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1. PROPOSAL

We propose to design, develop, test in classrooms, and formatively evaluate curriculum materials 
that compare mathematics errors across symbolic and spatial modes of presentation.  We wish to 
address what Lee Shulman calls the pedagogical content knowledge of mathematics, that 
particular form of mathematics that is most germane to its learnability.  What makes mathematics 
comprehensible to a novice?  Which mathematical forms afford the fewest errors in 
understanding both structure and meaning?  Which transformation rules and axioms are more 
error-prone?    When should symbolic models of mathematical concepts be augmented with 
manipulatives?  And in particular, does intervention using additive systems enhance concept 
learning in mathematics classrooms?  

The Proposal outlines a development plan for software that displays multiple representations of 
mathematical problems, permits manipulative interaction with any display, and facilitates fine- 
and course-grain measurement of violations of transformation rules used to solve the problem.  
The multiple representations will include symbolic forms in textual notation and manipulable 
additive forms in spatial notation.  Thus the software will serve as a testbed for empirical 
comparison of learning facilitated by both symbolic and manipulative mathematical forms.  The 
Proposal describes three manipulative formal systems to be compared to conventional symbolic 
representations:  unit arithmetic, depth-value notation, and spatial algebra.

1.1  ADDITIVE SYSTEMS

Additive numeric systems have been use since the dawn of history.  An additive system is one in 
which the representation of a sum is the same as the representation of the parts.  When we place 
coins in our pocket, we use an additive system; the value of the coins is equivalently represented 
by the coins individually, and by the collection in our pocket.  Additive systems usually have a 
physical interpretation, however they can also be abstract -- an example is the tally system, 
which uses identical unitary marks to indicate cardinality.  In contrast, symbolic systems require 
rote memorization of both representations and algorithms to determine a sum, since by design 
the representation of concepts is independent of their meaning.  Additive systems are graphic and 
intuitive, while symbolic systems are typographic and formal.  While the intent of a symbolic 
system is to completely separate semantics from syntax, the intent of an additive system is to 
maintain a close connection between visceral understanding and representation.  
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Increasing correlation between representation and reality

In mathematics education, older students learn symbolic rules to manipulate numerals and 
algebraic expressions, while younger students use manipulatives to understand how numbers and 
abstractions work.  Concrete and virtual manipulatives rely  upon spatial models and 
transformations.  Symbolic calculation and modern algebra rely upon textual, string-based 
models and transformations.  This difference leads to a significant discontinuity in the teaching 
of mathematics, the change in perspective that students face when moving from an elementary 
curriculum grounded in concrete manipulatives to a secondary curriculum grounded in abstract 
symbols.  The discontinuity  is deeply connected to how mathematical concepts are represented.  
The above figure illustrates how representation approaches reality as we move from symbolic to 
spatial models.  Even within symbolic syntax, some representations intentionally carry a visual 
meaning within their structure, while others intentionally do not.  For example, some syntactic 
variants of the concept three include:

      ••• , Ⅲ , 3 , 3 , ㆔ , ٣ , ௩ , 11 , (•)• , three , drei , trois , 1+1+1 , 6/2 , {{},{{}},{{},{{}}}}

Differences between the rules and axioms of systems incorporating additive manipulatives and 
systems incorporating symbolic abstractions may manifest in a variety of student errors, 
including failure to connect the two systems, slips in symbol manipulation, misapplication of 
tools and algorithms, partial and fragmented integration of concepts, and confusion and 
muddling of cognitive models.  More visual, semantics-laden notations may aid mathematics 
understanding for concrete, visual, tactile and experiential learners, and for those who have 
disabilities, disadvantages, or cognitive and behavioral resistance to the conventional symbolic 
structure of mathematical expressions.  

1.2  MANIPULATIVES

Conventional manipulatives are analogical, relying on an underlying geometry or metric to 
construct a mapping between spatial form and mathematical concept.  One problem with 
assessing their effectiveness is that each manipulative relies upon a different analogy, and thus 
affords different understandings and errors.  We propose to standardize measurement of the 
potential benefit of manipulatives by introducing a formal basis for spatial representation of 
mathematical concepts, providing axioms that rigorously define meaning and transformation of 
spatial forms.  Thus we will be able to isolate manipulative errors associated with the violation of 
specific structural axioms in both symbolic systems (the axioms of group theory) and spatial 
systems (the axioms of additive mathematics).  Not only should we be able to identify which 
rules and axioms are associated with learning difficulties, but we should also be able to localize 
the specific transformation rules for which one approach (textual/symbolic or spatial/

"house"
actual 
house
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manipulative) might improve upon the other.  The proposed research will use comparative 
axiomatics to identify differential performance qualities associated with string-based and spatial 
approaches to mathematics teaching.  In particular, we will develop software tools that permit 
side-by-side comparison of performance using spatial and symbolic representations, either alone 
or in combination.  We wish to look deeper into how each mode uniquely contributes to 
mathematics understanding.  This in turn may shed some light on when and how to combine 
manipulative and symbolic systems for effective teaching.

1.3  CURRICULUM DEVELOPMENT SOFTWARE

The feasibility of incorporating manipulative formal systems into the curriculum depends upon 
computer-based display and animation.  Only  recently, with the advent of web-based virtual 
manipulatives, have display  and interaction technologies become available to promote 
diagrammatic and spatial mathematical systems from a second-class role as informal aids to a 
first-class role as rigorous formal tools.  Virtual interaction and manipulation provides flexibility, 
extensibility, goal-directed guided interactivity, and tractable cost.  We propose to develop virtual 
manipulatives for additive systems, prototype software that provides support for:

✦ comparison of token-string and spatial formal systems (comparative axiomatics),
✦ orthogonal variation of content and structure for multivariate research,
✦ development of supplementary  and comparative curriculum units, and 
✦ comparative evaluation of learning under different syntactic and semantic approaches.

We will implement generic virtual manipulative animation software that incorporates a core 
engine sensitive to the axiomatic system being presented.  The software will input and output 
both spatial and symbolic notation and display a dynamic representation of ongoing 
computations in both systems.  Students will be able to directly manipulate the symbolic and the 
spatial forms to effect their own computational sequences.  The modular software architecture 
will permit syntax, semantics, and interactivity to be decomposed into orthogonal components, in 
support of multivariate evaluation of performance and error behavior over representational 
dimensions, axiomatic bases, display conventions, and interaction styles.  We will use a diversity 
of measurement techniques, including informal interview and discussion, protocol analysis of 
error behavior, formative performance evaluation, and structured pilot studies to assess both the 
value of the interactive software tool and the adequacy  of the software to support factored 
experiments.  

Software design, iteration and refinement will include continuous significant classroom usage by 
math challenged students at LWTC and at the Lake Washington Technical Academy high school 
located on-campus.  During the second year of the Project we will evaluate the software tools in 
elementary classrooms.
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1.4 PILOT STUDY

The pilot study has a 2x3x5x3 incomplete block factored design, with main effects of types of 
system (additive and symbolic), dimensions of representation (1D, 2D, and 3D), transformation 
axioms (associativity, commutativity, identity, inverse, and distributive rules), and course level 
(remedial arithmetic, arithmetic, and elementary  algebra).  The dependent variables will be a 
diversity of measures of error behavior on problems from standardized arithmetic and algebra 
tests used in Lake Washington Technical College (LWTC) mathematics courses, and on highly 
structured problem sets that systematically  vary the transformations needed to reach a solution.  
This analytic structure provides informative results in most measurement cases.  A key aspect of 
the design is to put both manipulation and symbolic transformation on equal formal footing, thus 
removing the effect of particular physical types of manipulative.  A main effect for systems 
would indicate that the formal structure of one particular system engenders fewer errors.  A main 
effect for dimension of representation would clearly indicate that the formal structure of either 
1D symbol manipulation, 2D diagrammatic visualization, or 3D physical interaction is more 
effective.  Main effects for transformation rules would point to specific sets of transformations 
associated with errors.  Least interesting would be a main effect for content, indicating that some 
content is more difficult.  As with any multifactor design, it is the presence of interactions that 
would provide the most information.  Interaction between systems and transformations would 
indicate specific techniques that are preferable for specific performance difficulties.  Similarly, 
interactions between representation and transformation would indicate that particular 
mathematical models have inherent learning difficulties for particular tasks.  Interaction between 
course level and structure would confirm current practices of using different models at different 
levels of student maturity.  Finally, with no effects or interactions, we would know that the 
representation of mathematical concepts does not effect performance.

1.5  POTENTIAL BENEFITS  AND DISADVANTAGES

We see these potential benefits in an empirical comparison of the pedagogical qualities of 
symbolic and manipulative systems: 

✦ Comparison of errors associated with various systems of representation can guide 
research insight into the syntactic and semantic sources of mathematics 
miscomprehension. 

✦ An alternative spatial notation may assist teaching and learning of some concepts 
by some students.  In particular, we expect to identify different types of learners 
who benefit  from different types of instruction.

✦ Multiple representations can broaden mathematics understanding. A comparative 
axiomatics provides students with multiple perspectives on mathematical concepts 
and may enrich our teaching of mathematics.

✦ A capability  to directly  compare spatial and symbolic forms may help to bridge 
the gap  between learning mathematical concepts through manipulation of objects, 
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and learning mathematical concepts through substitution and rearrangement of 
symbolic tokens.

Some potential disadvantages of the proposed intervention include:

✦ Non-standard axioms, even if they incorporate significant pedagogical advantages, 
do not conform with the prevailing group  theoretic basis for modern algebra.  This 
may create problems for communication of knowledge.

✦ Students may become confused when presented alternative perspectives on the 
foundations of mathematics.  Teachers will not be familiar with the availability of 
alternative foundations.

✦ Computer-based virtual manipulatives might blur the distinction between concrete 
and abstract.

✦ The community of scholars knowledgeable about mathematical foundations is 
small.  The axiomatic approach may be inappropriate.

✦ The software systems used to develop the prototype curriculum materials may not 
be available to all classrooms.

We believe that each of these concerns can be adequately  addressed.  

✦ Communication of knowledge:  Additive systems are intuitive, are taught in early 
grade school mathematics, and will be presented as supplemental to understanding 
the symbolic mathematics of middle school and high school.  The non-standard 
basis is widely  taught, it is just  not associated with axiomatic rigor.  The proposal 
adds formal models of already existing practices.

✦ Alternative perspectives:  Students are currently exposed to both manipulative and 
symbolic systems, and already  exhibit confusion.  Part of the motivation of the 
proposal is to develop software tools that provide interactive comparison of 
models of mathematical concepts, so that the effectiveness of the models can be 
evaluated.

✦ Abstract manipulatives:  Virtual manipulatives do create an interaction between 
physical and symbolic mathematical models, we would like to characterize this 
interaction empirically.  Virtual manipulatives have been widely funded by the 
NSF;  this proposal contributes to their understanding.

✦ Community:  There is little research or pedagogical interest in mathematical 
foundations, although the Rules of Algebra are in every textbook.  The axiomatic 
perspective is necessary for measuring and evaluating performance, but it  should 
be overtly in the curriculum only if measured to be beneficial.

✦ Software availability:  We intend to build software systems in languages that have 
free downloadable players available over the Internet.

Therefore we expect a reasonable chance that the prototype curriculum software and materials 
could provide a potentially positively impact on mathematics education, since
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✦ Identification of the relative strengths and weaknesses of symbolic and spatial 
approaches may  guide better structuring of classroom curricula and materials. 

✦ Spatial models are rigorous yet both simple and familiar, possibly affording less 
opportunity for student error [1].

✦ Representational variety strengthens both mathematical content and reasoning [2].
✦ Learning through concrete interaction with spatial and visual forms can enhance 

mathematics understanding, particularly when the structure of the manipulative  
closely aligns with abstract concepts [3].

✦ Providing comparative models of mathematical concepts side-by-side may help 
students who are failing to comprehend symbolic form, and may suggest 
curriculum approaches that smooth the transition from concrete to abstract 
mathematics.

2.  RELEVANCE

2.1  EDUCATIONAL MOTIVATION

It is well known that  America's students are underperforming in mathematics education.  On the 
Washington [State] Assessment of Student Learning (WASL) in 2006, for example, half of the 
students in Grades 6 through 10 failed to meet grade-level standards of performance for 
mathematics [4].  The 2006 overall current failure rate of 50% incorporates a 75% failure rate for 
Washington State minorities and a 70% failure rate for students living at the poverty level, a 
group composed primarily of white and Asian students [5].  The WASL is based on the Principles 
and Standards for School Mathematics developed by  the National Council of Teachers of 
Mathematics [6].  After a decade of extensive effort, the 2006 results represent  a significant 
improvement, having increased from a 33% pass rate in 1999.

The LWTC Academy High School has a 30% pass rate for basic math courses.  Students enrolled 
in adult education and job training math courses at LWTC are an average age of 33, and have a 
much higher pass rate.  However these adult students come to LWTC with very little prior math 
training and/or comprehension.  They are 60% female, 30% of color, 5% disabled, 30% 
educationally  disadvantaged, and 16% economically  disadvantaged.  Thus the Project will be 
able to work with minority  and math challenged students throughout the development of the 
curriculum materials.  Although multivariate analyses over sub-populations is not proposed 
during the Project, some demographic data will be gathered for informal analysis.  This 
information will be used primarily to guide curriculum development that addresses the 
mathematics learning needs of at-risk groups.

2.1.1  The Additive Principle

Early primary school, as well as early recorded history, identifies addition by the Additive 
Principle: the representation of a sum is identical to the representation of its parts [7].  This 
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principle is exemplified by unit-arithmetic, unary stroke or tally  arithmetics within which all 
units are represented by individual unit  marks or tokens [8].  Addition in unit-arithmetic is 
achieved by placing representations of units together in the same space.  The Additive Principle 
might be considered to be the definition of the additive operation.  

Addition is introduced in early elementary  school as the physical act of joining together 
collections.  In contrast, symbolic addition, also introduced in early  elementary  school, does not 
follow the Additive Principle; the symbols being added do not possess the structural properties of 
the cardinality they  represent.  Instead, students memorize number facts and algorithms to 
determine a sum.  Of course, symbolic numerals can be decomposed into units, reverting their 
symbolic behavior back to that of additive unit-arithmetic.  Teacher training texts recognize the 
importance of additive systems throughout lower elementary mathematics.  However, these texts 
explain the meaning of addition in terms of symbol manipulation, not  in terms of the spatial 
intuitions of the Additive Principle.  For example, commutativity of unit-arithmetic is achieved 
by fiat:  

"We may associate 3+5 with putting a set of 3 members in a dish, and then putting 
a set of 5 members in a dish to form the union of the sets.  We associate 5+3 with 
putting the 5 set in a dish and then putting in the 3 set." [9, p 121]

Here, the Additive Principle is used as a physical analog for the Commutativity of Addition.  
Unit-arithmetic addition, however, does not incorporate an external dish or a temporal ordering 
of actions.  When two or more collections of units share the same table, children can add all of 
them by pushing the piles together concurrently.

2.1.2  Virtual Manipulatives

There is abundant evidence that interactivity can assist students who are having difficulty 
learning abstract  material [10][11].  Students find it easier to learn math if it is made concrete 
through the use of manipulatives [12].  Use of manipulatives produces greater gains in 
achievement [13].  Spatial representations enhance understanding, since expressing ideas 
spatially  allows information to be analyzed more effectively  by  parallel perceptual processes 
than by linear cognitive processes [14][15].  Many different ways of making mathematical 
concepts more concrete have been shown to be effective in learning algebra [16][17].

Teachers use manipulative and diagrammatic techniques widely  [18].  Due to the pragmatic 
limitations of physical objects, physical manipulatives are constrained to "concrete examples", 
just as a triangle drawn in a geometry class is only a particular triangle.  However, with new 
software tools such as Geometer's Sketchpad [19], a student  can "draw" a generic triangle, and 
use the diagram itself as an object of computation.  Digital technology has expanded the domain 
of representation of mathematical concepts from typographical strings to spatial forms and to 
virtual manipulatives.
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A virtual manipulative is "an interactive, Web-based visual representation of a dynamic object 
that presents opportunities for constructing mathematical knowledge" [20, p373].  Reimer [21] 
and Clements [17] discuss potential benefits of virtual manipulatives for learning.  Today, web-
based applets that provide virtual models of mathematical concepts and computations are 
burgeoning.  Extensive collections of free virtual manipulatives software for mathematics are 
maintained by the math archives at Drexel University [22], by the National Library of Virtual 
Manipulatives at Utah State [23], by the National Council of Teachers of Mathematics Electronic 
Examples [24], and by  public [25], commercial [26], and home-schooling [27] interest groups.

Virtual manipulatives provide iconic models that simulate concrete manipulation [28].  They 
currently bear a strong resemblance to concrete manipulatives such as Cuisenaire rods, base-ten 
blocks, pattern blocks, rulers, number lines, logic blocks, fraction pieces, and geoboards.  Spatial 
analogs are lines, scales, dials, etc. that support  the concept of number within their geometry.  
Visual and spatial analogs and models are elevated to a curriculum design principle in How 
Students Learn: Mathematics in the Classroom:

"Design Principle 3:  Providing Visual and Spatial Analogs of Number Representations 
That Children Can Actively Explore in a Hands-On Fashion" [29, p292]

Often though, representations based on spatial analogs fail to adequately model the concept of 
multiplication.  The additive spaces of dials and scales do not support multiplicative concepts.  
Spatial analogs provide a visual model but not an algorithmic understanding.  A primary 
difficulty with spatial analogs is that we do not know how the structure of the analog will interact 
with the abstract concepts being taught.  Uttal [30] for example, has observed that students 
identify with familiar but incidental attributes of a manipulative, and thus make the wrong 
generalizations, connecting incidental characteristics of the teaching aid to the mathematical 
concepts being taught.

Virtual manipulatives are decidedly constructivist.  Students construct meaning by  using 
computer input devices to control apparently physical actions of virtual objects through 
translation, rotation, flipping and other spatial transformations.  For example, graphing linear 
equations can be made virtual both by generating a graph given textual input of a linear equation, 
and by generating the linear equation that  corresponds to dragging and rotating the line graph 
itself [31]. 

"Students liked the immediate feedback they received from the applets, the virtual 
manipulatives were easier and faster to use than paper-and-pencil, and they 
provided enjoyment for learning mathematics.  Their use enabled all students, from 
those with lesser ability to those of greatest ability, to remain engaged with the 
content, thus providing for differentiated instruction." [32]

Today the libraries of virtual manipulatives are organized around specific content and grade 
levels.  We know that they sometimes enhance learning, but we do not yet know which particular 
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manipulative techniques will address which particular difficulties, how a particular technique 
might correct a difficulty, or when a teacher should elect to change from a symbolic to a physical 
model.  Web-based virtual manipulatives generally confound the distinction between concrete 
application and symbolic abstraction.  Alternatively, they can be seen as a unifying force, 
integrating haptic, visual, conceptual and behavioral interpretations [33]. Manipulatives must be 
related explicitly to relevant concepts, otherwise students learn different but unconnected 
techniques [34].

Multiple perspectives and representations are known to improve concept learning [35].  "The 
usefulness of numerical ideas is enhanced when students encounter and use multiple 
representations for the same concept."[3, p2]

"Mathematics programs in the early grades should make extensive use of 
appropriate objects, diagrams, and other aids...Different ways of representing 
numbers, when to use a specific representation, and how to translate from one 
representation to another should be included in the curriculum."[29, p292]

Bruner [36] distinguishes three types of representation for mathematical operations.  Each plays 
an essential role in mathematics understanding.  Enactive addition, for example, is concrete;  
collections of objects are placed together physically.  Symbolic addition abstracts the cardinality 
of a set of objects into a symbolic name such as "3" or "7".  Rules for combining symbolic names 
guide the determination of their sum.  Iconic addition is most commonly presented as pictures of 
groups of objects with specific cardinality. The value of multiple representations suggests the 
possibility of concurrent use of concrete, virtual and symbolic forms.  This in turn calls for a 
deeper understanding of the relative and contextual pedagogical merits of each form of 
representation. 

Algorithms are known to depend upon representation.  In digital computation, for example, 
decimal numerals are abandoned entirely in favor of binary numerals.  In math education, the 
algorithms for manipulation of fractions differ from those of decimals, although fractions and 
decimals can express the same abstract concept of ratio of magnitudes.  Operations on pie 
diagrams representing fractional quantities are again of a fundamentally different, concrete 
nature than the symbolic algorithms for both fractions and decimals.

"Physical representations serve as tools for mathematical communication, thought, 
and calculation, allowing personal mathematical ideas to be externalized, shared, 
and preserved...mathematical ideas are enhanced through multiple representations, 
which serve not merely  as illustrations or pedagogical tricks but form a significant 
part of the mathematical content  and serve as a source of mathematical 
reasoning." [3, p  94-95]
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Not only do we need to know more about the comparative value of representations, we need to 
understand the strengths and weaknesses of the transformation sequences engendered by each 
representational form.

2.2  HILBERT'S  PROGRAM

A century ago, well prior to the advent of digital display technologies, David Hilbert used his 
considerable influence to exclude diagrams and spatial intuition from formal mathematics and 
consequently from the mathematics curriculum [37].  Hilbert's agenda has been rigorously 
pursued, so that today "Mathematics is a game played according to simple rules with 
meaningless marks on paper." (David Hilbert, c. 1900)  

"... numbers have neither substance, nor meaning, nor qualities. They are nothing 
but marks...[38]

"...proof is a syntactic object consisting only of sentences arranged in a finite and 
inspectable array." [39]

"...despite the obvious importance of visual images in human cognitive activities, 
visual representation remains a second-class citizen in both the theory and practice 
of mathematics." [40, p3]

The fundamental structures of formal mathematics do not necessarily  align with the needs of 
novice learners or with the goals of mathematics education.  Higher mathematics is expressed 
almost exclusively in symbolic string languages designed by  experts for experts, not for novices 
who may have never considered that a letter could stand in place of a set of numbers.  The 
symbolic approach is excellent for digital computers but possibly quite inappropriate for students 
who must master not only mathematical concepts, but also their notations which are, by design, 
independent of the concepts.

Much of elementary mathematics dwells on specific algorithms for a singular specific system of 
representation (the decimal place-value system).  Kaput [41] is directly  critical of the emphasis 
of form over content in elementary mathematics, agreeing that the predominance of math 
education addresses only  a particular set of representations and algorithms.  Place-value notation 
is universal.  Place-value algorithms mix arithmetic operations with the maintenance of the 
place-value notation, and thus confound semantics (mathematical concepts) with syntax (the 
representation of mathematical conceptxs).  Symbolic addition is purely syntactic. Addition is 
defined by the three mechanisms that maintain the place-value representation:  digit combination 
facts, alignment of place-values, and carrying.  Adding It Up: Helping Children Learn 
Mathematics points to an inherent tension between the abstract and concrete aspects of 
mathematics.  "This tension is a fundamental and unavoidable challenge for school 
mathematics." [3, p74].  The pedagogical shift from early childhood manipulatives to symbolic 

10



computation is a shift from semantics to syntax, from construction of meaning to management of 
a particular representation. 

What is missing to date are rigorous diagrammatic and spatial systems for numerics, systems that 
are inherently interactive and manipulable while at the same time meeting all criteria of symbolic 
formality.  The additive systems presented in this proposal meet these criteria.  They are based on 
visual/interactive axioms, and provide what Philip Davis calls visual theorems:

"...a visual theorem is the graphical or visual output  from a computer program -- 
usually  one of a family  of such outputs -- which the eye organizes into a coherent, 
identifiable whole and which is able to inspire mathematical questions of a 
traditional nature or which contributes in some way to our understanding or 
enrichment of some mathematical or real world situation." [42, p 30]

We share Kempe's goal: "...to separate the necessary matter of exact or mathematical thought 
from the accidental clothing -- geometrical, algebraical, logical, etc." [43].  However, we do not 
believe that the pedagogical qualities that make mathematical formalism comprehensible and 
learnable are separate from mathematical thought.  We hope to clarify the strengths and 
weaknesses of spatial and symbolic approaches to teaching through comparative axiomatics.

3.  THREE ADDITIVE SYSTEMS

Additive models have recently been developed for several foundational systems, including 
predicate logic and the algebra and arithmetic of numbers [44].  Boundary logic is the most 
studied, beginning with Peirce [45][46][47][48], and followed by  Spencer-Brown [49], 
Kauffman [50][51][52], Varela [53], Bricken [54][55], and Shoup [56].  Kauffman has made 
original contributions to additive models of numerics [57][58], as have Bricken [59], James [60]
[61], and Winn [62].

This section presents three numeric systems based on spatial representations and axioms that 
maintain the Additive Principle.  The first  system is unit-arithmetic, a simple case of base-1, 
unary arithmetic (tally  systems) that clearly contrasts differences between string-based and 
spatial conceptualizations.  The second is a depth-value notation for unit-arithmetic that provides 
the benefits of place-value notation without the cost of a total ordering of digits.  The third is a 
spatial algebra that models addition as sharing a common space, and multiplication as touching 
in space.  Illustrations of the static and dynamic representation of these systems are located in 
Appendix A.
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3.1  UNIT-ARITHMETIC

Unit-arithmetic is the arithmetic of strokes and tallies that has been in use for over 30,000 years.  
A unit is a mark, stroke, notch, pebble, shell, or other discrete singular distinction.  Unit marks 
may be replicated, providing a supply  of indistinguishable replicas.  Replicate units are intended 
to be indistinguishable in order to reduce the idea of counting to a foundation of one-to-one 
correspondence between marks and objects.  An integer is an ensemble of identical marks 
sharing a space.  Units occupy space in two distinct ways, by sharing a common space (and thus 
forming an ensemble) and by being partitioned into different spaces (that is, by not sharing a 
common space). As illustrated in Figure 1, addition of unit-ensembles consists of placing them 
into the same space.  Multiplication consists of replacing every unit  of one ensemble with a 
replicate of another ensemble.  Multiplication is thus substitution of ensembles for units.  These 
representations and conceptualizations of elementary arithmetic maintain connection with a 
student's intuition; the abstract mathematical operations of sharing space and of substitution 
remain visual, visceral, and physically grounded.

One familiar example of unit arithmetic is the American flag.  The fifty  stars represent the fifty 
states, but no particular star maps to any particular state.  Stars are added together to construct a 
sum by the shared space of the blue background.  The geometric arrangement of the stars has no 
particular meaning.  The stars form a unit ensemble.  Similarly, the thirteen stripes represent the 
thirteen original colonies, but no stripe is associated with any particular colony, and the colors of 
the stripes have no interpretation.

Unit-arithmetic is the archetypical additive system that illustrates axiomatic differences between 
spatial and symbolic computation, and thus between embodied and rote mathematics education.  
Figure 2 presents the axioms of arithmetic expressed in the languages of both group theory and 
unit arithmetic.  The four axioms of unit-arithmetic define addition as being placed in the same 
space (mereological fusion [63]), subtraction as annihilation of polar units, and multiplication as 
substitution.  Distribution gives permission to apply substitution over entire spaces or to each 
member of a space individually.  The textual notation of unit-arithmetic used in Figure 2 can be 
interpreted as follows:

           a + b + c:   a|b|c  =  a b c
       • = 1, ◊ = -1:   • ◊ = <void> 
               a x b:   [substitute b for • in a]  =  [b • a] = [a • b]
                a ÷ b:   [substitute • for b in a]  =  [• b a] = [a b •]
    a(b+c) = ab + ac:   [a • b|c] = [a • b]|[a • c]

The notations for fusion and substitution stand in place of physical (or virtual) operations, not 
symbolic structures.  The four axioms of unit arithmetic specify  the Additive Principle, the 
Additive Inverse, Commutativity of Multiplication, and Distribution. 
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3.2  DEPTH-VALUE NOTATION

Unit-ensembles can be rewritten into an efficient depth-value notation by  a standardization 
process that results in a spatial form with minimal structure.  Herein, depth-value notation is 
illustrated using three varieties of spatial syntax:

✦ Parentheses used as 1D textual delimiters of contained spaces.
✦ Ovals used visually as 2D spatial containers.
✦ Stacked blocks used as 3D spatial manipulates, with stacking as containment.

Unit arithmetic was abandoned because of the huge inconvenience of having to count the result 
of every sum.  Depth-value notation is proof-in-principle that additive systems can have efficient 
and concise notations.  Its intended use is as a supplementary tool to help  students who do not 
understand symbolic approaches.  We will evaluate its efficacy as part of the proposed research.  

The formalism constructed by expressing unit arithmetic in depth-value notation is worth 
studying for this reason.  Place-value notation requires significant  effort to master the algorithms 
for addition and multiplication.  Many students have difficulty  achieving this mastery.  
Manipulatives have been proposed as an intervention, however these manipulative techniques are 
analogical and lack a formal (i.e. mathematical) foundation.  To improve mathematics teaching, 
we would like to know exactly  what the difficulties of place-value notation are.  Depth-value 
notation provides a formal alternative that can serve both as a control and as a route for 
identifying the barriers a student is encountering with symbolic techniques.  The primary sources 
of error in elementary arithmetic and algebra are negative numbers, fractions, and the distributive 
rule.  Additive systems provide similar unique yet formal alternatives for these three problem 
areas.  Therefore, these systems provide potentially useful curriculum tools for specifically 
addressing and correcting many of the prevalent errors made by students of elementary 
mathematics.  Further, by embedding comparison of symbolic and manipulative systems into the 
curriculum, students will be exposed to alternative models of mathematical concepts, and thus 
facilitated in overcoming difficulties and confusions associated with any  one particular model.

Depth-value notation replaces the linear typographic sequence of place-value notation by nesting 
in space.  To highlight depth-value mechanisms, we first illustrate it in base-2.  The base-2 depth-
value numerals for 0 to 16 are presented using textual delimiters in Figure 3, and using oval 
enclosures in Figure 4.  A representation of zero is no longer necessary, since the absence of 
contents within an empty space provides a contextual, structural void in place of the symbolic 
zero.  Figure 5 shows the steps for reading base-2 depth-value numerals as conventional decimal 
integers.  The numerals for 8 and 12 are shown using oval notation, together with their decimal 
transcription.  Reading a base-2 depth-value numeral begins with the innermost unit, and 
successively doubles the accumulating value as each boundary  is crossed outward.  Should two 
or more form share the same space, their values are added together.
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3.2.1  Base-10 Depth-Value Notation

Figures 6 and 7 present base-10 depth-value numerals in textual notation.  Figure 6 shows the 
numerals from 0 to 1000 without the use of decimal digits.  Figure 7 replaces unit ensembles 
with digit symbols.  Just  as in place-value notation, digit symbols are abbreviations that stand in 
place of a collection of units.

Integers can be structurally partitioned in a variety of ways.  Unit  partitioning corresponds to 
unit-arithmetic;  base-10 place-value partitioning is conventional world-wide;  base-2 place-
value partitioning is dominant in computer implementations.  These partitioning strategies are at 
the foundation of algorithmic complexity for operations and for reading integers.  Place-value 
represents magnitude in polynomial form, a form with maximal reference to the base.   Depth-
value represents magnitude in maximally  factored form, making minimal reference to the base.  
Figure 8 illustrates this difference for the numeral 3258. 

3.2.2  Structural Standardization

Modeling addition as sharing space and multiplication as substitution removes the algorithmic 
complexity of arithmetic operations.  The cost is that there are several representations for each 
numerical quantity.  For example, 2 can be represented as •• and as (•).  This is analogous to 
the several operational ways to express a conventional number.  2 is also 1+1 and 2x1.

There are three structural standardization rules for depth-value numerals, first expressed in 
base-2 typographical notation for convenience:

      UNIT JOIN (base 2):     •  •  =  (•)             1+1 = 2x1

      BOUNDARY JOIN:         (•)(•) = (• •)            2x1 + 2x1 = 2(1+1)

      ANNIHILATION:             • ◊ =                  1 + –1 = 0   

Unit Join relates addition to multiplication, creating a base system.  Boundary  Join is 
distribution.  In contrast to conventional number systems, subtraction is achieved using a 
negative unit, ◊, that annihilates the positive unit, •.  The depth-value standardization rules, as 
well as the structure of counting, are presented in Figure 9 for base-2 numerals and in Figure 10 
for base-10 numerals.  The analogous Unit and Boundary  Join rules to standardize base-10 forms 
are:

      UNIT JOIN (base 10):    •••••••••• = (•)     1+1+1+1+1+1+1+1+1+1 = 10x1

      BOUNDARY JOIN:           (a)(b) = (a b)      10a + 10b = 10(a+b)
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Figure 10 shows the place-value numeral 3258 represented as (((3)2)5)8 in base-10 depth-
value form augmented with digit symbols.  Alternatively, nesting depth can be inverted so that 
3258 would appear as 3(2(5(8))).  Figure 10 also shows one notational technique for recording 
depth-value decimal numerals:  a new boundary, [], is constructed to express negative powers.  
3258.46 would be represented as 3(2(5(8[4[6]]))).

Unit arithmetic with depth-value notation explicitly separates abstract  operations from notational 
standardization.  Addition and multiplication operations maintain the semantic connection to 
unit-arithmetic.  The result of each operation directly represents the sum or product.  The three 
standardization rules act independently  to convert  a result  to its minimal syntactic form.

3.2.3  Animated Operations in Oval Notation

The operations of addition and multiplication transform oval forms smoothly  in two-dimensional 
space, in contrast to the step-wise, discrete transformations characteristic of symbolic notations. 
Still frame sequences of prototype animations of the operations of arithmetic for base-2 depth-
value numerals are presented in two-dimensional oval notation in Figures 11 and 12.  Figure 11 
follows the addition:  5+7 = 12.  The representation of the form of 5 and the form of 7 in the 
same space in Frame 1 is also a representation of the form of 12.  The dynamic standardization 
process follows.  Figure 12 follows the multiplication:  5x7=35.  The result of the substitution of 
the form of 5 into the form of 7 in Frame 4 is a representation of 35 (28+6+1).    The depth-
sensitive mechanism of multiplication resembles function composition more than additive 
composition in space.  This makes multiplication of depth-value numerals mathematically  more 
abstract while at the same time broadening the constructive definition of multiplication beyond 
the recursive application of addition as taught conventionally.

3.2.4  Depth-Value Notation Using Stacks of Blocks

The blocks representation of depth-value notation presented in Figures 13 through 17 illustrates a 
physically manipulable, yet fully general form of arithmetic.  In block notation, numerals are 
represented by three-dimensional stacks of blocks.  The unit is a single block; depth-value is 
expressed by  the height of a stack.  The block form emphasizes visualization and tactile 
manipulation, while achieving the same level of abstraction as is incorporated in symbolic forms.  
Addition is stacking blocks side-to-side;  multiplication is stacking blocks on top of one another.  
The standardization rules for depth-value notation become the physical actions of constructing 
stacks (doubling in base-2) and pushing stacks together (distribution).  

Figure 13 shows counting and standardization rules in block notation; this figure contains the 
same structural information and rules as does Figure 9 for one-dimensional textual delimiters.  
Figure 14 shows 5+7=12 in block notation (compare to oval animation Figure 11);  Figure 15 
shows 5x7=35 (compare to Figure 12); and Figure 16 shows 7x5=35.  Figure 17 shows multi-
digit decimal multiplication 319x548=174812 in block notation, and illustrates the parallelism of 
joining operations during standardization.  
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3.2.5  Multiple Representations

Spatial forms support a diversity of notations, each derived from the others via spatial 
transformation [55].  These notations include the 1D textual delimiters, 2D containers, trees, and 
paths, and 3D blocks, maps, oriented maps, graphs, and rooms.  Figure 18 presents some of these 
spatial notations, together with the transformation paths between them.  These notations are 
purely  syntactic varieties derived from geometric and topological transformation of depth-value 
forms. 

3.3 SPATIAL ALGEBRA

The algebraic structure of addition and multiplication can be represented as properties of space 
(as well as properties of containment),  to construct an additive system not based on unit-arithmetic.  
Addition is represented as numerals sharing the same space without touching, while multiplication 
is represented by numerals in physical contact.  Figure 19 illustrates instances of objects and 
operations within this spatial algebra.  Constants and variables are represented by  labeled blocks.  
Characteristic of additive systems, zero has no representation, it  is empty  space.  Like the 
previous depth-value systems, spatial algebra incorporates the Additive Principle, as shown in 
Figure 20.  Since blocks can exist anywhere within a space, spatial algebra does not include 
either associativity or commutativity of  addition.  That is, commutativity and associativity 
would be metric distinctions in a non-metric space.

Figure 21 shows the spatial algebra multiplication operation.  Unlike depth-value notation, 
multiplication is by touching rather than by substitution.  By electing to represent objects as 
blocks, however, touching is afforded by flat faces, imposing the unintentional appearance of 
associative ordering.  More blobby, clay-like objects rendered as virtual manipulatives can avoid 
this unintentional structure.  The pedagogical strength of spatial algebra is in its representation of 
distribution, as shown in Figure 22.  Forms are factored by  joining identically labeled blocks, 
making two or more blocks into one.  Conversely, factored forms are multiplied into polynomial 
terms simply by cutting blocks into spatially separate pieces.  There are many open design 
questions about how spatial algebra might be presented.  Fortunately, when spatial blocks are 
constructed as virtual manipulatives, exploring different representations is relatively easy.  

Figure 23 shows the multiplication of two polynomials.  Each term within one polynomial is in 
contact with each term within the other polynomial.  The multiplication itself requires only 
cutting all blocks into multiple pieces.  To factor trinomials, identically labeled blocks for each 
polynomial degree are joined into a single block, while constants are sliced into additive and 
multiplicative components.  Spatial algebra blocks may also aid understanding of the structure of 
nested factored forms.  In Figure 24, a somewhat daunting conventional algebraic expression 
with apparently complex nesting of forms can be converted into the equivalent polynomial form 
by a single parallel act of slicing stacks of spatial objects.  The rules of arithmetic applied within 
each stack, together with spatial distribution complete the simplification of the original 
expression.

16



4.  METHODS

The two major goals of this Project proposal are:

✦ To develop prototype but high-quality  curriculum materials that permit fine-grain 
evaluation of performance on problems expressed in both symbolic and additive 
systems, and 

✦ To implement modular presentation software that facilities multivariate research 
over mathematical representations in one-, two- and three-dimensions and over 
specific transformation axioms and rules,

We intend to address the basic arithmetic of numbers, including integers, decimals, and fractions 
in Year I;  and elementary algebra in Year II.  Naturally, should any  particular system, or any 
particular notational variety, result in highly negative formative evaluation comments or 
performance measures, we would abandon it  in favor of other alternatives.  Similarly, it is 
possible that a particular system or notation may  engender highly positive formative measures.  
In such cases we would concentrate efforts on developing more interactive curriculum units that 
utilize it.

4.1 PLAN OF WORK

All systems will be prototyped within the Mathematica 6.0 computational and programming 
environment.  The use of Mathematica for rapid prototyping avoids many difficulties that plague 
other software development projects, including extensive low-level debugging of code, effort 
spent coordinating and interfacing different programming languages and techniques, 
development of low-level interaction and display capabilities, and conformance to various 
communication and operating system protocols.  The developed prototype will support stepwise 
student manipulation of both computational problems and spatial proofs, and will store 
performance statistics and raw data for any  input problem.  All data will be collected in the 
Mathematica environment, so that  statistical analysis tools would be immediately available.  The 
Mathematica Player is a free downloadable application that permits use of developed software 
on any platform, and that is maintained and updated to provide a high-quality  presentation tool 
free of maintenance and portability  overhead.

4.1.1  Research Approach

Since the work is exploratory, this Proposal does not commit to an in-depth examination of any 
one particular semantic or syntactic variant.  Since we are intimately familiar with the initial 
overhead required to produce appropriate interactive software, the Proposal also does not include 
a summative research design.  We believe that it is of primary importance to first provide 
research and curriculum software tools that will facilitate rapid and rigorous empirical evaluation 
of axiomatic domains.  This Proposal is an initial, facilitating step.

17



Performance data is to be gathered in two phases.  The taxonomic, or classification, phase 
incorporates protocol analysis to identify particular areas for later focus.  The analytic, or 
experimental, phase incorporates structured tasks with closer control over exposure, ordering, 
problem complexity, and ambiguity.  We intend to avoid weaknesses in other studies of error 
behavior by broadening the analysis beyond number of correct responses, data collected only 
from testing situations, and irregular problem difficulty.

The multivariate research to be facilitated incorporates a partial 2x3x5x3 factored design, with  
main effects of axiomatic approach (additive with symbolic serving as the control), syntactic 
variety (1D textual strings, 2D containers and 3D stacks of blocks), transformation rule (presence 
or absence of commutativity, associativity, identity, inverse, distribution) and pedagogical 
content level (primary school arithmetic, secondary school algebra, and remedial topics within 
tertiary  coursework).  The axiomatic approach and the transformation rules would be repeated 
measures, syntactic variety  and content level would be randomized.  Dependent variables will 
include error type (incorrect answer, process, or understanding) and subjective ratings of 
confidence and of comprehension.  Appropriate experimental design may also call for control of 
order and time of exposure, stratification of sampling, enforced domain constraints [64], pre-
training, classification and control of problem difficulty, and control groups that anchor specific 
hypotheses.  Given sufficient sample sizes, covariate analysis of learning styles and demographic 
groups would be of interest, as would longitudinal analysis of retention and skill application.  
Follow-up work may include evaluation of presentation and interaction styles.

4.1.2  Software Development

The iterative software design strategy, quality control, debugging, user interaction and codesign, 
documentation, and other software engineering aspects of the Project will follow conventional 
rapid prototyping software engineering practices.  The proposed generic animation engine 
accepts as input conventional mathematical forms such as multi-digit operations on base-10 
numerals and linear algebraic equations.  Students will be able to interact with and steer each 
fine-grain computational step  using the dynamic display as a virtual manipulative.  Figure 24 
provides an architectural schematic of the animation tool. 

The first software iteration should take about three months.  This would leave six to nine months 
to develop and refine the display and interaction of the tool.  Development will include three 
cycles of rapid prototype implementation, each with maximal exposure to student feedback.  The 
LWTC Math Department is currently installing a computer-based Math Lab which will support 
lab-oriented math classes at  LWTC, and incidentally support formative evaluation of the 
software.  For Year I, we expect to constrain use of the developmental software to students 
within the multimedia and animation programs, and to volunteer students from math classes.  By 
the end of Year I, we should be able to present the software prototype at relevant conferences, 
and release a beta version to selected colleagues. 
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Refinement and debugging can be concluded during first few months of Year II, leaving six 
months to develop structured curricula materials.  These materials will be tested in pilot  studies 
in both high school and elementary school classes.  The goal will be improve test performance on 
standardized tests, with a particular focus on very  low achievers.  By the end of Year II, we 
should be ready to distribute fully documented prototype systems.  We will disseminate 
documentation and other information on the availability  and utility of the tools during the last 
two months of the funded Project.  Details of personnel and FTEs are in the cost-justification 
section.

4.1.3 Curriculum Design

Curriculum design includes identification of intended learning outcomes; structuring of units and 
modules within a course, including sizing, clustering, timing and sequencing of content 
components; identification of skills being taught; development of teaching strategies; and 
planning and implementation of evaluation techniques and instruments.  A rough outline of the 
intended coverage of curriculum units follows.

 Units for addition, subtraction, multiplication, and division of
  whole numbers
  signed numbers
  fractions
  exponents
  some aspects of simple algebra
 Both decimal and binary versions
 Teaching units to show:
  structural relationship between forms of representation 
   identity, zeros, commutativity, associativity, distribution
  how to read and write in each system
  operations using three varieties of additive systems
  the relationship between depth-value and place-value notation
  at least three different depth-value notations
   textual, diagrammatic, manipulative
 Interactive display to include
  type-in conventional problems
  watch spatial computation unfold
  drag-and-drop manipulation of spatial forms
 Problem presentation tool
  pretest and posttest for all unit topics
  a substantive body of practice problems
   parallel to conventional text
  show mapping between conventional and spatial solutions
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4.2  FORMATIVE RESEARCH EVALUATION

Software iteration and refinement will include continuous significant classroom usage by math 
challenged students.  The interaction design process will include subjective feedback, codesign 
with users, protocol analysis of error behavior, comparative evaluation of performance, and 
formative experimental evaluation of potential improvement in mathematics understanding and 
performance.  Evaluation will focus on fine-grain protocol analysis of solution steps, rather than 
on more course-grain measures such as number of items correct.  We hope to develop a mapping 
between specific axioms, specific notations, and error behavior.  We intend to develop  limited 
curriculum units guided by preliminary experimental evidence of appropriate teaching strategies 
that combine and sequence spatial/manipulative and textual/symbolic materials.  Several 
conventional research techniques will be incorporated to refine the usage of the proposed tools, 
particularly during the second year of the Project.  These include:

1)  Protocol analysis of the types and frequency of student errors.  This information is critical for 
formative evaluation of the benefits of additive techniques, and for identifying and isolating 
errors generated by semantic (understanding), syntactic (reading and manipulating 
representations), interactivity (tactical and strategic computational choices), and display 
(software ease of use) sources.  Error types and frequency  will be compared both between and 
within the various axiom systems.  Protocol analysis contributes to the identification of the 
structural source of errors and to the assignment of blame to structural elements, while managing 
the huge diversity across error behaviors.  It is more sensitive to the context  of an error than test 
measures.

2)  Performance using spatial and symbolic axioms and transformation strategies. We will 
examine error types and rates for structured problem sets containing rules known to cause 
difficulties for students, with particular focus on the distributive rule and on structural 
manipulations involving negative numbers and fractions.  As well as error rates, we will examine 
student steps and jottings (i.e. work done while solving problems), and other informal steps using 
detailed observation protocols.  We hope to identify  the uniqueness, persistence, and consistency 
of errors associated with particular mathematical structures and transformations.  Errors, for 
example, occur much more frequently during constructive transformations (such as applying an 
operation to both sides of an equation), than during reductive transformations (such as adding 
two numbers together)[1].  Also of importance is error specificity, whether or not a particular 
error or miscomprehension is common, or associated with one particular problem, or with a 
particular person, or is a singular occurrence.

3)  Direct evaluation of performance improvement on conventional mathematics tests.  
Equivalent pre- and post-tests on conventional mathematics problems will used to measure 
performance improvement both with and without exposure to software models and 
representations.  We will use the Basic Mathematics performance tests administered to all LWTC 
students, for which we have several years of results.  This approach will provide comparable 
performance measures for long-term controls, short-term control and experimental groups, and 
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pre- and post- performance for experimental groups.  Once curriculum units have been 
developed and sufficiently refined, controlled experimentation using classes that have not been 
exposed to the software development process can progress rapidly.

4.3  DISSEMINATION PLAN

Project website: We will design and construct  an interactive web-site as a repository  for Project 
materials.  This web-site will also serve as a virtual development environment during the Project, 
and for coordination, communication, and collaboration of Project contributors.  Such a 
capability facilitates team interaction across geographically distributed members.  It also 
provides a virtual organizational structure for project management, and for coordination of 
meetings, discussion, analysis, and data collection.  

We would like to develop the capability for remote students and teachers to use the Project 
curriculum materials through a web browser.  This facility might  include automated gathering of 
performance data and a capacity  for direct user feedback.  Monitored interaction can be at  almost 
any level of detail, from specific mouse-clicks to passing or failing an exercise.  A lower-effort 
alternative is to provide downloadable software, together with a Player, so that Project software 
would be physically distributed in a compiled version.  The site can also serve for electronic 
publishing, and for distributing Project results and reports directly  to those with interest.  
Interactive refinement of tools and research techniques with "virtual Project members" would 
then lead to high-quality  submission to professional journals.  We envision two papers covering 
Project research results, and several others in support of documentation of distributed software.

We intend to present papers at national conferences during the second year of the Project.

5.  PERSONNEL AND RESOURCES

The planned Project Team consists of four part-time task coordinators (overall management, and 
development of curriculum, programming, and interactive animations), six consultants, 5-6 half-
time graduate and undergraduate students, and one capstone student team consisting of five 
students.  The total FTE effort is approximately 11.7 over two years.  The FTE breakdown for all 
Project personnel is included in the budget justification.

Principle Investigator:  Dr. William Bricken has a Diploma of Education in Mathematics, an 
M.S. in Statistics, and a Ph.D. in Mathematical Methods of Educational Research from the 
Stanford University School of Education.  He has served as a high school mathematics teacher, 
as the principal of a community-based elementary school, as an Assistant Professor of Social 
Psychology and Education, as a Research Associate Professor of both Education and Industrial 
Engineering, as an Assistant Professor of Software Engineering and Computer Science, and 
currently as a member of the Mathematics Faculty  of Lake Washington Technical College.  He 
has taught a wide diversity  of graduate-level courses, including Statistical Analysis in 
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Educational Research, Interactive Educational Technology, Intelligent Tutoring Systems, Applied 
Formal Methods, Artificial Intelligence, Computer Graphics, Human-Computer Interaction, and 
Computer Ethics.  He has also conducted short courses in and given keynote lectures to dozens 
of national and international professional organizations.

Dr. Bricken has over twenty-five years of experience working with the concepts and structures of 
additive mathematics, with an emphasis on innovative computational techniques in logic.  In his 
dissertation, Dr. Bricken empirically validated the unique nature of errors made by students 
learning algebra.  Using a range of experimental techniques (multivariate experiment, 
exploratory factor analysis, in-depth protocol analysis, clinical case study, historical review, 
ontological deconstruction, and direct remediation), he demonstrated that symbolic errors made 
by novices are neither random nor predictable, rather they are context sensitive, situated, and 
unique.  In industry, Dr. Bricken has extensive experience leading high-profile software projects.  
He has designed and implemented innovative software systems addressing human-computer 
interface, complex adaptive agent architecture, parallel processing algorithms, operating systems 
for virtual environments, and high performance algorithms for optimization of silicon circuitry 
area and timing.  Dr. Bricken was one of the first developers for Mathematica, writing programs 
for the 1988 beta pre-release version of Wolfram's software.

Dr Bricken is uniquely qualified to direct the proposed Project, as a leader in the field of spatial 
formal systems, and as an experienced educator, graphics programmer, systems designer, 
interface designer, and software project administrator.

5.1  CONSULTANTS

The Project  incorporates several strategic consultants to advise and evaluate Project designs, 
implementations, curricula, and methodologies.  Since the majority of the Project effort 
addresses software and curriculum implementation details, the consultants will provide primary 
guidance for the high-level design of all aspects of the Project, including project planning and the 
design of software, curriculum materials, experiments, usability, and data analysis.  Each 
member of the consulting team will contribute 80-100 hours per year to the Project.  The team 
includes researchers with a deep knowledge and experience in mathematics teaching and 
curriculum design (Moyer-Packenham, Hamilton, Kauffman), in learning theory (Moyer-
Packenham, Shapiro), in spatial mathematics (Kauffman, Shoup, Shapiro), in the skills and 
techniques of computer graphics necessary to design compelling interactive curriculum materials 
(Shoup, Frankel, Shapiro), and in the use of visual and manipulative tools in the classroom 
(Moyer-Packenham, Frankel, Hamilton, Kauffman).  All team members have experience in the 
design and dissemination of mathematics and mathematics education research.

Dr. Louis Kauffman has a Ph.D. in Mathematics from Princeton University, and is a Full 
Professor of Mathematics at  the University of Illinois at Chicago, specializing in knot theory, 
quantum algebras, and innovative mathematical systems.  He has written several books and 
articles on the spatial mathematics presented herein, and is the originator of depth-value notation.  
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Dr. Kauffman will be responsible for the mathematical integrity of the Project and will contribute 
to the design of mathematical teaching styles and curriculum.

Dr. Patricia Moyer-Packenham has a Ph.D. in Curriculum and Instruction from the University of 
North Carolina at Chapel Hill, specializing in mathematics manipulatives.  She is currently an 
Associate Professor at George Mason University, coordinating the Mathematics Education 
Leadership Program and directing the Mathematics Education Center.  She specializes in 
mathematics representations and teacher quality in math education.  Dr. Moyer-Packenham is an 
experienced high-school and grade school mathematics teacher, and is a project investigator in 
the five-year NSF project Math and Science Partnership Program Evaluation.  She has also 
contributed to the development of the observation protocols for a national assessment of 
mathematics teaching.  Her latest book is What Principals Need to Know about Teaching 
Mathematics.  Dr. Moyer-Packenham will contribute to both curriculum and experimental 
design.  Two graduate students working with Dr. Moyer-Packenham will assist  with Project 
organization, with development of curriculum materials, and with experimental design, data 
collection and analysis.

Dr. Richard Shoup has a Ph.D. in Computer Science from Carnegie-Mellon University.  He 
specializes in reconfigurable hardware architectures, visual languages, and innovative 
mathematical systems.  Mr. Shoup  has been awarded a Technical Oscar, a Technical Emmy, and 
a SIGGRAPH Computer Graphics Lifetime Achievement Award for his pioneering work in 
creative computer videographics systems.  He is the President  of the Boundary Institute for 
studying the foundations of mathematics, physics and computing, and currently divides his time 
between private industry  and Cargnie-Mellon West.  Dr. Shoup will contribute to the design of 
software, user-interface, and graphic display.  He will also contribute substantively to the visual 
and computational design of spatial representations of arithmetic and algebra.

Dr. Daniel Shapiro has a Ph.D. in Management Science and Engineering from Stanford 
University.  He specializes in artificial intelligence programming to model value-driven learning, 
and has contributed to diagnostic reasoning, hierarchical skill development and reinforcement 
learning, transfer of knowledge, cognitive architectures, and machine learning programming.  Dr. 
Shapiro is the Assistant Director of the Institute for the Study of Learning and Expertise at 
Stanford.  He will contribute to software design and interactivity, to user interaction capture and 
modeling, and to the structure of curriculum and user experiences.  He will also contribute 
substantively to the design of learning experiences.

Felice Frankel is a Senior Research Fellow in the faculty of Arts and Sciences at Harvard 
University, where she leads the Envisioning Science Program, with a concurrent appointment at 
the Massachusetts Institute of Technology.  Her graphics images have been published in over 300 
scientific journal articles, including several journal covers.  She is a Fellow of the American 
Association for the Advancement of Science, and has been supported by several NSF grants.  
Her book On the Surface of Things: Images of the Extraordinary in Science is considered a 
classic in its field.  Her current NSF Project, Picturing to Learn, studies how representations 
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made by students enhance teaching and learning.  Ms. Frankel will contribute to the aesthetic 
design of the user experience, to the appearance and manipulability  of mathematical form, and to 
student-centered curriculum design.

Mr. Earl Hamilton has an M.A. in Mathematics from the University  of Washington, and has been 
an math instructor at North Seattle Community College since 1970, during which time he has 
taught every math course offered by  the College.  He also teaches applied engineering 
mathematics as an Engineering instructor.  Mr. Hamilton was supported in team teaching Physics 
and Engineering Calculus by the NSF.  Mr. Hamilton will apply his deep experience in 
mathematics education to the structure and design of curriculum elements, and to the classroom 
evaluation of developed software.

Mr. John Gabriel has been teaching Animation and User-Interaction at LWTC for several years.  
He has extensive experience is the software game industry  and as an illustrator of children's 
books.  Mr. Gabriel is not a consultant, but is on the Project development team at .3 FTE.  He 
will supervise graphics design and animation production.  Mr. Gabriel's students will have 
responsibility for implementing engine software and the user interface.

5.2  RESOURCES

The LWTC student body is extremely diverse, providing a unique environment within which to 
conduct studies of mathematics education.  LWTC is decidedly a teaching institution, its faculty 
are dedicated full-time instructors grounded solidly in practical, job-related skills.  A primary 
advantage is that LWTC students are preparing directly  for entering the job market and for job-
related promotions, rather than seeking a general academic education.  Many are enrolled in ESL 
courses.  LWTC also administers the Lake Washington Technical Academy, a junior/senior year 
high school with an enrollment of 450 students.  The Academy is housed on the LWTC main 
campus, and provides high school students with an opportunity to earn concurrently a high 
school diploma, a vocational certificate, and a two-year college degree.  Although Lake 
Washington students are adults, many have underdeveloped math skills, so that the majority of 
our math courses are designed to cover middle school subjects such as basic arithmetic skills and 
elementary algebra.  This provides a secure environment for exploratory mathematics curriculum 
development, with many students who have a long-term aversion to symbolic mathematics, but 
who can communicate clearly  about their learning needs.

The LWTC Mathematics Department services concrete and abstract math needs for all technical 
departments of the college, including information technology, manufacturing and transportation 
technologies, medical and dental technicians, accounting and business services, and biological 
sciences.  The Math Department also provides math education for Academy high school students, 
adult education students, those completing a certificate of high school graduation, and other 
community  members seeking to improve their understanding of basic and applied mathematics.  
The Math Department participates in a College in the High School Program, which conducts 
math and other advanced classes for college credit in local high schools.
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5.3  ADDITIONAL SUPPORT

Wolfram Research has agreed to donate long-term licenses for Mathematica 6.0 in support of this 
Project.  Project software and tools will be disseminated through the Wolfram Research 
MathWorld and Mathematica 6.0 Demonstration Project web-sites, as well as through the Project 
web-site, conference presentations, and conventional channels of academic publication.

The faculty at LWTC is in contact with numerous elementary and secondary school teachers who 
would be receptive to the introduction of innovative approaches to mathematics education.  The 
idea of visual and spatial mathematics has received enthusiastic responses.  Thus we intend to 
demonstrate the Project software and curriculum materials to local parent groups and high 
schools toward the end of the second Project year.
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Figure 2:  
Group Theoretic 
and Unit-
Ensemble Axioms

integers are unit ensembles

addition by sharing space

multiplication by substitution

+              =

x              =



 
  0    <void> 
  1      •                      9    (((•)))•
  2     (•)                    10    (((•))•)
  3     (•)•                   11    (((•))•)•
  4    ((•))                   12    (((•)•))
  5    ((•))•                  13    (((•)•))•
  6    ((•)•)                  14    (((•)•)•)
  7    ((•)•)•                 15    (((•)•)•)•
  8   (((•)))                  16    ((((•))))

Figure 3: Base-2 Depth-value Numerals for 0 to 16, 
Textual Notation

Figure 4:  Base-2 Depth-value Numerals for 0 to 16, 
Oval Notation

Figure 5:  Reading Base-2 Depth-value Numerals, 
Oval Notation



 0   <void> 
 1   •           10   (•)           100   ((•))
 2   ••          20   (••)          200   ((••))
 3   •••         30   (•••)         300   ((•••))
 4   ••••        40   (••••)        400   ((••••))
 ...
 9   •••••••••   90   (•••••••••)   900   ((•••••••••))
                                       1000   (((•)))

Figure 6:  Base-10 Depth-value Numerals for 0 to 1000, 
Textual Notation

 0   <void> 
 1   1           10   (1)           100   ((1))
 2   2           20   (2)           200   ((2))
 3   3           30   (3)           300   ((3))
 4   4           40   (4)           400   ((4))
 ...
 9   9           90   (9)           900   ((9))
                                       1000   (((1)))

Figure 7:  Base-10 Depth-value Numerals for 0 to 1000, 
with Digit Abbreviations

Figure 8:  
Polynomial and 
Maximally 
Factored Forms of 
the Numeral 3258 



Figure 9:  
Base-2 Counting 
and 
Standardization, 
Textual Notation

Figure 10:  
Base-10 Counting 
and 
Standardization, 
Textual Notation

Figure 11:  Animation Stills for 5 + 7 = 12, Oval Notation



Figure 12:  Animation Stills for 5 x 7 = 35, Oval Notation

Figure 13:  Standardization             Figure 14:  5 + 7 = 12, Blocks

Figure 15:  5 x 7 = 35, Blocks                Figure 16:  7 x 5 = 35, Blocks



Figure 17:  548 x 319 = 174812, Base-10 Block Notation

Figure 18:  Syntactic Varieties of Depth-value Notation
(Textual Delimiters, Blocks, Containers, Trees, Graphs, Rooms, Maps, Paths)



Figure 19:  
Spatial Algebra 
Objects, Zero, 
Addition, Multiplication

Figure 20:  
Spatial Algebra
Sharing Space as 
Addition

Figure 21:  
Spatial Algebra
Touching as 
Multiplication



Figure 22:  
Spatial Algebra
Distribution via Joining 
and Cutting, 

Figure 23: 
Spatial Algebra 
Factoring via Joining 
and Cutting, 



Figure 23:  
Spatial Algebra
Distribution of 
Nested Forms via 
Cutting

Figure 24:  Block Architecture for the Boundary Animation Tool

student interface frontend backend(s)

input

controls

trace

display

parser

animation

sequencer

engine

manager

display

manager

parallel 

engines

for

computing

and 

for

graphics
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