
Propositional Logic

What is Logic?

 the laws of thought       (Boole, c1850, mathematics)
 principles of right reasoning    (religion)
 methodology of valid argumentation  (law)
 study of grammar      (linguistics)
 stages of cognitive development   (Piaget, developmental psychology)
 truths based solely on the meaning of the terms  (math)
 the most abstract and general description of reality(philosophy)
 force of reason rather than dogma   (politics)
 science or history of the human mind  (Encyclopedia Britannica, 1771)
 technique for design of    (computer science)
  circuitry
  program control
  process description
  structured programming
  deductive computation
  programming connectivity
  decision making in algorithms

Representation

 Lexicon:   the typographical forms which represent statements

Syntax:   the rules of composition, making forms out of objects and functions. 
Atomic objects are propositions, functions and relations.  
Sentences are atomic objects + logical connectives.

 Semantics:   the rules of meaning, connecting statements to values

Boolean Algebra = Propositional Logic

Boolean algebra is the algebraic approach (match and substitute using equations),  and
Propositional calculus is the logical approach (inference using conjunction of facts) to the 
same mathematical structure, even though the fields developed independently, and don’t talk to 
each other.

 Both address the easiest and simplest useful formal system, 
     which poses the hardest and most important technical issues for computation.
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Propositional Calculus

The simplest formal system with great utility.  A proposition is the simplest complete unit of 
thought, any statement or decision with a Yes/No or True/False result.

 Values:   {True, False}

 Objects:   statements (propositions) that are either True or False  {p, q, r, s...}

 Operators:   connectives   {not, or, and, if-then, if-and-only-if}

Constructing Sentences

The logical connectives allow construction of compound ideas with several propositions. 

  For example:    if (A and B) then (C or (not D))

The truth value of a compound sentence is the truth value of its component parts.

  A and B   isTrue exactly when both A isTrue and B isTrue.

  not A    isTrue exactly when A is False.

  A or B  isTrue exactly when either A isTrue or B isTrue.

  A implies B  isTrue exactly when either (not A) isTrue or B isTrue

  A iff B    isTrue exactly when either A and B are both True
       or A and B are both False

There are 16 unique Boolean connectives of two variables, but only five are common {and, or, not, 
if-then, if-and-only-if}.  All connectives can be expressed using only one {nor}.

Tautologies, Contradictions, and Indeterminate Sentences

 Sentences that are always true regardless of the values of the atoms are called 
tautologies.  A tautology conveys no information about its components.

 Sentences that are always false are contradictions.

 Sentences which do depend on (at least one of) their component atoms 
  are indeterminate. 
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History of Logic

Ancient Party Games

Logic has confused, perplexed, and challenged philosophers and scholars from the beginning of 
culture.  It was built into our language (and presumably our thinking) from the beginning of 
language.  However, philosophers did not (and still do not) understand the subtleties of the simple 
words 

  {true, false, and, or, not, if, equal, some, all, therefore}

 Some men are barbarians.
	 Some barbarians are kind.
	 Thus, some men are kind.  Is this a proper conclusion?

 If it is raining, then I am happy. Is this necessarily True when I am in the rain?
 If I am dead, then I am happy  Is this "if" the same as the above "if"?

 He or me.     Are there two types of "or"?
 Watch or listen.     (exclusive and inclusive)

 If you say that you are lying
    and that is the truth,

	 	 then you are lying.  What do paradoxes mean?  (Cicero) 

 Is.
 Not is.     Does “not not” mean nothing at all?
 Not not is.

Aristotle

Aristotle was the first person to classify declarative language.  He used three polar categories:

  single vs compound  Socrates is happy vs Man is happy.
  universal vs particular  Everyone vs someone.
  affirm vs deny  Everyone vs no one.
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The Syllogism

According to Aristotle, the fundamental unit of reasoning is the syllogism.  He defined it as

"discussion in which, when things are posited, other things necessarily follow."

   All men are mortal.
	 	 	 Socrates is a man.
	 	 	 Thus, Socrates is mortal.

Syllogistic logic was developed into the first ever Axiomatic System with variables.

Scholastic Logic

The syllogism survived the Dark Ages in the form of the rules of theological debate.  During the 
13th century, Pope John XXI wrote a book on logic which dominated logical thought for the next 
300 years.  He observed that:

  Nouns and Verbs    form Subjects and Predicates

These subjects and predicates  are CATEGORMATA;  they have a referent in the real world.  
The logical connectives are  SYNCATEGOREMATA;  they are without a referent in the real world.

 Theological debates noticed the use/mention distinction:

  Man is mortal.        versus  Man is a noun.

 and the paradoxes generated by the absence of articles in Latin:

  The man is mortal.       versus  Man is mortal.

Meanwhile in the Non-European World 

In 10th century Baghdad,  the Nestorian Abu Bishr Matta ibn Yunus refined Aristotle's logic, but his 
work was lost in the passage of time. 

In India, logic was hotly debated in a form which differed only slightly from the syllogism: 

  The mountain is fiery	   that is the Proposition 
  Because smoky    that is the Reason 
  All that is smoky is fiery  that is the Example 
  So here     that is the Application 
  Therefore it is so.   that is the Conclusion 
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The use of negation caused debate:   

 Why should the same words in different order have different meanings? 

  He shall-not look.
	 He shall not-look.

	 	 Not-he shall look. 

 "Absence of constant absence of pot is essentially identical with pot"  
-- Mathuranatha  c. 1700 

In the West, Logic Evolved into Formal Systems 

 Renaissance:  Logic was ignored  (experience was in vogue) 

 Enlightenment: Leibniz  sought a Universal Calculus of Reason, 
     and studied Indistinguishability. 

 1850 Boole:  expressed sentences and noun expressions as algebra 
  
   x + y = y + x    associativity of OR 
   x (y + z) = x y + x z   distribution of AND over OR 
   if x = y then x + z = y + z  algebraic substitution 

 1880 Venn:  logical diagrams 
 1885 Peirce: truth tables 
 1900 Russell: logical foundations of mathematics 
 1920 Post:  metalogic  (just what are we doing?) 

Crisis in the Twentieth Century

Oh No!  There is no consistency in mathematics, there are paradoxes in every system.

 Logicism   Bertrand Russell Mathematics is identical to logic.  
       (We'll patch the holes.)

 Intuitionism   L.E. Brouwer   Mathematics presupposes concepts.  
   Concepts rest on natural numbers.

      (We'll construct what is known, and not admit infinity.)

 Formalism   David Hilbert  Mathematics is a set of syntactic transformations.
   (We'll refuse to interpret it.)
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Logical Tautologies

 1. P ⋁ ¬P       excluded middle

 2. ¬(P ⋀ ¬P)      noncontradiction

 3. ¬¬P = P       double negation

 4. (P ⋀ Q) → P      simplification

 5. P → (P ⋁ Q)      simplification

 6. (P ⋀ P) = P      idempotence

 7. (P ⋁ P) = P      idempotence

 8. (P ⋀ (P → Q)) → Q     modus ponens

 9. ((P → Q) ⋀ (Q → R)) → (P → R)  syllogism

10. (P → Q) = (¬Q → ¬P)    contraposition

11. ((P → Q) ⋀ ¬Q) → ¬P    modus tollens

12. ((P ⋁ Q) ⋀ ¬P) → Q     disjunctive syllogism

13. (P → Q) = (¬P ⋁ Q)     conditional disjunction

14. (¬P → (Q ⋀ ¬Q)) → P    reductio ad absurdum

15. (((P → R) ⋀ (Q → S)) ⋀ (P ⋁ Q)) → (R ⋁ S) dilemma

16. (P → (Q → R)) = ((P ⋀ Q) → R)  exportation

17. (P = Q) = ((P → Q) ⋀ (Q → P))  biconditional

18. ¬(P ⋁ Q) = (¬P ⋀ ¬Q)    DeMorgan

19. ¬(P ⋀ Q) = (¬P ⋁ ¬Q)    DeMorgan

20. ¬(P → Q) = (P ⋀ ¬Q)    negation of conditional
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21. ¬(P = Q) = (¬P = Q)    negation of biconditional

22. (P ⋁ Q) = (Q ⋁ P)     commutativity

23. (P ⋀ Q) = (Q ⋀ P)     commutativity

24. (P = Q) = (Q = P)     commutativity

25. ((P ⋁ Q) ⋁ R) = (P ⋁ (Q ⋁ R))  associativity

26. ((P ⋀ Q) ⋀ R) = (P ⋀ (Q ⋀ R))  associativity

27. ((P = Q) = R) = (P = (Q = R))  associativity

28. (P ⋀ (Q ⋁ R)) = ((P ⋀ Q) ⋁ (P ⋀ R)) distribution

29. (P ⋁ (Q ⋀ R)) = ((P ⋁ Q) ⋀ (P ⋁ R)) distribution

30. (P → (Q ⋁ R)) = ((P → Q) ⋁ (P → R)) distribution

31. (P → (Q ⋀ R)) = ((P → Q) ⋀ (P → R)) distribution

32. ((P ⋁ Q) → R) = ((P → R) ⋀ (Q → R)) disjunction/conditional

33. ((P ⋀ Q) → R) = ((P → R) ⋁ (Q → R)) conjunction/conditional

34. (P → Q) → ((R ⋀ P) → (R ⋀ Q))  factorization

35. (P → Q) → ((R ⋁ P) → (R ⋁ Q))  summation
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Logical Proof

Ways of Expressing the Mathematics of Logic

 Boolean connectives   (and, or, not, if-then, if-and-only-if)
 function tables   (truth tables)
 Boolean algebra
 Venn diagrams
 switching circuits
 transistor arrays   (silicon chips)
 Boolean lattice
 Boolean cubes  (blocks in space)
 matrix logic
 boundary logic

Ways of Computing the Mathematics of Logic

 exhaustive listing of possibilities (truth tables)
 deduction/inference   (Boolean connectives)
 algebra    (Boolean algebra)
 spatial overlap   (Venn diagrams)
 current through transistors  (circuitry)
 partial orderings   (lattices)
 spatial conjunction   (cubes)
 operators    (matrix logic)
 containment    (boundary logic)

Mechanisms of Proof

 Truth tables
 Natural deduction
 Resolution    (not covered in class)
 Boundary logic
 Induction

Truth Table Analysis

Examining all the possibilities is exponential:  there are 2n cases to evaluate for n variables even in 
the simplest case of propositional logic.  However, lookup tables are a brute force method that is 
easy to understand.  The technique is to list all possible combinations of values for each variable, 
and use simple definitions of the logical connectives to evaluate compound sub-expressions.
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 Example: (P ⋀ Q) → (R = ¬S)

 P  Q  R  S      ¬S     P ⋀ Q     R = ¬S        P⋀Q → R=¬S

 T  T  T  T  F  T  F   F
 T  T  T  F  T  T  T   T
 T  T  F  T  F  T  T   T
 T  T  F  F  T  T  F   F
 T  F  T  T  F  F  F   T
 T  F  T  F  T  F  T   T
 T  F  F  T  F  F  T   T
 T  F  F  F  T  F  F   T
 F  T  T  T  F  F  F   T
 F  T  T  F  T  F  T   T
 F  T  F  T  F  F  T   T
 F  T  F  F  T  F  F   T
 F  F  T  T  F  F  F   T
 F  F  T  F  T  F  T   T
 F  F  F  T  F  F  T   T
 F  F  F  F  T  F  F   T

Deduction

The rules of inference, or natural deduction, apply at three different levels of abstraction:  
individual propositions,  individual sentences, and collections of sentences.   Modus Ponens serves 
as an example.

  Atoms:  (p ⋀ (p → q)) → q
  Sentences:  (A ⋀ (A → B)) → B
  Sets of sentences: ({A,B...} ⋀ ({A,B...} → {C,D...})) → {C,D...}

Natural Deduction Proof Techniques

Natural deduction evolved from natural language and from human intuition, so it is relatively easy to 
understand.  It is very difficult to find the right rules to apply at the right time.  Humankind has had 
an extremely  difficult time coming to understand logic, and logic itself is still undergoing extreme 
revision.    Below,  |= means "this follows logically":

 Modus Ponens:      A ⋀ (A → B)  |=   B

 Modus Tollens:    ¬B ⋀ (A → B)  |=  ¬A

 Dilemma:    (¬A ⋁ B)⋀(A → C)⋀(B → C) |=   C

 Contradiction:    (A → B) ⋀ ¬B  |=  ¬A
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Natural Deduction Example

Premise 1: If he is lying, then (if we can't find the gun, then he'll get away).
Premise 2: If he gets away, 

then (if he is drunk or not careful, then we can find the gun).
Premise 3 It is not the case that (if he has a car, then we can find the gun).
Conclusion: It is not the case that he is both lying and drunk.

Encode the propositions as letters: 

 L = he is lying  G = we can find the gun A = he will get away
 D = he is drunk C = he is careful  H = he has a car

  Premise 1:  if  L  then  (if  (not  G)  A)
  Premise 2:  if  A  then  (if  (D  or  not  C) then G)
  Premise 3:  not (if  H  then  G)
  Conclusion:  not (L and D)

Encode the propositions using logical connectives:

  P1:  L → (¬G →  A)
  P2:  A → ((D ⋁ ¬C) → G)
  P3:  ¬(H → G)
  C:  ¬(L ⋀ D)

Figure out a good proof strategy.  This step is the source of difficulty in natural deduction.  In the 
Contradiction Strategy, we assume the negation of the conclusion and plan to show a contradiction: 

 1. (L  ⋀  D)  contradiction of the conclusion
 2. L   simplification of 1
 3. D   simplification of 1
 4. ¬G  →  A  modus ponens with 2 and  P1
 5. ¬(¬H  ⋁  G)  rewrite P3 with conditional exchange:    X → Y  =  ¬X  ⋁  Y
 6. ¬(¬H  ⋁  ¬¬G) double negation of part of 5
 7. H  ⋀  ¬G  rewrite 6 with DeMorgan:        ¬(¬X ⋁ ¬Y)  =  X  ⋀  Y
 8. ¬G   simplification of 8
 9. A   modus ponens with 8 and 4
 10. ((D  ⋁  ¬C) → G) modus ponens with 9 and P2
 11. (D  ⋁  ¬C)  addition of ¬C to 3
 12. G   modus ponens with 11 and 10
 13. G  ⋀  ¬G  conjunction of 8 and 12
 14. ¬(L  ⋀  D)  steps 1 to 13 have created a contradiction:  G ⋀ ¬G = False, 
     so the negation of the conclusion on line 1 is False.  Therefore 
     the conclusion must be True.
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Boundary Logic
Advances in knowledge must necessarily appear to be unintelligible before their discovery and 
simple or obvious after their discovery.

Challenge

Computation and logic (Boolean algebra) are universally built on binary representations.

 0 1   TrueFalse   Yes No

Is there a simpler approach?  Can logic be expressed in a unary notation?

Boundary Mathematics

The use of delimiting tokens, or containers, as both constants and functions.  Here is an (pure 
math) example:

    Common boundaries cancel.

                                        =      <void>

                                        =    

Concepts

 Boundary Token   an enclosure
 Representational Space  the bounded space

 Two Voids

  Absolute void  that which cannot be referred to without contradiction
  Relative void  emptiness enclosed within a boundary
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Constructing a Distinction

A Universal Distinction is first boundary we agree upon.  In forming a first distinction, we 
construct three things simultaneously:

a formal space (inside)
a token representing the distinction (boundary)
a context from which to interpret the distinction (outside)

                                        token for the
                                first distinction
  interpretative 
     context
   of the token                               
  
  
         

Calling

 Focus your attention on the outside, where you see the mark (the usual viewing point).
 Call the boundary that you see a “symbol”.

       ==>

	 	     To call is to maintain perspective.

Calling is the rule of invariance.  It is also is the rule of naming.  Thus the relationship between an 
object and its name is invariant.

Crossing

 Focus your attention on the inside of a mark, where there is empty space.
 Cross the boundary to the outside.  Now you can see a mark.

          <void>    ==>  
      

          To cross is to change perspective.

Crossing is the rule of variance.  It is also a process of changing.
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The Arithmetic of Boundaries

  CALLING   ( ) ( )  =  ( )

  CROSSING   ( ( ) )  =  

Moving to Algebra

The ground values of boundary logic are one token { ( ) } and the absence of that token.  
If an equation holds for all ground values, it holds in general.  Using this, we can construct algebraic 
truths from the cases of the arithmetic:

     DOMINION   INVOLUTION   PERVASION

 ( ) ( ) = ( )  (( ( ) )) = ( ) ( ( ) ) ( ) = ( )
 ( )     = ( )  ((     )) =   (     )     = ( )
thus
 ( )  A  = ( )  ((  A  )) =  A (  A  )  A  = ( )

Boundary Logic Rules of Transformation

The transformation axioms of boundary logic are:

 Dominion	 	 (the halting condition, when to stop)

  (  )  A  =  (  )    REIFY   <==>  ABSORB

 Involution  (double negation, how to remove excess boundaries)

      ((A))  =  A     ENFOLD  <==>  CLARIFY

 Pervasion  (how to remove excess replications of variables)

  A (A B)  =  A (B)    INSERT  <==>  EXTRACT

Each axiom suggests the same strategy for computation:    erase irrelevant structure 

Algebra provides the useful tool of substitution.   Any transform can be applied at any time and at 
any place in the expression without changing the value of the expression.  Thus, any transformation 
path does not change the value of an expression.  It doesn’t matter how you get to a simpler 
expression (an answer).  Some paths may be longer and less efficient, but all lead to equivalent 
results.
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Boundary Logic

Boundary logic uses a spatial representation of the logical connectives.  Since CALLING provides an 
object-oriented interpretation, and CROSSING provides a process-oriented interpretation of the 
same mark, boundary forms can be evaluated using either an algebraic (match and substitute) 
approach or a functional (input converted to output) process.

Representation of logic and proof in spatial boundaries is new, and quite unfamiliar.  Boundary logic 
is not based on language or on typographical strings, nor is it based on sequential steps.  Boundary 
techniques are inherently parallel and positional.  The meaning, or interpretation,  of a boundary 
form depends on where the observer is situated.  From the outside, boundaries are objects.  From 
the inside, you cross a boundary to get to the outside;  boundaries then are processes.  This 
dramatically different approach (that is, permitting the observer to be an operator in the system) 
does not change the logical consequences or the deductive validity of a logical process.

Spatial representations do not have the concepts of associativity and commutativity.  The base 
case is no representation at all, that is, the void has meaning in boundary logic.  Simplification of 
logical expressions occurs by erasure of irrelevancies rather than by accumulation of facts.

Boundary Logic Representation

 LOGIC   BOUNDARY  COMMENTS

 False   <void>  No representation.  Note:  (( )) = <void>

 True   (  )   The empty boundary

 A      A   Objects are labeled by tokens

 not A    (A)   Negation is on the other side

 A or B    A  B  Disjunction is sharing the same space

 A and B         ((A)(B))  Conjunction is a special configuration

 if A then B           (A) B  Implication is separation by a boundary

 A iff B     (A B)((A)(B)) Equality is spatial complex

In the above map from conventional logic to boundaries, the many textual forms of logical 
connectives condense into one boundary form.  Note that the parens, ( ), is a linear, or one-
dimensional, representation of a boundary.  Circles and spheres are expressions of boundaries in 
higher dimensions.
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Boundary Logic Examples of Proof

 To Prove        Transcribe and Apply the Three Axioms

 A → A    (A) A  
      ( ) A  pervasion
      ( )   dominion

 ¬¬A = A    ((A)) = A    
        A   = A  involution
    
 ((A → B) ⋀ A) → B (( (A) ((A) B) ))  B
        (A) ((A) B)     B involution
        (A) (     )     B pervasion of B and (A)
            (     )  dominion

 A ⋀ B = ¬(¬A ⋁ ¬B)) ((A)(B)) = ((A)(B)) identity

The Fruit Problem

  Premise 1: If  A  then  (if  (not  P)  C)  
  Premise 2: If  C  then  (if  (O  or  not  K) then P)
  Premise 3: Not (if  B  then  P)
  Conclusion: Not (A and O)

Encode the logical connectives as boundaries, and simplify:

  P1:  (A) ((P)) C ==> (A)  P  C 
  P2:  (C) (O (K)) P
  P3:  ( (B) P )
  C:  ( ((A) (O)) ) ==> (A)  (O) 

Join all premises and conclusions into one form, using  (P1 ⋀ P2 ⋀ P3) → C

  ( ((P1) (P2) (P3)) ) C ==>  (P1) (P2) (P3) C involution

Substitute the forms of the premises and conclusion, and reduce:

    ( (A) P C )  ( (C) (O (K)) P )  ( ((B) P) )  (A) (O)
    ( (A) P C )  ( (C) (O (K)) P )     (B) P     (A) (O) involution
    ( (A)   C )  ( (C) (O (K))   )     (B) P     (A) (O) pervasion of P
    (       C )  ( (C) (O (K))   )     (B) P     (A) (O) pervasion of (A)
    (       C )  (     (O (K))   )     (B) P     (A) (O) pervasion of (C)
    (       C )         O (K)          (B) P     (A) (O) involution
    (       C )         O (K)          (B) P     (A) ( ) pervasion of O
                                                     ( ) dominion
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The Age of Mathematical Concepts and Symbols
Our clarity of understanding of mathematical concepts corresponds to the time evolution of these 
concepts.  That is, older is simpler.  As well, the sequence of math concepts taught in schools 
pretty much follows the historical evolution of mathematical ideas.  Here is a rough road map of the 
time evolution of various mathematical concepts.  Asterisks, *, mark content covered in class.

 8000 BC*    one-to-one correspondence
 4000 BC*        1,2,3...  counting
 1000 BC  .  zero (as dot)
   400 BC*     zero as blank space
   300 BC*  0  zero
   300 BC*    syllogistic logic

1050   ––  horizontal fraction bar

1417*  +  plus
1425   %  percent
1432*    mathematician
1484*  an  exponent
1484*    billion, trillion,…

1530   0.0  decimal fractions
1544     division
1549     parallel
1551*    irrational numbers
1551     theorem
1556*  ()  parentheses
1557*  =  equals
1570*          A = B  equation
1570*        2,3,5,7... prime number
1575*  x  variables as letters
1583   sin  sine function

1618   *  times  (X in 1618, * in 1659)
1624   log  logarithm function
1631   >  greater/less than
1634     angle
1637*    imaginary, real  (Descartes)
1647*  π  pi
1655   A,B,C  lettering for triangles
1655*  ∞  infinity
1672*    “math”  (Newton)
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1674   cos  cosine function
1675   d/dx  derivative, integral
1690   e  base of natural logs

1718*    probability
1734*  f(x)  function symbol
1763*    natural number
1770   ∂  partial derivative
1777*  i  imaginary unit
1786   lim  limit

1808*  !  factorial
1816*      ax = bx+c  linear equation
1827     long division
1839     “Fermat’s last theorem”
1840     pencil
1841            | a |  absolute value
1843   []  matrices
1848      (x+a)(x+b)  factor
1851*        {a,b,c}  set
1882     isomorphism
1883     eigenvalue
1887     tensor
1888*  U  union, intersection
1891     histogram
1892     standard deviation

1902*  e  identity element
1910*          ~, V  symbols for not, or, and
1921*    truth table
1931     spinor
1935     homomorphism
1938*         10100  googol, googolplex
1940*  Ø  null set
1940     onto

1975*    fractal
1975     chaos
1989*         (( ))  boundary mathematics
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Induction and Recursive Definitions

Almost all mathematical structures are defined by induction (recursion).    An inductive definition 
consists of three components:

 • a base case, the simplest possible application of the induction

 • an inductive case which assumes an arbitrary member of the domain (all possible objects), 
and constructs the adjacent member.

•  an ordering principle which provides a structure for inferring that when one 
member can be constructed from adjacent member, then all members can be 
constructed.

 
Mathematical Induction

The idea is to demonstrate truth for the base case (the simplest member of the ordered set), and 
then to demonstrate the truth for an arbitrary member of the set, assuming the truth of the 
member next to it in the order relation.

 If N is an ordered set and property P isTrue for
  1) the minimal member of N, and
  2) if P(x) then P(next(x)) for an arbitrary member x,
 then P isTrue for all members x of N.

Using the natural numbers,  N = {1, 2,...}:

 If P(1) isTrue, and 
assuming P(x) we can show that P(x+1) isTrue, then

 P(x) isTrue for all natural numbers.

Examples

  Domain  Base  Inductive Step

    integers     0  f[n]  ̶> f[n+1]

      sets      { }  f[S] -> f[S•u]

  lists          empty list    P[first] -> P[next]

      parentheses   ( )  x -> (x)    
       x and y   ̶>  xy
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The Integer Domain

Notation:  n+1 = Successor[n] = n’

Counting:  not[x’ = 0]
 1      = 0’

  n + 1  = n’

Addition:  m + 0  = m
  m + n’ = (m + n)’

Multiplication: m * 0  = 0
  m * n’ = (m * n) + n

Exponentiation: m ^ 0  = 1
  m ^ n’ = (m ^ n) * n

Summation:  sum[0]  = 0
   sum[i’] = sum[i] + i’

Factorial:  fac[0]  = 1
   fac[i’] = fac[i] * i’

Power-of-Two: power-of-2[0]  = 1
   power-of-2[n’] = 2*power-of-2[n]

Using mathematical induction, prove the following for integers:

Rule of Distribution: (i*j) + (i*k) = i*(j+k)

 i=0:  (0*j)     + (0*k)     = 0*(j+k)
   any i:  (i*j)     + (i*k)     = i*(j+k)
   (i*j) + j + (i*k) + k = i*(j+k) + j + k add 
   (i+1)*j   + (i+1)*k   = i*(j+k) + 1*(j+k) definition of +
   (i+1)*j   + (i+1)*k   = (i+1)*(j+k)        inductive step
     i' *j   +   i' *k   =   i' *(j+k)         definition of '

Algebraic Summation: 2*sum[n] = n*(n+1)

 n=0:  2*  0              = 0*(0+1)
   any n:  2*sum[n]           = n*(n+1)
   2*sum[n] + 2(n+1)  = n*(n+1) + 2(n+1)  add
   2*(sum[n] + (n+1)) = (n+2)*(n+1)   distribution
   2*sum[n+1]         = (n+1)*(n+2)   definition of sum
   2*sum[n']          = (n')*(n'+1)   definition of '
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Functions

Ordered Pairs

A function is specified by a collection of ordered pairs, (a,b).  The members of the ordered pair are 
elements, or members, of a set.

Example:

The integer double function 2a is defined by an (infinite) collection of ordered pairs of the 
form (a,b), where the values of a,b are in the set of integers:

   2a =def= {(0,0), (1,2), (2,4), (3,6), ...}

Functions and Relations

 relation: xRy isTrue   function: f(x)=y isTrue

 The set of all first values of a set of ordered pairs is called the Domain.

 The set of all second values of a set of ordered pairs is called the Range.

A relation is a collection of ordered pairs over two sets, the domain set and the range set.

A function is a relation (x,f(x)), such that

 1.  Every member of the domain is associated with a member of the range, and

 2.  No element in the domain is associated with more than one element in the range.

Perspectives on Functions

1.  Formal constraints on a relation

 existence:  all x inDomain . exists y inRange

 uniqueness:  all pairs (x,f(x)) . if x1=x2 then f(x1)=f(x2)

2.  Graph

 Domain on x-axis,  Range on y-axis
 uniqueness permits the graph to cross any vertical line (i.e. x-value) only once.
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3.  Lookup table

 x f(x)
 1 1
 2 4
 3 9

4.  Static relation between variables

 x = y + 5  "=" is an equivalence relation

5.  Dynamic relation between variables

 f(x) = y x is the independent variable (controlled measurement)
   y is the dependent variable (observed measurement)

6.  Rule of correspondence/algorithm

 take a number  x
 double it  2*x
 add 3   2*x + 3

7.  Set transformation

 Domain    Range
   a ----------->   b
   b ----------->   c
   c ----------->   d
   d ----------->   d

8.  Input-output machine

         x
 \      /
       \    /
        |  |
        |  |

         f(x)

9.  Way of finding and assigning names to unnamed objects

 2^100  is the short name of a large number

10.  Directed graph

 (1) ---> (3) ---> (5)
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Types of Functions

 Surjective,  Onto,  Epic all y inRange, exists x inDomain .  f(x) = y

 Injective, 1-to-1, Monic if f(x1) = f(x2) then x1 = x2

 Bijective   1-to-1 and Onto

Bijective functions have an inverse, since every element in both the Domain and the Range are in 
correspondence:

 two-way existence  all x inD, exists y inR . f(x) = y
     all y inR, exists x inD . f(x) = y
 two-way uniqueness  all (x,f(x)) . x1 = x2 iff f(x1) = f(x2)

 inverse:   Exists f-inverse  iff  f is onto and one-to-one

Special Functions

 Identity  f(x) = x

 Characteristic  f(x)  =  1  if x inA
          =  0  if x not inA

 Permutations  (1,2,3)  <-->  (3,1,2)  <-->  (2,3,1)

 Sequences  1 .. n  <-->  1/1 .. 1/n

Mappings

===Relation===

Some not mapped

Some not mapped

one-to-one
many-to-one

one-to-many
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===Function===

           

 EXISTENCE
  	=def=
all mapped

  UNIQUENESS
	  =def=
no one-to-many

 

===Surjective/Onto/Epic Function===

                           

   ONTO
   =def=
all mapped

 

===Injective/1-to-1/Monic Function===

           

  ONE-TO-ONE
    =def=
no many-to-one

 

===Bijective/1-to-1 and Onto Function===

           

   INVERSE
    =def=
maps both ways

ONE-To-ONE and ONTO
      =def=
no many-to-one and
all mapped in both
 Domain and Range

 

Bricken                                                          Math 114 PreCalculus  4/30/07



Function Composition

 (f o g)  =  All pairs (x,z)  Exists y such that (x,y) in g  and  (y,z) in f
  Note that the Range of g is a subset of the Domain of f

  (f o g)(x)  =  f( g(x) )

 Associative:  (f o g) o h  =  f o (g o h)

 Not commutative: f o g =/= g o f

 Maintains the type of the function:

  if f and g are functions, then (f o g) is a function
  if f and g are onto, then (f o g) is onto
  if f and g are one-to-one, then (f o g) is one-to-one

 Composition of a function with its inverse:

  f o f-inverse  =  identity I   on Range of f
  f-inverse o f  =  identity I   on Domain of f

 Inverse of a composition: (f o g)-inverse  =  g-inverse o f-inverse

Binary Functions

 Binary functions are a mapping of ordered pairs onto elements:  ((a,b) c)

     e.g.:  a + b = c     + = {((a,b),c) such that (a,b) in S X S and c inS}

 The domain consists of ordered pairs rather than single elements.

 If a,b, and c are in the Domain, 
then the Domain is closed with regard to the function:

All  x1,x2 inD such that f(x1,x2) inD
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Algebraic Systems
An algebraic system consists of:

 ––   a collection of names  (labels) 
 ––   an operation that connects names with other names
 ––   rules for building expressions and equations out of names and operations
 ––   rules that permit changing expressions without changing what they mean

Here is an example, the algebraic system for addition of whole numbers:

    Components     Examples

 Names   whole numbers   1, 2, 3, 24

 Operation  addition (+)    1 + 2 = 3,   3 + 7 = 10

 Expressions  a + b     1 + 2,  x + 5,  x + y + z

 Rules   a + b = b + a   1 + 2 = 2 + 1

   	
 a + (b + c) = (a + b) + c    	
 1 + (2 + 3) = (1 + 2) + 3

   	
 a + 0 = a    5 + 0 = 5

Here is an algebraic system you have never seen before, putting letters inside or outside:

    Components    Examples

 Names   letters     x, y, z

 Operation  inside or outside   (x),   x (y)

 Expressions  a (b)     (x y), ((x)) y, ((x y))

 Rules   (a)(b) = (a b)   (x y)(z z) = (x y z z)

   	
 a a = (a)       x y z x y z = (x y z)
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Algebraic Systems -- Problem Solving
Here are the two rules of the Inside/Outside system:

	
 	
 (a)(b) = (a b)	
 	
 	
 	
 a a = (a)  

Which of the following are correct equations in this system?

   A.      x (y z) = (x y) z

   B.     w w w w = ((w))

   C.     (m (n)) = ((m) n)

PROBLEM SOLVING STEPS:   Answer each question very briefly (less than 10 words each).

1.  What is the problem?

2.  What do you already know?

3.  What will you do to find the answers?   What skills or tools can you use? 

4.  Find the answers.  Show your work.

5.  How confident are you about your answers?

6.  What did you learn about algebraic systems?
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