RECLAIMING MEANING IN MATHEMATICS

A Presentation for the WSCC 2007 Mathematics Conference

William Bricken, PhD Lake Washington Technical College william.bricken@lwtc.edu

FOR TEACHERS

An educational chasm in mathematics occurs when students change learning styles from *concrete manipulatives* to *abstract symbols*.

Students learn through meaningful experience. The way ideas are conveyed makes a difference.

The concepts of mathematics can be presented using formal representations *that are sensitive to human needs*.

Spatial mathematics connects *number sense* to the formal structure of mathematics.

THEME

Toward humane formal mathematics

I. HOW MEANING HAS BEEN LOST

- Separating meaning from structure
- Quality of representation
- Cognitive effort

II. FOUR TYPES OF SPATIAL MATH

- Spatial algebra
- # Unit-ensemble arithmetic
- Depth-value notation
- Spatial arithmetic

(slides) (math theory) (video) (demonstration)

LOSS OF MEANING

OBJECTS:

integers name the set of sets with the same cardinality

HILBERT'S PROGRAM

Separate mathematics and logic from spatial intuition.

"Mathematics is a game played according to simple rules with meaningless marks on paper." David Hilbert (c. 1900)

Formal structure: a finite sequence of signs, without:

- intuition
- * visualization
- * physical interaction
- # parallelism

The rules of algebra are structural. Group theory is about notation.

TOKENS ARE A PROBLEM

The *current style* of mathematical expression is inherently difficult to understand.

2(x - 3(x - (2y + 1))) - 4(3(y + 1) - x) + 6

Mathematical ideas are represented by *strings of tokens*. Token-strings bear no resemblance to their meaning. Icons, in contrast, look somewhat like what they represent.

Some problems with the formal language of tokens:

- * neither intuitive nor natural
- * must be memorized rather than experienced
- includes misleading structural redundancy
- * cannot represent concepts
- * makes people think they do not understand

DISPLAY MEDIA

A VARIETY OF MEDIA

Different display media provide different types of structure, each with *different properties*.

Clay tablets and pebbles

- # unit ensembles
- * physical correspondence
- # concrete and constructive

Hilbert's signs

Pencil and paper (chalk and board)

- token-strings
- axiomatic correspondence
- * abstract and algorithmic

19th century reality

Digital display

- # icons, pictures, animations
- * virtual correspondence
- ** both concrete and abstract

21st century reality

QUALITIES OF FORM

Some display media convey meaning more *effectively*.

- more expressive
- less cognitive effort
- simpler algorithms
- * visual, aural, tactile, experiential

Mathematical concepts, too, support a diversity of structural representations and rules.

QUALITY I: EASY

Some representations require less effort.

completely new rules

FRACTIONS: $\frac{1}{4} + \frac{1}{5} = \frac{5}{20} + \frac{4}{20} = \frac{5+4}{20} = \frac{9}{20}$

two *different* notations with different rules

DECIMALS: .25 + .20 = .45

little additional effort

QUALITY II: VISUAL

Some representations are more visual.

QUALITY III: PHYSICAL

Some representations are *physically manifest*.

BOOLEAN ALGEBRA:

two abstract notations, one maps to the *linguistic*

PROPOSITIONAL LOGIC:

 $sum = a \neq b$ carry = a x b symbolic and abstract

sum IFF EITHER a or b carry IFF a and b linguistic and abstract

QUALITY IIII: SIMPLE

Some representations support simpler operations.

3 + 4

PHYSICAL ACTION:

two different *activities*, one physical and one cognitive

interactivity

SYMBOLIC THOUGHT:

rote memory

SPATIAL MATHEMATICS

Spatial patterns are a *formal alternative* to token-strings.

ALGEBRA OF STRINGS:

ALGEBRA OF SPATIAL PATTERNS:

does not include the concept of *arity*

Spatial forms are intuitive, visual, interactive, simple. Spatial axioms and algorithms are simple yet rigorous.

FOUR VARIETIES

Spatial Algebra with Blocks

- how to map algebraic properties onto spatial presence
- Compare to group theoretic token-strings

Unit-ensemble Arithmetic

- * how to return meaning to arithmetic
- * compare to token-based integer arithmetic

Depth-value Notation

- * how to make meaningful arithmetic simple
- * compare to place-value notation

Spatial Arithmetic with Blocks

- * how to provide physical, interactive calculation
- * compare to symbolic arithmetic

SPATIAL ÅLGEBRA WITH BLOCKS

associativity and commutativity are SHARING SPACE

$\mathbf{x} \quad \mathbf{0} = \mathbf{x}$

add-zero is SHARING SPACE with nothing

SPATIAL ÅLGEBRA DISTRIBUTION

distribution is SLICING or JOINING identical blocks

SPATIAL ÅLGEBRA FACTORING

polynomial forms are SLICED factored forms

DISTRIBUTION IN DEPTH

2(x - 3(x - (2y + 1))) - 4(3(y + 1) - x) + 6 = 0

UNIT-ENSEMBLE ARITHMETIC

UNIT ARITHMETIC

The *simplest arithmetic* is based on identical units: fingers, pebbles, shells, marks, strokes, or tallies.

Tally sticks were in use 30,000 years ago. Sumerian numerals are over 5,000 years old.

Unit-ensembles are groupings of units without specific names.

- base-1, units are indistinguishable
- * one-to-one correspondence without counting
- # add by putting together (additive principle)
- * often considered to be the *definition* of whole numbers

UNIT MULTIPLICATION

A product converts individual units into ensembles.

• is the unit

[substitute a for • in b] is abbreviated as [a • b]

Multiplication is substitution of ensembles for units.

Example: $4 \times 3 = 12$

MULTIPLICATION AXIOMS

MULTIPLICATION BY SUBSTITUTION: to multiply, replace each unit with an ensemble

Notation: [substitute a for b in c] = [a b c]

COMMUTATIVITY OF SUBSTITUTION $\begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} c & b & a \end{bmatrix}$

DISTRIBUTION OF FUSION OVER SUBSTITUTION [alb c dle] = [a c d] | [a c e] | [b c d] | [b c e]

Absent group properties: zero Arity becomes *multiple dimensions*.

substitution is a property of *equality*

COMPARATIVE ÅXIOMS

GROUP THEORY

a + (b + c) = (a + b) + ca + b = b + aa + 0 = aa + (-a) = 0

 $a \times (b \times c) = (a \times b) \times c$ $a \times b = b \times a$ $a \times 1 = a$ $a \times (1/a) = 1$

 $a \times (b + c) = (a \times b) + (a \times c)$

DEPTH-VALUE NOTATION

POSITIONAL NOTATION

Positional notation with a zero place-holder is "one of humankind's greatest achievements".

A uniform base system facilitates simpler algorithms.

1	10	100	1000	
100	10 ¹	10 ²	10 ³	

Sequential position determines the power of the base. The same digit can have different meanings $3303.3 = 3 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 3 \times 10^0 + 3 \times 10^{-1}$ place-holder

POSITIONAL EFFORT

Cognitive and computational load

- Operations require memorization of digit facts
- Carrying is necessary for position overflows
- * Algorithms are inherently sequential

Digit facts increase as the base increases

- base-2, 4 facts
- base-10, 100 facts

base-n requires n^A facts for operators of arity A

Carry overhead increases as the base increases

***	base-2,	1/4 addition facts	25%	
***	base-2,	0/4 multiplication facts	0%	facts with
	base-10,	45/100 addition facts	45%	a carry
***	base-10,	77/100 multiplication facts	77%	

DEPTH-VALUE NOTATION (BASE-2)

Standardization converts a unit-ensemble to its minimal form.

DEPTH-VALUE NOTATION (BASE-10)

	n		
0	no zero!	STANDARDIZATION RULE	S
19	n	a a a anni	hilate
		10 = (1) time	es 10
1090	(n)	(a)(b) = (a b) distr	ibute
100900	((n))	and 81 (x2) digit facts	
3258	(((3)2)5)8		
3258.46	[[(((3)2)5)8]]4]6 decimals can be incorpora	ated
3258.46	3(2(5(8[4[6]]))) notation could be inverted	d

MAXIMAL FACTORED FORM

POLYNOMIAL BASE-10 NUMERAL

3258: $3 \times 10^3 + 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0$

MAXIMAL FACTORED BASE-10 NUMERAL

 $10 \times (10 \times (3) + 2) + 5) + 8$ (((3) + 2) + 5) + 8 base implicit in boundary (((3) 2) 5) 8 sum implicit in space

Spatial Arithmetic (base-2 enclosures)

DEMONSTRATION

Spatial Arithmetic (base-2 blocks)

STRUCTURAL QUALITY

STRUCTURE

PURPOSE	unit ensembles	Roman numerals	token strings	spatial boundaries
reading/writing	D	C	A	В
computing	С	D	В	A
understanding	А	D	C	В
Grade-points:	7	4	9	10

SUMMARY

The representation of an abstract concept matters, to both humans and machines.

Mathematical meaning can be expressed in formal structures other than strings of meaningless tokens.

Spatial mathematics is rigorous while still respecting the needs of learners.

historically grounded
visual, tactile and experiential
simpler than token-strings
less cognitive effort
more humane

THANK YOU!

Comments and suggestions are greatly appreciated. william.bricken@lwtc.edu

This presentation is available in the conference speaker notes, and on the web at http://www.wbricken.com/htmls/03words/0303ed/0303-ed.html

SUPPLEMENTAL SLIDES

MORE THAN STRINGS

Our *delivery media* for formal ideas are impoverished.

Mathematical structure is richer than token-strings

- # diagrams, graphs, maps, paths
- * physical and virtual manipulatives
- * physical and abstract models
- simulated and actual experiences

Formal structure can (and should) incorporate human needs

- intuition
- * visualization
- ** physical interaction
- cognitive effort
- comprehension

SPATIAL ÅLGEBRA FRACTIONS

to add fractions: CONSTRUCT blocks to be joined, JOIN inverse blocks

ENSEMBLES ON THE FLAG

Fifty stars \rightarrow fifty states Thirteen stripes \rightarrow thirteen colonies

- * no particular star maps to a particular state
- * no particular stripe maps to a particular colony
- * spatial arrangement is arbitrary
- color has no meaning
- * one-to-one, cardinal but not ordinal

SUBSTITUTION FORMS

Multiplication	$a \times b = b \times a$	$[b \bullet a] = [a \bullet b]$
Division, fraction	b/a	[ba•] = [•ab]
Reciprocal	1/a	[• a •]
Exponent	a²	[a • a]

Proof of the multiplicative inverse $a \times (1/a) = 1$

 $[a \bullet [\bullet a \bullet]] = [[a \bullet \bullet] a \bullet] = [a a \bullet] = \bullet$

[a •] = a super-associativity of substitution [• a a] = •

UNIT-ENSEMBLE PROOF

Spatial arrangement of units can provide *abstract proof*.

$$\sum_{1}^{n} (2i - 1) = (\sum_{1}^{n} 2^{i-1}) + 1 = n^{2}$$

NAMED GROUPS

Naming ensembles facilitates counting.

Sumerian cuneiform	$3 = \mathbf{Y}\mathbf{Y}\mathbf{Y}$	$10 = \langle$
Egyptian hieroglyphics	$3 = \bigwedge \bigwedge$	10 =
Roman numerals	3 = III	10 = X
IIIII = V $VV = X$	XXXXX = L	LL = C

Many early number systems included:

- special names for some ensembles
- # base-10
- consistent base

They lacked a positional notation with zero place-holders.