RECLAIMING MEANING IN MATHEMATICS

A Presentation for the
WSCC 2007 Mathematics Conference

William Bricken, PhD
Lake Washington Technical College william.bricken@wtc.edu

FOR TEACHERS

An educational chasm in mathematics occurs when students change learning styles from concrete manipulatives to abstract symbold.

Students learn through meaningful experience.
The way ideas are conveyed makes a difference.

The concepts of mathematics can be presented using formal representations that are sensitive to buman needs.

Spatial mathematics connects number sense to the formal structure of mathematics.

THEME

Toward humane formal mathematics

I．How Meaning has been Lost
糕 Separating meaning from structure
粎 Quality of representation
缐 Cognitive effort

II．FOUR TYPES OF SPATIAL MATH

眾 Spatial algebra
粠 Unit－ensemble arithmetic
蚝 Depth－value notation
諩 Spatial arithmetic
（slides）
（math theory）
（video）
（demonstration）

MEANING

MEANING IN ARITHMETIC

What do the objects and operations of arithmetic mean?
Овлестs: integers name ensembles of identical units

ADDition: put ensembles together in the same space

$$
\bullet \bullet \bullet \bullet=\bullet \bullet \bullet
$$

MULTIPLICATION: replace units by ensembles

$$
\bullet \times \bullet 0 \quad \bullet \bullet \bullet
$$

substitution

Loss OF MEANING

Objects:

integers name the set of sets with the same cardinality
$\ldots-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad \ldots$

ADDITION:
memorize rules for digits (number facts)
learn rules of position (align and carry)
$\begin{array}{r}78 \\ +\quad 1 \\ \hline\end{array}$

$$
2+3=5
$$

$$
134
$$

MULTiplication:
56
memorize rules for digits (number facts)
learn to add while multiplying

$$
\begin{array}{r}
78 \\
\times \quad 448
\end{array}
$$

$$
2 \times 3=6
$$

$$
\begin{array}{r}
394 \\
\hline
\end{array}
$$

$$
4388
$$

Hilbert＇s Program

Separate mathematics and logic from spatial intuition．
＂Mathematics is a game played according to simple rules with meaningless marks on paper．＂David Hilbert（c．1900）

Formal structure：a finite sequence of signs，without：
䎜 intuition
敖 visualization
䎜 physical interaction
並 parallelism

The rules of algebra are structural． Group theory is about notation．

TOKENS ARE A PROBLEM

The current style of mathematical expression is inherently difficult to understand．

$$
2(x-3(x-(2 y+1)))-4(3(y+1)-x)+6
$$

Mathematical ideas are represented by strings of tokens． Token－strings bear no resemblance to their meaning． Icons，in contrast，look somewhat like what they represent．

Some problems with the formal language of tokens：
諩 neither intuitive nor natural
曗 must be memorized rather than experienced
㬐 includes misleading structural redundancy
粪 cannot represent concepts
䗱 makes people think they do not understand

DISPLAY MEDIA

A VARIETY OF MEDIA

Different display media provide different types of structure，each with Different properties．

Clay tablets and pebbles
彞 unit ensembles
Hilbert＇s
業 physical correspondence
signs
期 concrete and constructive
Pencil and paper（chalk and board）
業 token－strings
蛘 axiomatic correspondence
粼 abstract and algorithmic
19th century reality

Digital display
粼 icons，pictures，animations
数 virtual correspondence
＊＊both concrete and abstract

21 st century reality

QUALITIES OF FORM

Some display media convey meaning more effectively．
基 more expressive
粼 less cognitive effort
兟 simpler algorithms
铔 visual，aural，tactile，experiential

actual bouse

Mathematical concepts，too，support a diversity of structural representations and rules．

QUALITY I: EASY

Some representations require less effort.

$$
\text { FRACTIONS: } \quad \frac{1}{4}+\frac{1}{5}=\frac{5}{20}+\frac{4}{20}=\frac{5+4}{20}=\frac{9}{20}
$$

two different notations with different rules

DECIMALS:

$$
.25+.20=.45
$$

little additional effort

QUALITY II: VISUAL

Some representations are more visual.

COORDINATE GRAPH:
two very Different notations
with different properties

LINEAR EQUATION:

two similar notations
with different properties
GENERAL EQUATION: $-x+2 y-2=0$ abstract

visual
abstract and visual

$$
y=1 / 2 x+1
$$

ano visual

QUALITY III: PHYSICAL

Some representations are phyoically manifest.

SILICON CIRCUITRY:

two abstract notations, one maps to the plyoical

BOOLEAN ALGEBRA:

two abstract notations, one maps to the linguistic

PROPOSITIONAL LOGIC:

$$
\begin{aligned}
& \text { sum }=a \neq b \\
& \text { carry }=a \times b \quad \text { symbolic } \\
& \text { and abstract }
\end{aligned}
$$

$$
\begin{gathered}
\text { SUM IFF EITHER a OR b } \\
\text { carry IFF a AND b linguistic } \\
\text { and abstract }
\end{gathered}
$$

QUALITY IIII: SIMPLE

Some representations support dimpler operations.

PHYSICAL ACTION:

two different activitied, one physical and one cognitive
interactivity

SYMBOLIC THOUGHT:
$3+4{ }^{7}$ rote memory

SPATIAL MATHEMATICS

Spatial patterns are a formal alternative to token-strings.

ALGEBRA OF STRINGS:
\{partitioned set-of-tokens: token-tuples \longrightarrow tokens \}

ALGEBRA OF SPATIAL PATTERNS:
\{partitioned set-of-patterns: patterns \longrightarrow patterns
does not include the concept of arity

Spatial forms are intuitive, visual, interactive, simple. Spatial axioms and algorithms are simple yet rigorous.

FOUR VARIETIES

Spatial Algebra with Blocks

曗 how to map algebraic properties onto spatial presence
橉 compare to group theoretic token－strings
Unit－ensemble Arithmetic
政 how to return meaning to arithmetic
糕 compare to token－based integer arithmetic
Depth－value Notation
傫 how to make meaningful arithmetic simple
＊＊compare to place－value notation
Spatial Arithmetic with Blocks
橉 how to provide physical，interactive calculation
䠛 compare to symbolic arithmetic

Spatial Algebra WITH BLOCKS

Spatial Algebra FACTS

numerals and variables are BLOCKS
group theory \longrightarrow spatial presence

$0=$

0 additive zero is VOID

$$
3 \times 2=6
$$

multiplication is TOUCHING

SpATIAL ALGEBRA ADDITION

(1)

associativity and commutativity are SHARING SPACE

$$
\mathbf{x}=\mathbf{x}
$$

add-zero is SHARING SPACE with nothing

SpATIAL ALGEBRA MULTIPLICATION

BLOCKS are unitary

© William Bricken 2007. All rights reserved.

SpATIAL AlGEBRA DISTRIBUTION

distribution is SLICING or JOINING identical blocks

[^0]
SpATIAL ALGEBRA FACTORING

polynomial forms are SLICED factored forms

DISTRIBUTION IN DEPTH $2(x-3(x-(2 y+1)))-4(3(y+1)-x)+6=0$

assume number facts

\mathbf{X}
0

y
0

© William Bricken 2007. All rights reserved.

UNIT-ENSEMBLE ARITHMETIC

UNIT ARITHMETIC

The simplest arithmetic is based on identical units: fingers, pebbles, shells, marks, strokes, or tallies.

Tally sticks were in use 30,000 years ago. Sumerian numerals are over 5,000 years old.

Unit-ensembles are groupings of units without specific names.

* base-1, units are indistinguishable
- one-to-one correspondence without counting
- add by putting together (additive principle)
* often considered to be the definition of whole numbers

UNIT ADDITION

An integer is an ensemble of identical marks sharing a space.

A sum converts different spaces into the same space.

Addition is ensembles
sharing a space.

Example: $4+3=7$

UNIT MULTIPLICATION

A product converts individual units into ensembles.

- is the unit
[substitute a for • in b] is abbreviated as $[a \cdot b]$

Multiplication is substitution of ensembles for units.

Example: $4 \times 3=12$

ADDITION AXIOM

ADDITION BY FUSION：to add，remove spatial partitions

Notation： $\mathrm{a} \mid \mathrm{blc}=\mathrm{a} b \mathrm{c}$

Absent group properties：
粼 zero
睐 commutativity
䛾 associativity
Arity becomes concurrent sharing by many ensembles．

ANNIHILATION AXIOM

negative one is a $-1 \diamond \underbrace{}_{\text {bole }} 0$ whole

SUBTRACTION BY ANNIHILATION:

 to subtract, make whole/hole pairs void$$
\diamond=\quad \text { cannot be represented }
$$

$$
\text { Notation: } \quad+a=a_{0} \quad-a=a_{\diamond}
$$

MULTIPLICATION AXIOMS

MULTIPLICATION BY SUBSTITUTION: to multiply, replace each unit with an ensemble

Notation: [substitute a for b in $c]=\left[\begin{array}{lll}a & b & c\end{array}\right]$

COMMUTATIVITY OF SUBSTITUTION

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]=\left[\begin{array}{lll}
c & b & a
\end{array}\right]
$$

DISTRIBUTION OF FUSION OVER SUBSTITUTION $\left.\left[\begin{array}{llll}a \mid b & c & d \mid e\end{array}\right]=\left[\begin{array}{lll}a & c & d\end{array}\right]\left|\left[\begin{array}{lll}a & c & e\end{array}\right]\right|\left[\begin{array}{lll}b & c & d\end{array}\right] \right\rvert\,\left[\begin{array}{lll}b & c & e\end{array}\right]$

Absent group properties:

粼 zero
Arity becomes multiple Jimensions.
substitution is a property of equality

COMPARATIVE AXIOMS

GROUP THEORY

$$
\begin{array}{cr}
a+(b+c)=(a+b)+c & a \times(b \times c)=(a \times b) \times c \\
a+b=b+a & a \times b=b \times a \\
a+0=a & a \times 1=a \\
a+(-a)=0 & a \times(1 / a)=1 \\
& a \times(b+c)=(a \times b)+(a \times c)
\end{array}
$$

UNIT-ENSEMBLES

$$
\begin{aligned}
a \mid b= & a b \\
& {[a \bullet b \mid c]=[a \bullet b]=[b \bullet a] } \\
& \bullet b=b] \mid[a \bullet c]
\end{aligned}
$$

Depth-Value Notation

POSITIONAL NOTATION

Positional notation with a zero place-holder is "one of humankind's greatest achievements".

A uniform base system facilitates simpler algorithms.

1	10	100	1000
\ldots	10^{0}	10^{1}	10^{2}

Sequential position determines the power of the base. The same digit can have different meanings

$$
3303.3=3 \times 10^{3}+3 \times 10^{2}+0 \times 10^{1}+3 \times 10^{0}+3 \times 10^{-1}
$$

place-holder

POSITIONAL EFFORT

Cognitive and computational load
瞨 Operations require memorization of digit facts
䕩 Carrying is necessary for position overflows
絭 Algorithms are inherently sequential
Digit facts increase as the base increases
粼 base－2， 4 facts base－n requires n^{A} facts
䗱 base－10， 100 facts for operators of arity A

Carry overhead increases as the base increases
曗 base－2， $1 / 4$ addition facts 25%
檽 base－2，0／4 multiplication facts 0% facts with
暽 base－10，45／100 addition facts 45% a carry
糍 base－10，77／100 multiplication facts 77%

DEPTH-VALUE NOTATION (BASE-2)

Standardization converts a unit-ensemble to its minimal form.

$-2 \quad \diamond \diamond=(\diamond)$
$-1 \diamond$
0
- $\diamond=$
annihilate
- \bullet (\bullet times 2
$(a)(b)=(a b)$ distribute

DEPTH-VALUE NOTATION (BASE-10)

MAXIMAL FACTORED FORM

POLYNOMIAL BASE-10 NUMERAL

$$
\text { 3258: } \quad 3 \times 10^{3}+2 \times 10^{2}+5 \times 10^{1}+8 \times 10^{0}
$$

MAXIMAL FACTORED BASE-10 NUMERAL

$$
\begin{aligned}
& 10 \times(10 \times(10 \times(3)+2)+5)+8 \\
& (((3)+2)+5)+8 \quad \text { base implicit in boundary } \\
& (((3) 2) 5) 8 \quad \text { sum implicit in space }
\end{aligned}
$$

Video

Spatial Arithmetic (base-2 enclosures)

DEMONSTRATION

Spatial Arithmetic (base-2 blocks)

SPATIAL ARITHMETIC

DEMONSTRATION: $5+7$

© William Bricken 2007. All rights reserved.

DEMONSTRATION: 5×7

35
© William Bricken 2007. All rights reserved.

DEMONSTRATION: 7×5

7	
7	6
7	

© William Bricken 2007. All rights reserved.

BLOCK MULTIPLY (BASE-10)

$$
\square^{3} 19 \square^{\square}
$$

$3 \times \square_{\square}^{5} 4{ }^{5}=\square^{1} 5 \square^{1} 2 \square^{2} 4$
$1 \times \square^{\square} 4={ }^{5} 48$
$9 \times \square_{8}^{5}=\square^{4} \square^{5} \square^{3} 6 \square^{7}$

${ }^{1}$	$5 \uparrow_{1}$			
${ }^{1}$				2^{4}

© William Bricken 2007. All rights reserved.

STRUCTURAL QUALITY

	STRUCTURE				
purpose	unit ensembles	Roman numerals	token strings	spatial boundaries	
reading/writing	D	C	A	B	
computing	C	D	B	A	
understanding	A	D	C	B	
Grade-points:	7	4	9	10	

SUMMARY

The representation of an abstract concept matters， to both humans and machines．

Mathematical meaning can be expressed in formal structures other than strings of meaningless tokens．

Spatial mathematics is rigorous while still respecting the needs of learners．

粫 historically grounded
＊visual，tactile and experiential
銤 simpler than token－strings
＊less cognitive effort
粼 more humane

THANK YOU!

Comments and suggestions are greatly appreciated. william.bricken@lwtc.edu

This presentation is available in the conference speaker notes, and on the web at
 http://www.wbricken.com/htmls/03words/0303ed/0303-ed.html

SUPPLEMENTAL SLIDES

MORE THAN STRINGS

Our delivery media for formal ideas are impoverished．
Mathematical structure is richer than token－strings
㟫 diagrams，graphs，maps，paths
傫 physical and virtual manipulatives
蛙 physical and abstract models
粦 simulated and actual experiences
Formal structure can（and should）incorporate human needs
箸 intuition
䋤 visualization
特 physical interaction
對 cognitive effort
箱 comprehension

Spatial Algebra INVERSES

many Jesign choiced

negative blocks CANCEL positive blocks

TOUCHING inverse blocks form the unit

[^1]
SpATIAL ALGEBRA FRACTIONS

to add fractions:
CONSTRUCT blocks to be joined, JOIN inverse blocks

Ensembles on the Flag

$$
\begin{gathered}
\text { Fifty stars } \longrightarrow \text { fifty states } \\
\text { Thirteen stripes } \longrightarrow \text { thirteen colonies }
\end{gathered}
$$

** no particular star maps to a particular state
蛙 no particular stripe maps to a particular colony

* spatial arrangement is arbitrary
* color has no meaning

教 one-to-one, cardinal but not ordinal

SUBSTITUTION FORMS

Multiplication	$a \times b=b \times a$	$[b \bullet a]=[a \bullet b]$
Division, fraction	b / a	$[b a \bullet]=[\bullet a b]$
Reciprocal	$1 / a$	$[\bullet a \cdot]$
Exponent	a^{2}	$[a \bullet a]$

Proof of the multiplicative inverse $a \times(1 / a)=1$

$$
[a \bullet[\bullet a \bullet]]=[[a \bullet \bullet] \bullet]=[a a \bullet]=\bullet
$$

$[a \bullet \cdot]=a \quad$ super-associativity of substitution

UNIT-ENSEMBLE PROOF

Spatial arrangement of units can provide abstract proof.

$$
\sum_{1}^{n}(2 i-1)=\left(\sum_{1}^{n} 2^{i-1}\right)+1=n^{2}
$$

NAMED GROUPS

Naming ensembles facilitates counting.

Sumerian cuneiform
Egyptian hieroglyphics
Roman numerals
$3=\boldsymbol{Y} \boldsymbol{Y} \quad 10=\langle$
$3=$ M M
$3=\mathrm{III} \quad 10=\mathrm{X}$
IIIII $=\mathrm{V} \quad \mathrm{VV}=\mathrm{X} \quad \mathrm{XXXXX}=\mathrm{L} \quad \mathrm{LL}=\mathrm{C}$

Many early number systems included:

* , special names for some ensembles

龄 base-10
蛙 consistent base
They lacked a positional notation with zero place-holders.

[^0]: © William Bricken 2007. All rights reserved.

[^1]: © William Bricken 2007. All rights reserved.

