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Although the group theoretic foundations of modern algebra are exceptionally well suited for 
machines that process strings and streams, they do not support human intuition based on 
experiences within physical space.  We wish to explore what Lee Shulman calls the pedagogical 
content knowledge of mathematics, that particular form of mathematics that is most germane to 
its learnability, what makes mathematics comprehensible to a student.

Digital technology has expanded the domain of representation of mathematical concepts from 
typographical strings to spatial forms and to virtual manipulatives.  These systems support 
Bruner's three types of representation for mathematical operations:  enactive, symbolic, and 
iconic [1].  Educators see spatial and physical representations as a possible route to enhance math 
comprehension [2]:

"Physical representations serve as tools for mathematical communication, thought, 
and calculation, allowing personal mathematical ideas to be externalized, shared, 
and preserved....mathematical ideas are enhanced through multiple representations, 
which serve not merely  as illustrations or pedagogical tricks but form a significant 
part of the mathematical content  and serve as a source of mathematical 
reasoning." [3]

There is abundant evidence that interactivity can assist students who are having difficulty 
learning abstract material.  Students find it easier to master algebra if it is made concrete through 
the use of manipulatives [4].  Spatial representations enhance understanding, since expressing 
ideas spatially allows information to be analyzed more effectively by parallel perceptual 
processes than by linear cognitive processes [5][6].  Many different ways of making 
mathematical concepts more concrete have been shown to be effective in learning algebra [7][8].

One direction of growth in tools for teaching mathematics is the use of virtual manipulatives.  A 
virtual manipulative is "an interactive, Web-based visual representation of a dynamic object that 
presents opportunities for constructing mathematical knowledge" [9].  Virtual manipulatives 
provide iconic models that simulate concrete manipulation.  Students can construct meaning by 
using computer input devices to control apparently physical interaction with virtual objects 
through translation, rotation, flipping and other spatial transformations.

However, diversity of representation is generally shunned within formal mathematics:

"...despite the obvious importance of visual images in human cognitive activities, 
visual representation remains a second-class citizen in both the theory and practice 
of mathematics." [10]
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BOUNDARY MATHEMATICS

We have developed boundary mathematics, a family  of spatial representations and relations that 
axiomatize foundational systems, including predicate logic and the arithmetic and algebra of 
numbers [11].  Boundary mathematics provides alternative models of computation and proof that 
incorporate parallelism, visual and physical interaction, and simple algebraic transformation 
based on spatial pattern-matching.  

We propose to develop prototype software for the college algebra curriculum that provides an 
infrastructure for:

✦ comparison of string-based and spatial axiom systems (comparative axiomatics),
✦ research into the educational psychology of spatial mathematics,
✦ development of curricula, and 
✦ comparative evaluation of learning under different axiomatic approaches.

We see these potential benefits: 
✦ An alternative spatial notation may assist  the teaching and learning of some concepts 

by some students, since diagrammatic and three-dimensional formal systems permit 
visual, manipulative and physical interaction with abstract concepts.

✦ A comparative axiomatics may enrich our teaching of mathematical concepts.
✦ Comparison of the errors made in each system can guide research insight into the 

semantic and syntactic sources of math miscomprehension [12].
✦ Spatial axioms can more adequately incorporate parallelism into mathematical 

models and computational algorithms [13].
✦ Spatial representations may help  to bridge the gap between concrete understanding 

and abstract symbol manipulation, by providing tools that more closely align the 
abstract formality of mathematics with our concrete experience of real objects.

Boundary mathematics is not a visual representation of conventional mathematical form, it is 
instead the beginning of a fundamental reconstruction of foundations, using two- and three-
dimensional objects and spaces in place of one-dimensional token-strings to represent formal 
concepts.  There is very little published research on boundary math systems.  Boundary  logic is 
the most studied, beginning with Peirce [14][15][16][17], and followed by  Spencer-Brown [18], 
Kauffman [19][20][21], Varela [22], Bricken [23][24], and Shoup [25].  Kauffman has made 
original contributions to boundary numerics [26][27], as have Bricken [28] and James [29][30].

Our short-term objective for this Phase I proposal is to provide interactive animation software 
that permits calculation and proof via virtual manipulation of spatial forms.  The content will be 
organized in curriculum units that parallel the conventional aspects of the college algebra 
curriculum.  We will develop  the software using rapid prototyping techniques, driven by 
formative evaluation in classrooms.  This software is intended to make boundary mathematics 
systems generally available for detailed exploration and evaluation of their educational, 
psychological, and mathematical potential.
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Toward the Return of Spatial Intuition into Formal Systems

About one hundred years ago, well prior to the advent of digital display technologies, David 
Hilbert exerted his considerable influence to complete the exclusion of diagrams and spatial 
intuition from mathematics and consequently  from the mathematics curriculum [31].  The 
success of the entirely  symbolic approach, followed closely by the rise of the use of string-
processing techniques in digital computers, has led to the expression of higher mathematics 
almost exclusively  in symbolic string languages.

"...for two centuries mathematics has had harsh words to say about visual evidence. 
The French mathematicians around the time of Lagrange got rid of visual arguments 
in favor of the purely verbal-logical (analytic) arguments that they thought more 
secure." [32]

"[A diagram]...is only an heuristic to prompt certain trains of reference:... it is 
dispensable as a proof-theoretic device....proof is a syntactic object consisting only 
of sentences arranged in a finite and inspectable array." [33]

What is missing to date are rigorous diagrammatic and spatial systems for logic and for 
numerics, systems that are inherently  interactive and manipulable while at the same time meeting 
all criteria of symbolic formality.  The boundary mathematics systems that we propose to 
implement meet these criteria.  They are based on visual/interactive axioms, and provide what 
Philip  Davis calls visual theorems:

"...a visual theorem is the graphical or visual output from a computer program - 
usually  one of a family  of such outputs - which the eye organizes into a coherent, 
identifiable whole and which is able to inspire mathematical questions of a 
traditional nature or which contributes in some way to our understanding or 
enrichment of some mathematical or real world situation." [34]

At the turn of the 20th century, C.S. Peirce developed a formal spatial system for predicate logic 
called Existential Graphs [14].  This boundary  logic exemplifies the conceptual and 
representational changes of perspective underlying a comparative axiomatics for logic.  Peirce's 
logic expresses inference by the crossing of a spatial boundary  that separates antecedent from 
consequent.  Assertion is confounded with existence, so that False statements are simply erased.  
Existential Graphs do not have a functional interpretation, since any number of boundaries may 
be crossed by a single act of spatial inference.  A modern algebraic axiomatization of Peirce's 
spatial logic is presented below [11].  These two equations illustrate both the elegance of the 
spatial formulation of propositional calculus, and the quite non-standard use of containers and 
voids to represent logical concepts.  The curly  braces represent any degree of nesting, including 
none.  The axioms of boundary logic:
      (A ( )) =
      A {A B} = A {B}
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Since the approach of boundary mathematics is both unfamiliar and unexplored, we next present 
three spatial mathematical systems that exemplify the potential impact of spatial axiomatization 
on the arithmetic, algebra, and calculus of quantity.  The first  is a simple case of base-1 
arithmetic of rationals (tally  systems) that clearly contrasts differences between string-based and 
spatial conceptualizations.  The second is a spatial algebra that maps addition onto sharing a 
common space, and multiplication onto touching in space.  Finally, we  briefly describe 
elementary "symbolic" differentiation within a spatial calculus of real numbers.

UNIT-ENSEMBLE ARITHMETIC

Unit-ensemble arithmetic is the arithmetic of strokes and tallies that has been in use for over 
30,000 years.  A unit is a mark, stroke, notch, pebble, shell, or other discrete singular distinction.  
Unit marks may be replicated, providing a supply of indistinguishable replicas.  Replicate units 
are intended to be indistinguishable in order to reduce the idea of counting to a foundation of 
one-to-one correspondence between marks and objects.  

Units occupy space in two distinct ways, by sharing a common space and by being partitioned 
into different spaces (that is, by  not sharing a common space).  Spatial groupings of units 
evolved into named quantities in Babylonian, Egyptian, and Roman numerical systems [35][36].

Addition of unit-ensembles consists of placing them into the same space.  Multiplication consists 
of replacing every unit of one ensemble with a replicate of an entire other ensemble.  Unit-
ensembles differ significantly from sets: 

✦ there is no empty ensemble
✦ the parts (members) of an ensemble are all identical 
✦ individual units cannot be differentiated by labeling
✦ there is no distinction between a single unit and an ensemble consisting of a 

single unit part, and 
✦ no unit participates in more than one ensemble.

Over the last several thousand years, humanity  has embraced two types of number systems, 
additive and positional.  Both systems support uniform bases and rules that  map collections of 
digit tokens (i.e. names) onto single names.  Additive systems, exemplified by unit-ensembles, 
follow the Additive Principle that the representation of a sum is the representations of its parts.  
Due to the pragmatic inconvenience of reading and computing with additive systems, they  have 
been relegated to early elementary school.  To the author's knowledge, there has never been a 
rigorous axiomatization of unit-ensembles.  We present  such an axiomatization below, together 
with a depth-value notation that provides the same benefits for unit-ensembles as does positional 
notation for digit strings.  Thus the example system that  follows is both rigorous and efficient, 
while maintaining the Additive Principle.
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Addition of Unit-Ensembles

A sum in a base-1 additive system is represented directly by its parts.  A sum in a group-theoretic 
system is represented by rules that map ordered pairs onto single objects, together with rules that 
permit ordering and grouping to be altered.  The zero place-holder that supports positional 
notation is also the group-theoretic additive identity.

Base-1 additive systems have a substantively different axiomatic structure than is presented by 
the definition of addition in algebra texts.  There is no notion of commutativity or of ordered 
pairs within the concept of ensembles sharing the same space.  Addition is achieved by parallel 
combination of ensembles, using concurrent physical relocation of either or both of the 
ensembles, or it can be achieved simply by cognitive refocussing of perspective.  In both cases 
addition is the consequence of the removal of spatial partitions.

Teacher training texts recognize the importance of additive systems throughout lower elementary 
mathematics.  However, these texts explain the meaning of addition in terms of symbol 
manipulation, not in terms of the spatial intuitions of the Additive Principle.  The actual structure 
of additive systems is redefined to fit the group theoretic structure of token-based systems.  For 
example, commutativity  of unit-addition is achieved by fiat:  

"We may associate 3+5 with putting a set of 3 members in a dish, and then putting 
a set of 5 members in a dish to form the union of the sets.  We associate 5+3 with 
putting the 5 set in a dish and then putting in the 3 set." [37]

Unit-ensemble addition, however, does not  require or incorporate an external dish nor a temporal 
ordering of actions.  When two unit-ensembles share the same table, children can add them by 
pushing the piles together concurrently.  One ensemble simply  does not have temporal or 
positional precedence over another.  The same structure of concurrency applies to parallel 
addition of three or more ensembles:  arity of the operation is simply not a relevant concept.

Formal Model of Unit-Ensemble Arithmetic

The theory  of unit-ensembles is an algebraic theory  based on fusion as defined by mereology, 
and on substitution as defined by the theory  of equivalence relations.

  • is an ensemble     (interpreted as +1)
  ◊ is an ensemble     (interpreted as –1)
  if A and B are ensembles then so is A B (interpreted as addition)
  no others.

The space shared by ensembles A and B is non-metric and of arbitrary dimension.  A consequence 
is that  forms sharing a space are independent of one another.  It is the communal space that 
defines a sum. 
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The two unit rules that govern the construction of ensembles are:

   • • ≠ •   Cardinality
   • ◊ =     Annihilation 

Annihilation results in void, there is no explicit  zero.  There are no axioms that specify  ordering 
or grouping.  The additive inverse is supplanted by a first-class "negative" unit, so that 
subtraction is a matter of naming rather than an asymmetrical operation.

Addition/subtraction can be understood as the mereological law of fusion.  Mereology is the 
formal study wholes and parts of wholes. Conventional mereology does not embrace an empty 
object, since the empty whole would have no parts.  In general, an ensemble is a mereological 
whole with indistinguishable parts that do not support overlap (intersection in set theory).  
Fusion is the removal of partitions between ensembles.  It is a variary, flat operator that takes an 
arbitrary number of arguments and that does not support nested application.

     fuse(•••|••)  =  •••••
     fuse(A|...|Z) = A...Z
      "fuse(A|fuse(B|fuse(C|D)))" = fuse(A|B|C|D) = ABCD

Conventional multiplication can be interpreted as substitution of whole ensembles for units.  The 
component units of the ensemble being multiplied are identified by pattern-matching rather than 
by counting.  In pattern substitution, all occurrences of a for-form within an in-form are replaced 
in parallel by a put-form:

substitute(<put-form>, <for-form>, <in-form>)  ==>  <new-in-form>

This reads:  Concurrently substitute the pattern <put-form> for each literal occurrence of the 
pattern <for-form> within the pattern environment defined by <in-form>.  To introduce a more 
condensed notation:

substitute(A, C, E)  =notation=  [A C E]

Substitution is a property of algebraic equality  that follows the rules presented below in the 
Rules of Substitution Figure.  The interpretation of substitution-as-multiplication for unit 
arithmetic is:

[A • E]  ==  E*A                 [A ◊ E]  ==  –(E*A)

Substitution of ensemble A for every • (and ◊) in ensemble E multiplies the cardinality of E by 
the cardinality of A.  The sign calculus of multiplication is maintained through adjustment of unit 
types:  substitution ignores type differences, the type of the resulting substitution is toggled (the 
∆ operator) when the type of the for-form differs from that of the in-form.
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The interpretation of substitution-as-multiplication is then defined by two structural constraints:  
substitution-symmetry between put-forms and in-forms (commutativity), and type-asymmetry 
between for-forms and in-forms (sign calculus).

   [A • E] = [E • A]  put/in symmetry 
   [A ◊ •] = ∆A   for/in type asymmetry

The Rules of Substitution Figure also includes a simple proof (the multiplicative inverse), to 
illustrate the fluidity  of substitution sequences.  Generally, substitution exhibits a type of super-
associativity: any form in an odd position can serve as either the put-form or the in-form, any 
form in an even position can serve as the for-form.  That is, substitution-as-multiplication is 
strongly confluent. Finally, the Comparative Axioms Figure summarizes an axiomatic basis of 
unit-ensemble arithmetic and compares it to the conventional axiomatization of whole numbers. 

Replacing units by an ensemble defines multiplication; replacing ensembles by  units defines 
division.  Division calls for substitution of a single unit for every entire for-form C that  can be 
partitioned out of the in-form E.  The non-commutativity  of division is incorporated within the 
substitution relationship between the for-form and the in-form.  The interpretation of 
substitution-as-division for unit arithmetic is:

[• C E]  ==   E/C                 [◊ C E]  ==  –(E/C)

DEPTH-VALUE NOTATION

Unit-ensembles can be rewritten into an efficient depth-value notation by  a standardization 
process that results in a spatial form with minimal structure.  The first sixteen base-2 numerals in 
the resulting container-based boundary  number system are presented below.  The standardization 
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process consists of two rules, Join Units (interpreted as increasing the power of the base) and 
Join Boundaries (interpreted as distribution).  For clearer presentation, the rules in the Depth-
value Notation Figure are in base-2 rather than base-10.  They are recorded in a textual notation 
that permits recording boundary numbers on typographical lines.  The Maximal Factored Form 
Figure illustrates another way to interpret  the notation of boundary numbers.  Conventional 
numerals are in polynomial form, boundary numerals are in maximally  factored form.

In contrast to the typographical representation that uses delimiters as implicit spatial boundaries, 
the animation sequence below shows 5x7 in a graph notation obtained by  extruding the textual 
delimiters downward.  The unit is represented by a bar at the bottom of the graph.

And for comparison, the animation sequence at the bottom of the page also shows 5x7, this time 
in the container-based notation.  The fourth frame, after the form of 7 is substituted into the form 
of 5, is equal to 35. The following frames show the dynamic standardization process for containers.

The Spatial Arithmetic Figure on the next page shows boundary numerals represented in a 
fourth spatial notation, as stacks of blocks.  Although this display is two-dimensional on the 
page, it is potentially  three-dimensional in physical space, and thus can be physically 
manipulated.  The standardization rules for depth-value notation become the physical actions of 
constructing stacks (doubling in base-2) and pushing stacks together (distribution).
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✦ The Demonstration: 5+7 Figure shows adding followed by standardization.  
Addition itself requires no physical effort.

✦ The Demonstration: 5x7 Figure shows multiplication followed by standardization.  
Multiplication itself substitutes a separate replica of 7 for each of the two units of 5.

✦ The Block Multiply (base-10) Figure shows multiplication of 319 by 548.

In base-10 spatial multiplication, each digit M in 319 is replaced by M replicas of 548.  
Recursively, M replicas of 548 are generated by  replacing each digit  N in 548 by the base-10 form 
of MxN.  Thus, for example, 3x5 replaces the 5 digit in 548 by the block representation of 15, 
which is written as (1)5 using textual delimiters.  Naturally, in base-10, the conventional digit 
addition and multiplication facts (the plus and times tables) are still required to convert between 
symbolic numerals.  Due to the non-existence of an explicit zero, in base-2 there is only  one digit 
fact for addition, in hybrid notation:  1+1 = (1).  There are no digit facts for multiplication.

A DIVERSITY OF SPATIAL NOTATIONS

Spatial forms support a diversity of notations, each derived from the others via spatial 
transformation [24].  These notations include the textual delimiters, containers, graphs, and 
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stacks of blocks as shown above, as well as 
varieties of other one-, two- and three-
dimensional forms such as trees, maps, 
rooms, and paths.  The Syntactic Varieties 
(diagrammatic) Figure below presents some 
of these spatial notations, together with the 
transformation paths between them.

SPATIAL ALGEBRA

Bricken [28] and Winn and Bricken [38] map 
abstract algebraic concepts onto properties of 
space, to construct  a different type of boundary mathematics.  Addition is represented as sharing the 
same space without touching, while multiplication is represented by stacks of algebraic objects in 
physical contact.  The Spatial Algebra Facts Figure illustrates instances of objects and operations 
within this spatial algebra.  The Spatial Algebra Addition Figure shows that conventional 
additive concepts of associativity, commutativity, and zero become (irrelevant and misleading) 
metric distinctions in a non-metric shared space.  The Spatial Algebra Distribution Figure on the 
following page shows that conventional symbolic distribution is a form of contextual replication 
achieved by slicing and joining a named block.  Finally, the Distribution in Depth Figure 
illustrates that the apparently  complex nesting of factored symbolic forms can be converted into 
the equivalent polynomial form by  a single parallel act of slicing stacks of spatial objects. 

JAMES CALCULUS

In his thesis under W. Bricken, Jeff James [30] uses three types of spatial containers/boundaries 
to represent all varieties of numbers (integers, rationals, irrationals, imaginaries).  Several unique 
numerical concepts arise from this approach.  We present examples of the generalized inverse, 
which unifies subtraction, division, roots, and logarithms into a single concept, differentiated by 
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spatial nesting rather than by algebraic operation.  The James Calculus Forms Figure on the net 
page shows these boundaries, together with their conventional interpretation.

The round container, ( ), raises e to the power of its contents.  When it is empty, the value of the 
boundary is e^0, which can be interpreted as the object one.  The square container, [ ], takes the 
logarithm of its contents.  An empty square container has the value of ln 0, which is negative 
infinity.  The angle container, < >, converts its contents to a generalized inverse.  An empty angle 
container has the value –0.  Thus, the set of empty containers ground arithmetic in its three 
fundamental values:  0, 1, and infinity.

The James Calculus Forms Figure also shows the block representation of each of the 
conventional arithmetic operators (sum, difference, product, quotient, power and root).  Note that 
the angle container represents all three inverses via its position in a stack.  Care should be taken 
in reading these forms, since the notation in the figures is hybrid;  stacking and containment 
mean the same thing.  Naturally, the boundary containment and stacking notations can be 
converted into any of the other spatial forms of representation presented in the Syntactic 
Varieties (diagrammatic) Figure. We emphasize that these notational choices are at  this time 
rather arbitrary, pending research into their relative effectiveness.
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The James Calculus Axioms Figure shows the three axioms that govern computation.  The 
figure also includes the axioms of James calculus differentiation, one axiom for each form of 
containment, including void and sharing space.  The derivative dx is represented by containing x 
in a cloud.  All James forms have a direct interpretation in standard notations, even during 
transformation steps, however the routes that James forms take to achieve computation are 
generally  very unusual.  Without detailed discussion, we present spatial proofs of the product and 
quotient rules for symbolic differentiation in the d(Product) Proof Figure and the d(Quotient) 
Proof Figure.  The quotient rule proof incorporates two theorems about the inverse boundary:  

<A><B> = <A B>                 (A [<B>]) = <(A [B])>

PLAN OF WORK

The software will provide open access to the axiom systems presented in this proposal, and will 
be designed to facilitate educational research and comparative axiomatics.  All systems will be 
prototyped within the Mathematica 6.0 computational and programming environment.  The 
developed prototype will support stepwise solution of both computational problems and spatial 
proofs, and will output performance statistics and raw data for any input problem.  All data will 
be collected in the Mathematica environment, so that statistical analysis tools would be 
immediately available.  The first iteration should take about two or three months.  This would 
leave 6-9 months to develop and refine the display and interaction of the tool.  Development will 
include three cycles of rapid prototype implementation, each with maximal exposure to student 
feedback.  We are currently installing a Math Lab (capacity ~30) which will support lab-oriented 
math classes at  LWTC, and incidentally support formative evaluation of the boundary  math 
software.  For Year I, we expect to constrain the usage of the developmental software to students 
within the multimedia and animation programs, and to volunteer students from math classes.

Debugging can be concluded during Autumn of Year II, leaving two quarters to develop 
structured curricula materials.  By the end of Year I, we should be able to present the software 
prototype at relevant conferences.  By Spring of Year II, we should be ready  to distribute fully 
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documented prototype systems.  We will disseminate documentation and other information on 
the availability  and utility  of the tools during the last quarter of the funded project.

Development Schedule

 Year I  Autumn: Iteration 1:  rapid prototyping of engines
  Winter:  display design
  Spring:  display/engine initial integration
  Summer: Iteration 2:  rebuild system, write full documentation
 Year II Autumn: test and refine Iteration 2
  Winter:  Iteration 3:  classroom exposure
  Spring:  classroom testing, interaction refinement
  Summer:  package software tool, final reporting

Software Architecture

 System capabilities:
  interactive spatial display with animation of transformations
  conventional and boundary input/output languages
  convenient control over substitution-rules and transformation steps
  interpretation at all transformation steps
  lemma stashing
 User and interface functions:
  select input and output languages
  allocate engine processors (parallelism)
  select representational forms (BM interaction "languages")
   unit-ensembles, enclosures, blocks, graphs, strings
  input any valid expression to construct the selected form
  apply any valid transform as an interactive animation
  construct pattern lemmas (theorems)
  automated solve, with control over display content and timing.
 Support for educational research:
  structured lower division curriculum for each domain
  cross-linking to traditional curricula

QUALIFICATIONS OF THE PRINCIPAL INVESTIGATOR

William Bricken has a Ph.D. in Mathematical Methods of Educational Research from the 
Stanford School of Education, with coursework focused on Artificial Intelligence and Statistical 
Analysis.  Prior to that he was cofounder and Principal of one of the first innovative primary 
schools in Australia, and an Assistant Professor of Social Psychology and Education at Monash 
Teacher's College, Larnook. His dissertation empirically  validated the unique nature of errors 
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made by  students learning algebra.  Using a range of experimental techniques (multivariate 
experiment, exploratory factor analysis, protocol analysis, clinical case study, historical review, 
and direct remediation), he demonstrated that symbolic errors made by novices are neither 
random nor predictable, rather they  are context sensitive, situated, and unique [12].

Dr. Bricken has designed and implemented leading-edge world-class prototype software for 
intelligent interface, statistical analysis, distributed logic, high-performance inference engines, 
virtual reality, semiconductor design, optimization, partitioning and layout.  This work was 
conducted primarily in commercial research labs, including seven years at Paul Allen's Interval 
Research Corporation in Palo Alto, California.  In 1988 he founded and was the Director of the 
Autodesk Research Lab.  He co-founded and was the Principal Scientist of the Human Interface 
Research Lab at the University of Washington, Seattle from 1990 to 1993, pioneering research 
and development of immersive virtual reality  software for construction, maintenance, and 
interaction in arbitrary virtual environments [39][40].  He has served as a Research Associate 
Professor of Education at UW, and worked for five years as an Assistant Professor of Software 
Engineering and Computer Science in the Seattle University  Masters Program in Software 
Engineering.  He is currently on the Mathematics faculty at Lake Washington Technical College.

With the help of several others, including Dr. Louis Kauffman (consultant for this project), Dr. 
Bricken has developed, implemented, and applied most of the known algorithmic techniques of 
boundary mathematics.  Between 1984-1989, he worked on boundary math implementations for 
advanced logic processing applications.  From 1993-2000, he developed applications for 
predicate calculus, SAT-solving, combinatorial logic optimization, and semiconductor layout 
optimization.  Between 2001-2006, he developed applications for timing and area optimization 
of netlists, and refined earlier work on the boundary arithmetic and algebra of numbers.  Dr. 
Bricken has not received NSF funding support over the last  five years.

MATHEMATICS AT LAKE WASHINGTON TECHNICAL COLLEGE

The LWTC student body is extremely diverse, providing a unique environment within which to 
conduct studies of mathematics education.  A primary advantage is that  LWTC students are 
preparing directly for entering the job market rather than seeking a general academic education.  
Many are enrolled in ESL courses. All technical courses at LWTC offer practical, job-related 
learning experiences that are needed and in demand by industry.  Most students enroll in courses 
that operate on an open-entry, open-exit system.  The LWTC Mathematics Department services 
concrete and abstract math needs for all technical departments of the college, including 
information technology, manufacturing and transportation technologies, medical and dental 
technicians, accounting and business services, and biological sciences.  LWTC also administers 
the Lake Washington Technical Academy, a junior/senior year high school with an enrollment of 
450 students.  The Academy is housed on the LWTC main campus, and provides high school 
students with the opportunity to earn concurrently a high school diploma, a vocational certificate, 
and a two-year college degree. 
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ADDITIONAL SUPPORT FOR THE PROPOSAL

Wolfram Research has agreed to donate three licenses for Mathematica 6.0 in support of this 
project.  Project software and tools will be disseminated through the Wolfram Research 
MathWorld and Mathematica 6.0 Demonstration Project web-sites, as well as through the project 
web-site, conference presentations, and conventional channels of academic publication.

LONG TERM PROSPECTS

We have taken care to describe three systems of boundary numerics, showing applicability  for 
arithmetic, algebra, and calculus.  The uniqueness and simplicity  of these spatial math systems 
suggest that investment in a preliminary examination for math education is worthwhile.

This Phase I proposal does not include a summative evaluation of the pedagogical effectiveness 
of boundary  mathematics.  This non-standard approach is intended to finesse the profound issues 
associated with the very idea that algebra can be constructed without positional notation, without 
group theory, without set  theory, and without Peano-like axioms based in recursive functions.  
The soundness and completeness of the systems in this proposal can be established by  simple 
mappings to conventional systems.  We are not proposing mathematical research, since from 
experience we have found that such research would distract from the essentially pedagogical 
goals of the proposal.  Our immediate objective is simply to provide tools that facilitate a 
thorough evaluation of boundary numerics for mathematics education.  The intermediate-range 
objective is to use these tools for structured study, experimentation, and educational research.

Speculation on potential long-term impact is justified by  the innovative characteristics of the 
proposed work.  In particular, we will be examining a new axiomatic approach to the foundations 
of mathematics.  Rigorous formal mathematical systems that are also based rigorously  on innate 
human spatial capabilities may provide a grounding for mathematics education reform.  Of 
course, such sweeping change must address the inertia of existing math education practices.  
There is no apparently easy  interface between typographical and digital tools.  The suppression 
of Peirce's Existential Graphs is ample evidence that positive results alone do not change 
established notational habits.  We share Kempe's goal: "...to separate the necessary matter of 
exact or mathematical thought from the accidental clothing -- geometrical, algebraical, logical, 
etc." [41].  Thus the long-term vision, of which this proposal is literally a first step, is to integrate 
different representations under singular abstractions.  During the course of this very  long process, 
we hope that the benefits of spatial mathematics can be demonstrated in terms of improved 
mathematics pedagogy, a greater variety of tools for communication of mathematical ideas, 
better service in the education of the digital generation including concrete, visual, tactile and 
experiential learners and those who are disadvantaged by a purely symbolic presentation of 
content, and a growth of mathematical open-mindedness through the study of comparative 
axiomatics.
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