)^2 = b^2 - 4a^2 c/a

(2ax + b)^2 = b^2 - 4ac

(2ax + b) (2ax + b) = b^2 - 4ac

(2ax)^2 + 2(2ax)b + b^2 = b^2 - 4ac

(2ax)^2 + 4abx + b^2 = b^2 - 4ac

(2ax)^2 + 4abx + 4ac = 0
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4a^2x^2 + 4abx + 4ac = 0

ax^2 + bx + c = 0

REdo above backwards

axx + bx + c = 0

4a (axx + bx + c) = 0

4aaxx + 4abx + 4ac = 0

(2ax)(2ax) + 2b(2ax) + 4ac = 0

(2ax)(2ax) + 2b(2ax) + bb - bb + 4ac = 0

(2ax + b)(2ax + b) - bb + 4ac = 0

(2ax + b)^2 = b^2 - 4ac

(2ax + b) = +/- (b^2 - 4ac)^(1/2)

[a • x • x]|[b • x]|c  =  void
[4 • a • [a • x • x]|[b • x]|c] =  void
[4 • a • a • x • x] | [4 • a • b • x] | [4 • a • c] =  void

[2 • 2 • a • a • x • x] | [2 • 2 • a • b • x] | [4 • a • c] =  void

[[2 • a • x] • [2 • a • x]] | [[2 • a • x] • 2 • b] | [4 • a • c] =  void

let D = [2 • a • x]

[D • D] | [D • b] | [D • b] | [4 • a • c] =  void

[D • D] | [D • b] | [D • b] | [b • b] | ∆[b • b] | [4 • a • c] =  void

[D • D|b] | [D|b • b] | ∆[b • b] | [4 • a • c] =  void

[D|b • D|b] | ∆[b • b] | [4 • a • c] =  void

[D|b • 2..] | ∆[b • b] | [4 • a • c] =  void

use 2.. as {}

{D|b • 2} | ∆{b • 2} | [4 • a • c] =  void

8



{D|b • 2} = {b • 2} | ∆[4 • a • c]

{{D|b • 2} 2 •} = { {b • 2}|∆[4 • a • c] 2 •}

{D|b {• 2 2} •} = { {b • 2}|∆[4 • a • c] 2 •}

{D|b • •} = { {b • 2}|∆[4 • a • c] 2 •}

D|b = { {b • 2}|∆[4 • a • c] 2 •}

D =  ∆b | { {b • 2}|∆[4 • a • c] 2 •}

[2 • a • x] =  ∆b | { {b • 2}|∆[4 • a • c] 2 •}

x =  [• 2 • a  ∆b|{ {b • 2}|∆[4 • a • c] 2 •}]
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[a • x • x]|[b • x]|c  =  void

[• a [a • x • x]|[b • x]|c ]

[• a a • x • x]|[• a b • x]|[• a c]

[• • x • x]|[b a • • x]|[• a c]

[x • x]|[b a x]|[• a c]
[x • x]|[x a b]|[• a c]

[x • x]|[x a b]|[• 4 • a b a b]  |  [• a c]|∆[• 4 • a b a b]
[x • x]|[x a b]|[• 4 • a b a b]  |  [• a c]|∆[• a • 4 b a b]
[x • x]|[x a b]|[• 4 • a b a b]  |  [• a c|∆[• 4 b a b]]

[x • x]|[• • b a x]|[b 4 b a • a •]
[x • x]|[x • b a •]|[b 4 b a • a •]
[x • x]|[2 2 x • b • • a •]|[b 2 • 2 b a • a •]
[x • x]|[2 • x • b 2 • a •]|[b 2 • 2 b a • a •]
[x • x]|[x • b 2 • a •]|[x • b 2 • a •]|[b 2 • a b 2 • a •]
[x • x]|[x • b 2 • a •]|[x • b 2 • a •]|[b 2 • a • • b 2 • a •]

[ x • x|[• 2 • a b] ]|[b 2 • a x|[• 2 • a b] ]
[ x • x|[• 2 • a b] ]|[b 2 • a • • x|[• 2 • a b] ]

[ x|[• 2 • a b] • x|[• 2 • a b] ] |[• a c]|∆[b 4 b a • a •]
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==section 2 has base-1, now base-2, base-10

BOUNDARY ARITHMETIC AND DEPTH-VALUE NOTATION
	 	 Place value as Syntactic Sugar
	 	 Unit Ensembles Expressed in Place-value Notation
	 	 Place-value Fusion
	 	 Place-value Substitution

	 Base-10 Notation
	 Canonical Form of Numbers
	 READING BOUNDARY INTEGERS
	 ? INSIDE AND OUTSIDE
	 ? SHARING SPACE
	 MERGING
	 BOUNDARY ARITHMETIC COMPUTATION
SUMMARY AND TABLES

Decimal Notation  

===
On the surface, boundary forms are spatial number-names, taking up an area 
rather than standing on a line.  This means that positional notation is no 
longer available, the sequentially imposed by a string of digits becomes lost in 
the second dimension introduced by the spatial syntax.  Instead, the dimension 
of space applied to a magnitude is recorded in depth of nesting.  Crossing a 
boundary incurs a change of dimension.  The functional zero is also no longer 
necessary, since the contents of a boundary can be empty, that is, not 
represented by a name at a place.  Some examples in decimal notation:
	 	    0
	 	    1	 	      1
	 	    2	 	      2
	 	    9	 	      9
	  	   10	 	   (1)
	 	   11	 	   (1)1
	 	   12	 	   (1)2
	 	   20	 	   (2)
	 	   30	 	   (3)
	 	  100	 	  ((1))
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	 	  253	 	  ((2)5)3
	 	  804	 	  ((8))4
	 	 1000	 	 (((1)))
	 	 4004	 	 (((4)))4
===

===

The pure algebraic mathematics of boundaries [4] is based on the concept of  distinction, or difference.  It is 
constructed de novo, without reference to logical, set theoretic, relational, numeric,  or categoric objects.  Boundaries 
are strictly structural, representing only the abstract concept of difference, without requiring identification of the type 
of object being differentiated.  Thus, boundary mathematics differs substantively from the conventional mathematics 
of strings.

2    Boundary Algebra
Composition of closed, non-intersecting planar curves, called boundaries, constructs a formal diagrammatic 

language, independent of an interpretation as logic.   The alphabet is a singleton set of symbols consisting of the empty 
boundary, { ○ }, which is called a mark.  A word consists of replicates of marks composed in a non-conventional 
manner.  Since boundaries have both an inside and an outside, replicate symbols can be juxtaposed in two ways:  on 
the inside of the original boundary and on the outside of the original boundary.  Rather than one "concatenation" 
operator, there are two:  SHARING is composition on the outside, while BOUNDING is composition on the inside.  The 
formal language consists of the set of composable boundary forms.

2.2  Variary Operators
The functional basis set of the language of boundaries consists of two constructive operators, BOUNDING and 

SHARING.  These diagrammatic operators are quite unconventional.   An enclosing boundary can bound any number of 
forms, including none.  Any number of forms can share a space, including none.  In the example below, dots 
represent other single bounded forms.  The explicit boundary encloses several forms, and while several others share 
the same external space.

The operators BOUNDING and SHARING do not have a specific arity, both are variary.   Absence of a specific arity 
strongly differentiates the boundary formalism from modern algebra.  The closest conventional description for a 
variary operator is that of a "single argument set function".  Conventionally, relations are defined by a set of ordered 
pairs.  Relational properties such as commutativity and transitivity describe the symmetries that the relation imposes 
upon its ordered arguments.  A boundary,  however, can contain any number of forms.  The collection of forms 
contained within a boundary is a priori neither countable nor orderable.  Since forms are not taken two-at-a-time, 
there is no concept of associativity.  By construction, boundary mathematics does not support the numerical concept 
of arity nor the proximal concepts of commutativity and associativity.  Boundaries are neither functions nor relations.

The structure of a boundary form is defined explicitly by the boundaries themselves.  The space upon which 
boundaries are imposed is void;  void space is neither metric, nor geometric, nor topological.  Thus, there is no 
concept of geometric or topological localization that applies to boundaries.  Boundaries can reside anywhere so long 
as they do not intersect other boundaries.  Another consequence is that the boundary language includes no "empty 
word" other than the entire space that supports all boundaries.  Since there is no specifically defined relative position 
for forms SHARING a space, an empty placeholder is not necessary.  The idea of a null boundary is wrapped up within 
the ground symbol;  absence of form is simply the inside of the mark, ().

Seen as a relation, a boundary distinguishes what is inside from what is outside.   The most natural conventional 
interpretation of boundary forms is as a partial ordering, with BOUNDING providing a strict ordering, and SHARING 
providing an equivalence class of forms in the same space.  Even so, since both BOUNDING and SHARING are variary, 
a relational interpretation is difficult.  The conceptualization represented by the boundary language does not support 
conventional relational properties such as reflexivity, symmetry and transitivity.  Conventionally, variary relations are 
universal.
2.3  Pattern-Templates and P
attern-Equations
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Let the set of capital letters, {A,B,...}, provide variables that can stand in place of any boundary form, 
including many forms and no forms, and the set of small letters, {a,b,...}, provide variables that can stand in place 
of either a mark, or the absence of a mark.  When variables are included within boundary forms, for example (A 
((B))), forms can be used as pattern-templates to identify specific structure within other forms.  The pattern-
template (A ((B))) matches ((()) (()())),  with A=(()()) and B=void.  Pattern matches are spatial rather than 
textual, while pattern variables can match many forms within a space, as well as matching no forms at all.2

Similar to the idea of extensionality in set theory, two bounded forms are identical only if they enclose identical 
contents.  A pattern-equation is an assertion that two structurally different patterns are equal; forms that match either 
pattern have the same value (modulo the asserted equation), partitioning the set of forms into equivalence classes.  
The semantics of the boundary language is defined by pattern-equations that assert specific patterns, or pattern-
templates, to be equivalent.  A set of pattern-equations create a particular boundary algebra.  

Consider the following two pattern-equations from Laws of Form as providing an evaluation function for forms 
not containing variables.  The two equations reduce any form either to a mark, (), or to the absence of a mark, thus 
establishing two equivalence classes, mark-equivalence and void-equivalence.3

               ( ) ( ) = ( )              SHARING EVALUATION
                (( ))  =                  BOUNDING EVALUATION

===
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BOUNDARY ARITHMETIC AND DEPTH-VALUE NOTATION

Unit ensembles provide the advantages of clarity of structure and ease of 
modeling.  Of particular importance, they are an example of spatial mathematics 
that demonstrates the advantages of a spatial formalism without concepts of 
associativity, commutativity, and arity.  Equally as important, unit ensembles 
closely represent the elementary number processes used by young children.  The 
cost of this clarity is ease of reading, since an ensemble must be counted in 
order to determine its value.  As well, the representation of large ensembles is 
unwieldly.  We provide an efficient notation quite similar to place-value 
notation while maintaining the models of addition as fusion and multiplication 
as substitution.  The efficiency covers representing, reading and computing with 
spatial numbers.

PLACE-VALUE NOTATION AS SYNTACTIC SUGAR

The structures exhibited during the axiomatization of unit ensembles are not 
change when the abbreviation of numerals are attached.  That is, whether or not 
we use unit ensembles or conventional base-10 place-value notation, the 
mathematics of integers does not change.  Place-value notation assumes nothing 
from group theoretic structures since it is simply a naming convention, also 
called syntactic sugar, to make numbers more easily readable.  Conversely, 
nothing in group theory requires place-value notation.

We are left with the remarkable observation that the axioms of unit ensemble 
arithmetic are equally valid for place-value arithmetic, only specific 
implementation details change.  What then is the added value contributed by a 
group theoretic formalization of arithmetic and elementary algebra?  The answer 
is easy, since modern algebra lays the groundwork for the magnificent edifice 
that is advanced mathematics.  We refine the question:  what is the added value 
contributed by a group theoretic formalization of arithmetic and elementary 
algebra to mathematical novices such as elementary and high school students?  
Three directions need to be considered: 

	 1) modern algebra prepares novices for an understanding of higher 
mathematics,
	 2) modern algebra is the only viable way to formalize mathematics, and
	 3) the organizational principles of modern algebra provide a better 
understanding of mathematical thinking in general.

We have limited our question to novices will presumably never need the 
sophistication of modern algebra.  Would anything be lost if group theory were 
taught first in college?  What would be gained may be an improvement nationally 
in mathematics performance and understanding, if the alternative of doing 
without modern algebra were acceptable.  This brings us to the second direction, 
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that there is no alternative.  We have labored in the preceding pages to show 
that there is indeed an alternative, and that alternative is more concrete, more 
intuitive, and computationally more efficient.  

We will also take a stronger position that the current alternative of teaching 
concepts such as commutativity, associativity, and arity are dysfunctional, a 
source of math problems rather than a solution.  We propose that mathematics 
understanding and performance can be improved by returning to the axiomatics 
that is understood in first grade, particularly concrete manipulatives with 
parallel, variary operations of fusion and substitution.  Fusion embodies the 
Additive Principle, while substitution is the simple skill of forming groups in 
one-to-one correspondence to units.  We propose that the concrete/abstraction 
comprehension gap encountered by students as they transition from direct 
manipulation of quantity to abstract symbolic manipulation of arbitrary tokens 
with potentially dysfunctional theoretical organization can be addressed by 
eliminating the transition to the abstraction of modern algebra.

Finally we will argue that mathematical thinking is enhanced by making 
mathematics more direct, more visceral, more spatial.  The principles of 
mathematical structure that support manipulation of strings composed of 
arbitrary tokens are not the principles that lead to mathematics understanding.  
They do indeed lead to efficiency in digital computers, so our position can be 
summarized by saying that minds are not computers, and bodies are not symbolic.  
Understanding can be achieved by uniting mathematical law with physical 
experience.

The consequences of such a position include

	 -- use calculators for all token manipulation tasks.  Associate 
understanding with physical manipulation.
	 -- embrace formality but broaden the forms of representation
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Unit Ensembles Expressed in Place-value Notation

We construct a union of conventional, and universal, place-value notation and 
unit ensemble arithmetic, called place-value ensembles.

Name unit ensembles with plae-value numeral names

Place-value Fusion

Accept the rules of digit addition as name conversions.  Eg

	 2+4 =  6
	 8+9 = 17

We need to provide a structure so that fusion of place-value numerals will 
represent sums.

	 17  ==  (1)7

	 12  ==  (1)2

	 17 + 12  ==  (1)7 | (1)2

Use boundary notation

	 (1)7|(1)2 = (1)7 (1)2 = (1)(1) 7 2 = (1 1) 7 2 = (2)9

Place-value Substitution

Accept the rules of digit multiplication as name conversions.

	 2*4 =  8
	 8*9 = 72

	 17*12 = 204

	 17*12  ==  [(1)7 ∂ (1)2]  

∂ stands for a generalized unit that includes the multiplication table.  Curly 
braces are highlights.

  [(1)7 ∂ {1}2] = {(1)7}(2)(1)4 = {(1)7 2 1}4 = {(1)(1)}4 = {(1 1)}4 = {(2)}4
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Base-10 Notation

Conventional numerical notation incorporates three principles of simplification:

	 specific tokens represent specific ensembles
	 place-value notation permits reuse of tokens to represent larger ensembles 
	 binary arity limits operator rules to combining two numbers at a time

In the case of base-10 notation, we have ten numeral digits, 0-9, each of which 
is an abbreviation for a small ensemble of units.  We then place replicate 
digits in a string, assigning each position to the left of the unit a power of 
the base 10.  Place-value notation uses increasing multiples of the base 10 to 
express larger groups:

	  	     3258:         (3x1000) + (2x100) + (5x10) + (8x1)

The cost of using specific digits is that they require number facts (such as 4 + 
5 = 9) that must be memorized in order to achieve computation.  The binary 
base-2 system requires 4 (2x2) facts and can thus take advantage of place-value 
notation with little overhead of memorization.  For this reason, it is 
convenient for computer hardware implementations of numerical computation.  The 
base-10 system requires 100 (10x10) number facts.  The burden of memorization is 
significantly lightened by symmetries such as zero rules and commutativity.  

The number of number facts is limited by binary operators that combine exactly 
two numbers per operation.  Should we need to join three numbers, we apply the 
operator twice.  This limits number facts to covering only binary combinations;  
there are n^2 facts for a base-n notation.  We could use a ternary base-10 
addition, for example, that would require only one operation, but then we would 
need to recall 1000 (10x10x10) facts.  Costs associated with binary arity 
include multiple operations and a need for associative and precedence rules.

In place-value notation, digits are maintained in a strict sequential position;  
calculation then includes techniques for interfacing adjacent places, these are 
known as called "carrying" and "borrowing".  The cost of a positional notation 
system includes keeping track of positions (i.e. aligning numbers during 
transformation) and transforming digital overflows into an adjacent position.

Hybrid Unit Ensembles

Any of the three techniques that make conventional arithmetic computation 
simpler can be combined with the unit ensemble system.  It makes little sense to 
limit unit ensembles to binary operations, since variary operations are at the 
heart of spatial forms.  Likewise, adoption of positional notation, especially 
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place-value notation, injects total ordering into the spatial system that 
explicitly avoid total orderings.  We can, however, introduce numerals to 
abbreviate ensembles.  This idea is ancient and is best exemplified today by the 
antiquated system of Roman Numerals.

Both Roman Numeral abbreviations and base-10 decimal digits are easily 
accommodated by the methods of Spatial Arithmetic, since these are simply 
nicknames for ensembles of particular sizes.  The cost is having to include tha 
simple number facts for adding and multiplying digits between 0 and 9.  The 
fundamental transformation principles of addition by sharing a space, and 
multiplication by substitution still apply.  For example

	 	 2  ==  ••
	 	 3  ==  •••
	 	 5  ==  •••••
	 	 6  ==  ••••••
	 	 2+3 = 5   ==   ••|••• = •••••
	 	 2*3 = 6   ==   [•• • •••] = ••••••

Here, rather than using fusion or substitution, we retrieve the number fact 
associated with the operation, and then re-associate the result with its unit 
ensemble representation.  Since we have these numerals available, we may as well 
write:

	 	 2+3 = 5   ==   2|3 = 5
	 	 2*3 = 6   ==   [2 1 3] = 6

We immediate difficulty is that we do not have an easy way to handle multi-digit 
numbers:

	 	 5|6 = •••••••••••

An example of a base-10 boundary-number:

	  	     3258:          ((((3) 2) 5) 8

===
	 depth-value shunts compute to standardization

BOUNDARY-NUMBERS

The boundary-numbers of Spatial Arithmetic are spatial pictures rather than 
strings of digits.  These techniques were first published in 1995 by Louis H. 
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Kauffman, a Full Professor of Mathematics at the University of Illinois at 
Chicago.  Spatial Arithmetic is dynamic, it shows the structure and 
transformation of numbers directly without the bookkeeping associated with place 
values. As an analogy, if the techniques of Spatial Arithmetic applied to words, 
we would be able to read a word regardless of the ordering of the letters! 

Two or more boundary-numbers are added together by placing them in the same 
space, just like stroke arithmetic and Roman numerals.  Unlike stroke 
arithmetic, depth-value notation provides the same advantages in readability as 
does place-value notation.

Instead of addition operations, boundary-numbers sharing a space are simplified 
by a standardization process that results in the minimal spatial form that is 
easiest to read.  This standardization process is extremely simple, consisting 
of two rules, "Join Units" and "Join Boundaries".  For clearer presentation, the 
two rules are presented below in a binary rather than decimal base, and using a 
textual notation that permits recording boundary-numbers on typographical lines.

1 = •     2 = (•)     3 = (•)•     4 = ((•))     5 = ((•))     6 = ((•)•)    ...

	     1 + 1 = 2:                  • • = (•)       JOIN UNITS  

	 	 	 	 	 	      ---> add
                             sub(borrow) <---      

      2 + 2 = 2(1+1):        	   (•)(•) = (• •)       JOIN BOUNDARIES

	 	 	 	 	 	    ---> mult
                                divide <---   

Boundary-numbers are multiplied simply by substituting the number being 
multiplied for each unit (i.e. each •) in the base number.    

          2 x 3 = 6:             (•)  x  (•)•   ==>   ( (•)• )

Substitution alone achieves multiplication.  The same standardization process, 
using the same two simple rules above, converts the result of multiplication 
into an easier to read form.  Subtraction and division are also achieved using 
the same two rules, applying them in reverse, from right to left.

===

Canonical Form of Numbers
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Every number has a unique canonical form, relative to another number called a 
base.

The base is a number with a special representation.  It is used to collect other 
numbers into groups.  The special representation is a spatial depth, (...).

When () is empty, the base is the unit:

	 	 	 • = ()

The canonical form relative to the unit is the collection of unit dots.

When (...) is not empty, it represents the base b, multiplying the contents c.

	 (•) = "subst •• for (•) in (•)" = ••       (base ••)

Examples:

	 (•) = "subst •••••••••• for • in •" = ••••••••••    (base ••••••••••  10) 

	 (•)• = "subst •• for (•) in (•)•" = •••       (base ••)

The canonical form relative to base b is a composite of base and dot forms.

Definition of Base   ()

Equality

Two numbers are equal if they have the same representation wrt the base

READING BOUNDARY INTEGERS

The absence of form is 0, while the mark is 1.  Each level of nesting doubles 
the value of the nested contents.  The value of a boundary form is the sum of 
the forms sharing a space.  Merging provides a smooth transfer between unit 
notation (each unit is represented by a single mark) and depth notation. Here, 
four is provided as an example of merging:

	 	 • • • •  =  (•)   (•)  = (  • •)  =  ( ( •))

	 	 1+1+1+1  =  2*1 + 2*1  = 2*(1+1)  =  2*2*1

The conventional interpretation is vertically aligned, units corresponding to 1; 
boundaries corresponding to 2.
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Here is a reading of 14:

	 	 (  (  ( • ) • )  •)

	 	 2*(2*(2*1 + 1) + 1)

===
SUBTRACTION

Rings are transparent to polarity, such that

	 	 -(A) = (-A)

Thus, all that needs to be introduced is the polar unit, ◊, which collapses a 
common unit, •, into the void:

	 	 	 • ◊ =

When a given boundary integer, ((•) •) for example, possesses the polar 
property, all units in that number are changed to ◊, the polar unit, generating 
((◊) ◊) in the example.  

A polar number can also be interpreted as multiplication by -1, converting a 
unary property into a binary relation with a constant.  Multiplication is 
defined as a substitution operation:  Substitute ◊ for • in A (which can read as 
"Substitute -1 for 1 in A"

The addition rule for unit • and ◊ is to delete both.  For all other cases, the 
rules for addition are identical, blind to the type of unit.  For boundary 
integers, the distinction between a polar number and a number multiplied by -1 
is one solely of time, of when the form is examined.  

A form composed of bounded ◊ units has the ◊ property;  the ◊ property could be 
lifted to a universal of the entire form:

	 	 "Substitute ◊ for • in A"  is "Read A with ◊ units".

Conversely, a universal property can be mapped over a form to apply only to 
units.  Forms sharing a space consequently do not compose differently for 
different unit polarities.  

A special case arises when A already contains ◊ units.  This could occur when 
the polarity of a ◊-form is reversed, when a form is in process of additive 
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computation and not yet homogenous in units, or when nested forms have a 
diversity of polarities (again prior to simplification).  

It is sometimes convenient to ascribe a properties to rings, such as their base 
unit and polarity.  Here we use subscripts that proceed the ring they describe:

	 	 ◊(a) = (◊a)

Recalling that the rings in a number are blind to unit polarity, only four unit 
substitution varieties can occur:

	 	 Substitute • for • in A	      common *-substitution
	 	 Substitute ◊ for • in A		 common *-substitution
	 	 Substitute • for ◊ in A		 inverting ◊-substitution
	 	 Substitute ◊ for ◊ in A		 inverting ◊-substitution

◊-substitution is unusual in that it changes the polarity of the unit being 
substituted.  Thus, when • is substituted for ◊, the resulting unit is not-•, 
i.e. it is ◊.  Similarly, when ◊ is substituted for ◊, the resulting unit is 
not-◊, i.e. it is *.

The difference between the polarity property of an expression, and the act of 
subtraction is:

	 	 ◊A  is  "Substitute ◊ for both • and ◊ in A"

	 	 A - B  is  A + "Substitute ◊ for both • and ◊ in B"

The intent is to separate polarity from numerical simplification.  It is 
convenient to fully encode polarities at the beginning of a simplification,  
resolving them when they are read and substituted into the initial 
representation of the problem.  This perspective treats the conventional 
difference between an inverse operation and polar property as syntactic, as an 
artifact of conventional notation rather than concise mathematical formulation.

===
Thus, for example, given this atomic transcription:

	 	 	   5	 	 ((•)) •
	 	 	   7	 	 ((•) •) •
	 	 	   -	 	 property ◊: 
	 	 	 	 	   change polarity of all units, delete property
	 -(5-7)	
	 	 	  -7	 	 ((◊) ◊) ◊	 	 	 property ◊
	 	 	  (5-7)	 ((•)) •  ((◊) ◊) ◊	 operation (sharing space)
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	 	 	 -(5-7)	 ((◊)) ◊  ((•) •) •	 global property ◊
	 	 	   =         (•)                     calculation

Any binary operation of subtraction can be incorporated into the boundary 
encodement as a property of the second argument.  An alternative reading:

	 -(5-7)	
	 	 	  (5-7)	 ((•)) •  ((◊) ◊) ◊	 operation (subtract 7)
	 	 	 -(5-7)	 ((◊)) ◊  ((•) •) •	 global property ◊
	 	 	   =         (•)                     calculation

The distinction is that the polarity of the 7 was compiled with the form of 7 
rather than through subtraction, the inverse operation for addition.  The double 
inversion below illustrates an unnecessary specification:

	 -(5 - -7)
	 	 	  -7	 	 ((◊) ◊) ◊	 	 	 property ◊
	 	 	 --7	 	 ((•) •) •	 	 	 property ◊
	 	 	  (5--7)	 ((•)) •  ((•) •) •	 share space, 
	 	 	 	 	 	 	 	 	   delete double inversion
	 	 	 -(5--7)	 ((◊)) ◊  ((◊) ◊) ◊	 global property ◊
===

The advantage of compiling additive inversions is that the addition/subtraction 
procedure can then be blind to polarity.  Due to the annilihation rule,

	 	  	 • ◊ =

only one type of unit will survive in the canonical boundary form of the number.  
Communication of polarity through levels is provided through:

	 	 	 (a) ◊ = a

Since a ring is simply a unit with contents, ◊ annihilates rings as well as 
units.  The annihilation process can occur at each level of nesting 
concurrently.  No priority need be given to unit or ring annilihation, since 
both action reduce the number of ◊ by one.

The equifinal result of simplification is a minimal boundary structure.  From 
the perspective of a ◊-space, • is an identical annihilater.  The initial 
encodement does not produce a single type form, rather it partitions the mixture 
of units types into two phases.  The first removes syntactic structure, the 
second removes mixed polarity due to the action of addition on different types.
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When an expression is negative, as in -(7+5), the negative property remains as 
"Substitute ◊ for both • and ◊ in A."
===
Here is an example of varieties of four units of different types composed in the 
same space:

	 	 • • • •  =  (•)(•)  =  (• •)  =  ((•))
	 	 • • • ◊  =  * *               =   (•) 
	 	 • ◊ • ◊  =  
	 	          =  (•)(◊)  =  (• ◊)  =   ( )   =
	 	 • ◊ ◊ ◊  =     ◊ ◊            =   (◊)
	 	 ◊ ◊ ◊ ◊  =  (◊)(◊)  =  (◊ ◊)  =  ((◊))
===
===
Composition of closed, non-intersecting planar curves, called boundaries, 
constructs a formal diagrammatic language, independent of an interpretation as 
logic.  The alphabet is a singleton set of symbols consisting of the empty 
boundary, { ○ }, which is called a mark.  A word consists of replicates of marks 
composed in a non-conventional manner.  Since boundaries have both an inside and 
an outside, replicate symbols can be juxtaposed in two ways:  on the inside of 
the original boundary and on the outside of the original boundary.  Rather than 
one "concatenation" operator, there are two:  SHARING is composition on the 
outside, while BOUNDING is composition on the inside.  The formal language 
consists of the set of composable boundary forms.

The functional basis set of the language of boundaries consists of two 
constructive operators, BOUNDING and SHARING.  These diagrammatic operators are 
quite unconventional.  An enclosing boundary can bound any number of forms, 
including none.  Any number of forms can share a space, including none.  In the 
example below, dots represent other single bounded forms.  The explicit boundary 
encloses several forms, and while several others share the same external space.

INSIDE AND OUTSIDE

The fundamental innovation is to introduce a representation that has both an 
inside and an outside.  A circle () is the prototypical planar boundary form.  
String tokens have only an outside, so that concatenation of string tokens is 
defined as adjacency on the outside.  Boundary symbols, such as circles, can be 
composed on the outside, () (), and on the inside, (()).  

One consequence of "two sided" symbols is that they can be interpreted both as 
objects (when composed on the outside), and as operators (when composed on the 
inside).  It is important to accept that a boundary symbol is atomic, and not a 
relation between inside and outside.  As an atomic structure, a boundary symbol 
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is concurrently object and operator, the specific interpretation is lifted from 
the representation itself, becoming a semantic choice.  That is, in boundary 
mathematics, there is no explicit differentiation between object (member of a 
domain or codomain) and operator (function assigning correspondence between 
domain and codomain members). 

When a boundary form is read as an object, transformation can be defined by 
substitution of equivalent objects.  Objects can be generalized to patterns by 
including variables to represent arbitrary forms.  For example, the idempotency 
pattern gives permission to delete all replicate forms sharing a space.  Below, 
this pattern is illustrated for atomic objects and for patterns:

	 	 	 	 () () = ()

	 	 	 	 A A = A

SHARING SPACE

String tokens are situated, left and right adjacency are clearly defined.  
Boundary tokens, in contract, rest in space.  A planar boundary token

In Laws of Form, Spencer-Brown presents boundary logic, an interpretation of 
boundary mathematics for logic.  The interaction of boundaries maps to 
elementary logic via the two axioms in LoF:

	 CALLING	 	 ()() = ()

	 CROSSING	 	 (()) =

Boundary mathematics is a generic technique, the interpretation changes when the 
initial axioms are different.  Lou Kauffman first introduced me to the axioms of 
boundary integers:

	 UNIT MERGE	 	 	 ()() = (())

	 BOUNDARY MERGE	 	 (...)(...) = (... ...)

The ellipses stand in place of any existing content;  thus UNIT MERGE is a rule 
for empty containers, while BOUNDARY MERGE is a rule for non-empty containers.  
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Boundary math is a minimal foundational formalism, so it illustrates essential 
differences between systems, here logical and integer arithmetic are contrasted. 

MERGING

For boundary integers the empty container, or mark, is not idempotent (i.e. two 
sharing a space do not equal one), CALLING does not apply.  Instead, two marks 
sharing a space become nested.  This generates a depth notation (as opposed to 
conventional place notation for numbers), the contained form is doubled by each 
container.  

Another fundamental difference between logic and numerics is that numerical 
forms do not degenerate into void, CROSSING does not apply.  For boundary 
integers non-empty containers do follow the rule of CALLING, merging non-void 
rather than void contents.

Because marks are atomic elements, in boundary integers it is more convenient to 
make them solid:     ( ) = •

	 UNIT MERGE	 	 	  •  •  = ( • )

	 BOUNDARY MERGE	 	 (•)(•) = (• •)

===
The pattern of the divisor A can be converted into a unit at any depth of 
nesting of R, in any order.  Thus, pattern-matching can occur in parallel across 
levels.  There will be at most one matching pattern in R whenever R is in 
canonical form.

Outer rings can be pruned by cancelation from both A and R, for example:

	 	 	 	 ((•)•)   /   (•)
	 	 	 -->	  (•)•    /    •

To identify patterns, it is necessary to decompose R using the reverse of rules 
for simplification:

	 	 	  (•)   -->   • •
	 	 	 (a b)  -->  (a)(b)
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BOUNDARY ARITHMETIC COMPUTATION

The additive principle is that the result of a sum can be determined by counting 
up the resultant set of tokens.

To ADD boundary integers, place them in the same space.  In contrast to 
conventional place notation, any number of forms can be added concurrently, 
while the result of placing boundary integers in the same space can immediately 
be read as a sum.  

MERGING generates a canonical form with the fewest number of units and 
boundaries.  For example:

	     7       +       5          =          12  

	 ((•) •) •        • ((•))       =   ((•) •) • • ((•))

SUMMARY

===
DIFFERENT BASES

The UNIT MERGE presented above is binary, base two.  Any base can be used, here 
is base six:

	  • • • • • • = (•)

Collections of one through five units do not merge, they are independent 
entities, usually represented by an abstract token:

	 2:       • • 
	 3:     • • • 
	 4:   • • • • 
	 ...
===
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FROM DoE 0711

II.3  Boundary Integer Arithmetic

The fundamental innovation in boundary integer arithmetic is to introduce a 
representation that has both an inside and an outside.  A circle, () -- here 
represented typographically by a pair of parentheses -- is the prototypical 
planar boundary form.  String tokens have only an outside, so that concatenation 
of string tokens is defined as adjacency on the outside.  Boundary symbols, such 
as circles, can be composed on the outside, () (), and on the inside, (()).  A 
representation with an inside permits a different type of "place" to record the 
power of a base.  Boundary forms use depth-value notation.  Crossing a boundary 
changes the degree of the base, just as moving one digit right or left changes 
of the degree of the base in place-value notation. 

Boundary forms are spatial number-pictures, taking up an area rather than 
standing on a line.  Since boundary forms occur in space rather than in a line, 
the concept of a linear place-notation is simply not part of the structure of 
these numbers.

Boundary forms are necessarily diagrammatic, boundary arithmetic is not 
isomorphic to place-value arithmetic.  For example, a representation of zero is 
no longer necessary, since the contents of a boundary can be empty; that is, an 
empty boundary contains nothing, the zero concept is structural rather than 
symbolic.

There are two structural transformation rules for boundary arithmetic, here 
expressed in a degenrate typographical notation for convenience:

	 UNIT JOIN (base 2)	  •  •  = ( • )	 	 1+1 = 2x1

	 BOUNDARY JOIN	 	 (•)(•) = (• •)	 	 2x1 + 2x1 = 2(1+1)

These rules convert a unit arithmetic forms (collections of identical members) 
into a form expressed in depth-value notation, just as "factoring out powers of 
the base" converts unit forms into a place-value notation.  The value of a 
boundary form is the sum of the forms sharing a space (the additive principle).  
Unit Join above defines each level of nesting as doubling the value of the 
nested contents.  Boundary Join is the distributive rule in its most elementary 
form.  It is independent of contents and thus independent of base.  

Note that Unit Join above is binary, analogous rules for standardization of 
base-10 boundary forms would be:

	 UNIT JOIN (base 10)  ••••••••••  = ( • )	 	 1+1+1+1+1+1+1+1+1+1 = 10x1
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	 BOUNDARY JOIN	 	 (a)(b) = (a b)	 	 10a + 10b = 10(a+b)

Naturally, the names of digits can be included in base-10 boundary arithmetic.  
Number facts (i.e. the addition table) would be required to convert the symbolic 
names of digits into sums, while depth-value notation would handle the 
management of carries and borrows.  For example, the base-10 place-value numeral 
734 would be represented as ((7)3)4 in base-10 depth-value notation augmented 
with digit symbols.  

For clarity and convenience, we will continue to present the operations of 
boundary arithmetic in base 2.  Below, unit-four is converted into depth-value 
four by application of the Joining rules.  A conventional interpretation is 
vertically aligned: units correspond to +1, boundaries correspond to 2x.

	 	 • • • •  =  (•)   (•)  = (  • •)  =  ( ( •))

	 	 1+1+1+1  =  2*1 + 2*1  = 2*(1+1)  =  2*2*1

Here is a reading of boundary 14:

	 	 (  (  ( • ) • )  •)

	 	 2*(2*(2*1 + 1) + 1)

II.3.1  Addition Is Sharing Space

To ADD boundary integers, place them in the same space, similar to addition in 
unit arithmetic.  In contrast to conventional place notation, any number of 
forms can be added concurrently, while the result of placing boundary integers 
in the same space can immediately be read as a sum.  

Joining generates a canonical form with the fewest number of units and 
boundaries.  Thus, the operation of boundary addition maintains the simplicity 
of the Additive Principle, while the two joining operations convert sums into a 
minimal form with the advantages of a consistent base notation.  For example:

	     7       +       5          =          12  

	 ((•) •) •        • ((•))       =   ((•) •) • • ((•))

	    111      +      101         =         1100

The above sum, consisting of four separately bounded forms, can be read as 

20



6+1+1+4.  Joining reduces the number of units and marks from 9 to 5.  Figure 3 
shows this simplification.  This sum is not analogous to addition of place-value 
notations in base-2, as is shown in Figure 4.

===
	 	 ((•) •) • • ((•))
	 	 ((•) •) (•) ((•))
	 	 ((•) •   •   (•))
	 	 ((•)  (•)    (•))
	 	 ((•    •      •))
	 	 (( (•)        •))
===

II.3.2  Multiplication Is Unit Substitution

To MULTIPLY boundary integers, substitute one form for every unit in the other 
form.  This is the same process as multiplication in unit arithmetic, however 
depth-value notation manages representational complexity.  In contrast to 
conventional place-value notation, any number of forms can be substituted 
concurrently, while the result of substituting boundary integers for units can 
immediately be read as a product.   Figure 5 shows two examples.  The case of 
3x2 requires two substitutions and an additional simplification step relative to 
2x3, since the representation of 3 includes two units, while the representation 
of 2 incorporates only 1 unit.  Figure 6 shows 5x7 in boundary notation.  In 
Figure 6,  the substitution immediately yields three separate bounded forms, 
which can be read as 28+6+1.  Joining these standardizes the boundary form of 35 
to have the minimal number of components (units and boundaries).  Figure 7 shows 
7x5.  The substitution immediately yields three separately bounded forms, can be 
read as 30+4+1.  Joining reduces the product to the same form as 5x7.

===
	 1 x 3 
	 	 	    •        (•) •		 Substitute (•)• for • in •
	 	 	 	 	 	 	   •>(•)•I•   S[(•)•,•,•]
	 	 	  (•) •	 	

	 2 x 3 
	 	 	 (  •  )     (•) •		 Substitute (•)• for • in (•)
	 	 	 	 	 	 	   •>(•)•I(•)   S[(•)•,•,(•)]
	 	 	 ((•) •)	 	

	 3 x 1
	 	 	  (•) •	   •	 	 Substitute • for • in (•)•
	 	 	 	 	 	 	   •>•I(•)•   S[•,•,(•)•]
	 	 	  (•) •
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	 3 x 2
	 	 	  ( • )  •	   •	 	 Substitute (•) for • in (•)•
	 	 	 	 	 	 	    •>(•)I(•)•   S[(•),•,(•)•]
	 	 	  ((•)) (•)  -->  ((•) •)

The case of 3x2 requires two substitutions and an additional simplification step 
relative to 2x3 since 3 incorporates two units while 2 incorporates only 1.  
Thus although multiplication is "commutative" in final result, it is non-
commutative effort.  Addition (i.e. sharing space) commutes in both effort and 
result.

Additional examples:
	 	 •>((•)•)•I((•))•   S[((•)•)•,•,((•))•]

	     5       x       7          =          35  

	   ((•)) •       ((•) •) •

Substituting (the two replicas of boundary 7 are highlighted with overbars):

                                       _________     _________
                                    (( ((•) •) • ))  ((•) •) •

The above sum, consisting of three separately bounded forms, can be read as 
28+6+1.  Merging reduces the number of units and marks from 12 to 8:

       	 ((((•) •) •)) ((•) •) •
	 	 ((((•) •) •)   (•) •) •
	 	 ((((•) •) •     •) •) •
	 	 ((((•) •)   (•)  ) •) •
	 	 ((((•) •     •)  ) •) •	
	 	 ((((•)   (•)  )  ) •) •
	 	 ((((•     •)  )  ) •) •
	 	 ((((  (•)  )  )  ) •) •

Alternatively:
	 	 •>((•))•I((•)•)•   S[((•))•,•,((•)•)•]

	     7       *      5          =          35  

	   ((•) •) •      ((•)) •

Substituting (the three replicas of boundary 5 are highlighted with overbars):
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                                      _______   _______   _______
                                   (( ((•)) • ) ((•)) • ) ((•)) •

The above sum, consisting of three separately bounded forms, can be read as 
30+4+1.  Merging reduces the number of units and marks from 12 to 8:

       	 ((((•)) •) ((•)) •) ((•)) •
      	 ((((•)) •   (•)) •   (•)) •
     		 ((((•))(•)   • )(•)   • ) •	 	 note 1
    	 	 ((((•)  •)   •   •)   • ) •	 	 note 2
   	 	 ((((•)  •)    (•) )   • ) •
  	 	 ((((•)  •      •) )   • ) •
 	 	 ((((•)    (•)   ) )   • ) •
	 	 ((((•      •)   ) )   • ) •
	 	 ((((  (•)   )   ) )   • ) •

Note 1:  This linear rearrangement is an artifact of typing spatial boundary 
forms on a line, just as the apparent fragmentation of a contiguous boundary 
into right and left parentheses is an artifact of typography.

Note 2:  At this point 5x7 and 7x5 become identical.  The comparative effort:

	 	 	 	 	 	 	 5x7	 	 	 7x5

	 	 substitutions	 	 	  2          	  3
	 	 multiplication effort	 2(5-1) = 8        3(4-1) = 9

	 	 ring merges		 	 	  4	 	 	  5
	 	 unit merges		 	 	  3	 	 	  3
	 	 simplification effort	 	  7	 	 	  8
===

The mechanism of boundary multiplication is function composition rather than the 
additive composition of place-value notation.  This makes boundary 
multiplication mathematically more abstract while at the same time broadening 
the constructive definition of multiplication (such as Peano's axioms, which 
rely on recursive addition to achieve multiplication).

II.3.3  Subtraction Is Making Nothing

Negative numbers attach a polarity to the whole numbers, so that different poles 
annihilate:
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	 	 	 A  +  -A  =   0

"Negative" numbers are a natural consequence of the Rule of Equational Identity:

	 	 	 A     =  A
	 	 	 A - A =  0

In boundary systems, zero is non-represented, it is the absence of a mark.  A 
form combined with its identical but opposite form of opposite is equal to 
nothing at all.

	 	 	 A -A =

The negative unit, represented here as ◊, collapses a positive unit, •, into the 
void:

	 	 	 • ◊ =		 	 	 CANCELLATION

When a given boundary integer, ((•) •) for example, possesses the negative 
property, all units in that number are changed to the negative unit ◊, 
generating ((◊) ◊) in the example.  

A negative number can also be interpreted as multiplication by -1, converting a 
unary property into a binary relation with a constant.  Since boundary 
multiplication is a substitution operation, subtraction can be subsumed by 
multiplication:  

	 Substitute ◊ for • in A     which can read as "Substitute -1 for 1 in A"

Other than the Cancelation Rule, the operation of addition and the joining rules 
of simplification are blind to the type of unit.  

II.3.4  Division Is Finding Patterns

Multiplication calls for substitution of a form A for each unit in a second form 
B.  Which form is substituted into which (A into B or B into A) is irrelevant to 
the result, but relevant to the effort (number of steps) during simplification.

Division calls for substitution of a unit, •, for each form A within a second 
form P.  The pattern of the divisor A can be converted into a unit at any depth 
of nesting of P, in any order.  Thus, boundary pattern-matching can occur in 
parallel across levels.  

To identify patterns, it is necessary to decompose P using the reverse of the 
two Join rules:
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	 	 UNJOIN UNITS	 	  (•)   -->   • •	 	 	
	 	 UNJOIN BOUNDARY	 	 (a b)  -->  (a)(b)

Selection of decompositions is the only action that makes division (and 
factorization) more difficult than multiplication.

===
egs  at end
===
======================================================================
UNIT BEHAVIOR

	 • ◊	 	 =	 ><
	 • •	 	 =	 (•)

RING BEHAVIOR FOR DIFFERENT CONTENTS

	 ( )	 	 =	 ><
	 (a b)		 = 	 (a) (b)

RING OPERATIONS FROM THE CONTEXT  

	 only the presence of ◊ will trigger (a b) --> (a)(b)

	 (  •) ◊    	-->	 ( ) •	  -->   •
	 (a •) ◊	 -->	 (a) •
======================================================================

II.4  Varieties of Decomposition Strategies

Figure 8 illustrates various decomposition strategies.  These strategies are at 
the base of algorithmic complexity for operations and for reading.  Unit form (a 
number is represented by the sum of single units) is the ultimate additive 
decomposition, while prime factorization (a number is represented by the product 
of primes) is the ultimate multiplicative decomposition. 

Unit decomposition results in unit arithmetic, which is very easy to transform 
and very hard to read.  Base-10 polynomial decomposition results in place-value 
notation, which is easy to read and relatively easy to transform.  Base-2 
polynomial decomposition results in the same place-value notation with a 
differing base.  Prime factor decomposition makes multiplication easy, addition 
difficult, and reading very difficult, since it abandons the uniformity of the 
base.  Boundary notation makes reading slightly more difficult than place-value 
notation, while turning addition and multiplication into simple operations.
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Figure 3:  Adding and then Simplifying Boundary 7+5

	 ((•) •) •   +   • ((•))    =     ((•) •) • • ((•))

	 	 ((•) •) • • ((•))	   	 	 2(2+1) + 1 + 1 + 2(2)  
	 	 ((•) •) (•) ((•))		    	 2(2+1) +   2   + 2(2)	
	 	 ((•) •   •   (•))		    	 2(2+1  +   1   +   2)
	 	 ((•)  (•)    (•))		    	 2(2+   2       +   2)
	 	 ((•    •      •))		    	 2(2(1   + 1    +   1)
	 	 (( (•)        •))		    	 2(2(2          +   1)

Figure 4:  Simplifying 7+5 in Place-value notation (base 2)

	 	 1x2^2 + 1x2^1 + 1x2^0 + 1x2^0 + 1x2^2
	 	 1x2^2 + 1x2^1 +     1x2^1     + 1x2^2
	 	 1x2^2 +     1x2^2             + 1x2^2
	     	 1x2^3                     + 1x2^2

Figure 5:  Examples of Boundary Multiplication

	 2 x 3 
	 	 	 (  •  )     x  (•) •	 	 Substitute (•)• for • in (•)

	 	 	 ((•) •)	 	

	 3 x 2
	 	 	  ( • )  •	 x  (•)	 	 Substitute (•) for • in (•)•

	 	 	  ((•)) (•)  -->  ((•) •)
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Figure 6:
    Multiplying 5 by 7 in Boundary Notation, and then Simplifying

	     5       x       7          =          35  

                                             _________     _________
	   ((•)) •   x   ((•) •) •      =    (( ((•) •) • ))  ((•) •) •

      (The two replicas of boundary 7 are highlighted with overbars)

	 Joining:
       	 	 ((((•) •) •)) ((•) •) •
	 	 	 ((((•) •) •)   (•) •) •
	 	 	 ((((•) •) •     •) •) •
	 	 	 ((((•) •)   (•)  ) •) •
	 	 	 ((((•) •     •)  ) •) •	
	 	 	 ((((•)   (•)  )  ) •) •
	 	 	 ((((•     •)  )  ) •) •
	 	 	 ((((  (•)  )  )  ) •) •

Figure 7:  
    Multiplying 7 by 5 in Boundary Notation, and then Simplifying

	     7       *      5          =          35  

                                            _______   _______   _______
	   ((•) •) •      ((•)) •      =    (( ((•)) • ) ((•)) • ) ((•)) •

	 Joining:
       	 	 ((((•)) •) ((•)) •) ((•)) •
      	 	 ((((•)) •   (•)) •   (•)) •
     		 	 ((((•))(•)   • )(•)   • ) •	 	 note 1
    	 	 	 ((((•)  •)   •   •)   • ) •	 	 note 2
   	 	 	 ((((•)  •)    (•) )   • ) •
  	 	 	 ((((•)  •      •) )   • ) •
 	 	 	 ((((•)    (•)   ) )   • ) •
	 	 	 ((((•      •)   ) )   • ) •
	 	 	 ((((  (•)   )   ) )   • ) •

Note 1:  This linear rearrangement is an artifact of typing spatial boundary 
forms on a line.

Note 2:  At this point 5x7 and 7x5 become identical. 
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Figure 14:  Multidigit decimal multiplication problem in place-
value and depth-value notation

	 Place-value notation	 	 	      Depth-value notation

	 	 328                          ((3)2)8  x  ((2))6  =  ((((6)7)5)6)8
	   x   206
	 ---------                    ( ( ((6))(1)8 ) ((4))(1)2 ) (((1)6))(4)8
           1968                    ( ( ((6)  1)8    (4)  1)2    ((1)6)  4)8
        + 656                      ( ( ((6)  1)     (4)  9)     ((1)6)  6)8
	 ---------                    ( ( ((6)  1       4)  9       (1)6)  6)8
          67568                    ( ( ((6)          5) (1)      (1)5)  6)8
                                   ( ( ((6)          5   1        1)5)  6)8
                                   ( ( ((6)          7             )5)  6)8
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Other examples:

	 2-1	 	 (•) ◊   
	 	 	 • • ◊  
	 	 	 •

	 1-2	 	 (◊) •  
	 	 	 ◊ ◊ •  
	 	 	 ◊

	 7-5	 	 ((•) •) •     ◊ ((◊))	

	 	 	 ((•) •) • ◊ ((◊))
	 	 	 ((•) •)     ((◊))
	 	 	 ((•) •       (◊))
	 	 	 ((•           ◊) •)
	 	 	 (                •)     =  (•)

	 5-7	 	 ((◊) ◊) ◊     • ((•))	

	 	 	 ((◊) ◊) ◊ • ((•))
	 	 	 ((◊) ◊)     ((•))
	 	 	 ((◊) ◊       (•))
	 	 	 ((◊           •) ◊)
	 	 	 (                ◊)     =  (◊)

	 -7-5	 	 ((◊) ◊) ◊     ◊ ((◊))	

	 	 	 ((◊) ◊) ◊ ◊ ((◊))
	 	 	 ((◊) ◊) (◊) ((◊))
	 	 	 ((◊) ◊   ◊   (◊))
	 	 	 ((◊)    (◊)  (◊))
	 	 	 ((◊      ◊    ◊))
	 	 	 ((      (◊)   ◊))       =  (((◊) ◊))
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2/2                                   (•)>•I(•)     S[•,(•),(•)]
	 	 (•)       (•)        	 Substitute • for (•) in (•)
             #

6/2	 	 	 	 	 	   (•)>•I((•)•)     S[•,(•),((•)•)]
	 	 ((•)  •)    (•)        	Substitute • for (•) in ((•)•)
	 	 ( #   •)
            ( # )(•)
            ( # ) #

6/2 --> 3/1		 	 	 	   •>•I(•)•     S[•,•,(•)•]
	 	 ((•)  •)    (•)
	 	  (•)  •      •
            ( # ) #

35/7	 	 	 	  ((•)•)•>•I(((((•))))•)•   S[•,((•))•,(((((•))))•)•]
	 	 (((( (•) ) ) )•)•
	 	 ((((•   •) ) )•)•
	 	 ((((•) (•) ) )•)•
	 	 ((((•)•   •) )•)•
	 	 ((((•)•) (•) )•)•
	 	 ((((•)•)•   •)•)•
	 	 ((  #       •)•)•
	 	 ((  #  )   (•)•)•
	 	 ((  #  )) ((•)•)•
	 	 ((  #  ))   #

35/5	 	 	 	   ((•))•>•I(((((•))))•)•     S[•,((•)•)•,(((((•))))•)•]
	 	 ((((  (•)  ) ) )•)•
	 	 ((((•     •) ) )•)•
	 	 ((((•)   (•) ) )•)•
	 	 ((((•)  •   •) )•)•
	 	 ((((•))(•   •) )•)•
	 	 ((((•))(•) (•) )•)•
	 	 ((((•))• • (•) )•)•
	 	 ((  #    •  (•))•)•
	 	 ((  #  )(•)((•))•)•
	 	 ((  #  )(•)  #   )•
	 	 ((  #  ) #   (•)  )•
	 	 ((  #  ) # )((•)  )•
	 	 ((  #  ) # )  #

35/5
	 	 ((((   (•)   ) ))•)•
	 	 ((((•       •) ))•)•
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	 	 ((((•)     (•) ))•)•
	 	 ((((•)    •   •))•)•
	 	 ((((•))  (•   •))•)•
	 	 ((((•))  (•) (•))•)•
	 	 ((((•))  (•) • •)•)•
	 	 ((  #    (•)   •)•)•
	 	 ((  #  )((•)) (•)•)•
	 	 ((  #  )  #   (•) )•
	 	 ((  #  )  # )((•) )•
	 	 ((  #  )  # )  #

LARGE EXAMPLE

	 204            (((((((•)•) ) )•)•) )               7 rings 4 units
	 358           ((((((((•) )•)•) ) )•)•)             8 rings 5 units
    73032	 ((((((((((((((((•))))•)•)•))•))•)))•)))     16 rings 7 units

    358x204    
      (((((((( • ))
	 	    • )
	 	    • )))
	 	    • )
	 	    • )

	 (((((((( (((((((•)•)))•)•)) )) 
   	          (((((((•)•)))•)•)) ) 
  	          (((((((•)•)))•)•)) ))) 
  	          (((((((•)•)))•)•)) ) 
   	          (((((((•)•)))•)•)) )

((((((((((((((((•))))•)•)•))•))•)))•)))

204x358
((((((( • )
        • )))
        • )
        • ))

((((((( ((((((((•))•)•)))•)•) )
        ((((((((•))•)•)))•)•) )))
        ((((((((•))•)•)))•)•) )
        ((((((((•))•)•)))•)•) ))

((((((((((((((((•))))•)•)•))•))•)))•)))
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DECOMPOSITION VARIETIES
Standard binary decomposition		 Boundary decomposition 
	 (compositional)	 	 	 	 (cumulative)
	 (polynomial)	 	 	 	 (factored)

	   5=
	 	   	 	 	 	 	   5    ((•))•
	   4   1	 4  ((•))	 	  	   4    ((•))
	   2   0     4   ( )                	  2     (•)
	   1   1	 5    •	 	   	   1      •

	 	 	 2^2 + 2^0	 	 	 	 	 2(2(1))+1
	 	 	    101	 	 	 	 	  ( (1)) 1

	   7=
	 	 	 	 	 	 	   7    ((•)•)•
	 	   	 	 	 	 	   6    ((•)•)
	   4   1	 4  ((•))	 	  	   3     (•)•
	   2   1     6   (•)                	  2     (•)
	   1   1	 7    •	 	     	   1      •

	 	 	 2^2 + 2^1 + 2^0	 	 	 	 2(2(1)+1)+1
	 	 	    111                               ( (1) 1) 1

	  12=
	 	 	 	 	 	 	  12    (((•)•))
	   8   1    8  (((•)))	   	 	   6     ((•)•)
	   4   1   12   ((•))	 	  	   3      (•)•
	   2   0   12                  	   2      (•)
	   1   1   12   	 	   	   	   1       •

	 	 2^3 + 2^2	 	 	 	 	   2(2(2(1)+1))
              1100                                 ( ( (1) 1))

	  35=
	 	 	 	 	 	 	  35   (((((•))))•)•
	  32   1   32 (((((•)))))	   	  34   (((((•))))•)
	  16   0   32  	 	  	  	  17    ((((•))))•
	   8   0   32                   	  16    ((((•))))
	   4   0   32	 	   	   	   8     (((•)))
	   2   1   34     (•)                  4      ((•))
	   1   1   35      •                   2       (•)
                                            1        •

	 	 2^5 + 2^1 + 2^0	 	 	 	   2( 2(2(2(2(1))))+1 )+1
	 	 	 100011	 	 	 	    (  ( ( ( (1)))) 1 ) 1
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	 204=
	 	 	 	 	 	 	 204    (((((((•)•)))•)•))
	 128   1   128 (((((((•)))))))		 102     ((((((•)•)))•)•)
	  64   1   192  ((((((•))))))	 	  51      (((((•)•)))•)•
	  32   0   192              	 	  50      (((((•)•)))•)
	  16   0   192	 	 	  	  25	     ((((•)•)))•
	   8   1   200     (((•)))	 	  24       ((((•)•)))
	   4   1   204      ((•))	 	  12	      (((•)•))
	   2   0   204      	        	   6         ((•)•)
	   1	 0   204	 	 	   	   3	        (•)•
	 	 	 	 	 	 	   2          (•)
	 	 	 	 	 	 	   1	 	   •

	 	 2^7 + 2^6 + 2^3 + 2^2              2(2(2(2(2(2(2(1)+1)))+1)+1))
	 	 	 11001100	 	 	 	 ( ( ( ( ( ( (1) 1))) 1) 1))

	 358=
	 	 	 	 	 	 	 358   ((((((((•))•)•)))•)•)
	 256   1   256 ((((((((•))))))))	 179    (((((((•))•)•)))•)•	
	 128   0   256	 	 	 	 178    (((((((•))•)•)))•)
	  64   1   320   ((((((•))))))		  89     ((((((•))•)•)))•
	  32   1   352    (((((•)))))	 	  88     ((((((•))•)•)))
	  16   0   352	 	 	  	  44	    (((((•))•)•))
	   8   0   352 	 	 	  	  22       ((((•))•)•)
	   4   1   356	   ((•))	 	  11	      (((•))•)•
	   2   1   358        (•)	        10        (((•))•)
	   1	 0	 	 	 	   	   5	       ((•))•
	 	 	 	 	 	 	   4         ((•))
	 	 	 	 	 	 	   2          (•)
	 	 	 	 	 	 	   1	 	   •

	 2^8 + 2^6 + 2^5 + 2^2 + 2^1              2(2(2(2(2(2(2(2(1))+1)+1)))+1)+1)
	 	    101100110                        ( ( ( ( ( ( ( (1)) 1) 1))) 1) 1)

	 73032=

    65536   1    65536   ((((((((((((((((•))))))))))))))))
    32768   0    65536
    16384   0    65536
     8192   0    65536
     4096   1    69632       ((((((((((((•))))))))))))
     2048   1    71680        (((((((((((•)))))))))))
     1024   1    72704         ((((((((((•)))))))))) 
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	 512	 0    72704	 	 	 	
	 256   1    72960           ((((((((•))))))))	 	 	
	 128   0    72960	 	 	 	 	
	  64   1    73024	 	      ((((((•))))))	
	  32   0    73024 		  
	  16   0    73024	 	 	 	  	  
	   8   1    73032	               (((•)))	 	 	  	  
	   4   0    73032	 	 	  
	   2   0    73032	     	        	
	   1	 0    73032	 	 	 	   	   

	 	 2^16 + 2^12 + 2^11 + 2^10 + 2^8 + 2^6 + 2^3

    73032   ((((((((((((((((•))))•)•)•))•))•)))•)))
    36516    (((((((((((((((•))))•)•)•))•))•)))•))
    18258     ((((((((((((((•))))•)•)•))•))•)))•)
     9129      (((((((((((((•))))•)•)•))•))•)))•
     9128      (((((((((((((•))))•)•)•))•))•)))
     4564       ((((((((((((•))))•)•)•))•))•))
     2282        (((((((((((•))))•)•)•))•))•)
     1141         ((((((((((•))))•)•)•))•))•
     1140         ((((((((((•))))•)•)•))•))
      570          (((((((((•))))•)•)•))•)
      285           ((((((((•))))•)•)•))•
      284           ((((((((•))))•)•)•))
      142            (((((((•))))•)•)•)
       71             ((((((•))))•)•)•
       70             ((((((•))))•)•)
       35              (((((•))))•)•
       34              (((((•))))•)
       17               ((((•))))•
       16               ((((•))))
        8                (((•)))
        4                 ((•))
        2                  (•)
        1                   •

     2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(1))))+1)+1)+1))+1))+1)))+1)))
      ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (1)))) 1) 1) 1)) 1)) 1))) 1)))
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1^2 = 1
11^2 = 121
111^2 = 12321   ...

decimal:

	 ((•)•)•  x  ((•)•)•

	 ((    •    )    •    )    •
         ((•)•)•   ((•)•)•   ((•)•)•

	 (( ((•)•)• ) ((•) •)• ) ((•) •)•
	 (( ((•)•)•    (•) •)•    (•) •)•
	 (( ((•)•       •)••       •)••)•

	 ((((•)••)•••)••)•

35


	Barith-toc.080115.pdf
	1a-rep-abs-sem2.pdf
	1b-numtypes1.pdf
	2a-ips-ed1.pdf
	2b-spatial1.pdf
	2c-unitarith1.pdf
	3a-mereo0.pdf
	3b-eqsubst0.pdf
	4a-uea-domains0.pdf
	4b-uea-comp0.pdf
	4c-uea-addsub0.pdf
	4d-uea-timesdiv0.pdf
	4e-uea-fractalg0.pdf
	4eA-redo-powers.070503.pdf
	5a-bnotate1.pdf

