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Three selections from my course teaching materials are described below.  Each
was selected to illustrate a particular aspect of my teaching style, ranging
over intellectual provocation, formal mathematical modeling, and code walk-
through.

Selection 1:  Modeling Computation

Class: SE502  Mathematical Foundations

Theme: There are no unifying concepts which define “computation”.  
Mathematics is an attitude as well as a field of study.

Duration:  three class periods (4 hours)

Materials:
1.  Overhead transparencies and lecture (one class period)
2.  Chapter 0 exercises:  philosophy of mathematics (homework)
3.  Collation of student responses to Chapter 0 (class discussion)
4.  Final project:  a map of discrete mathematics  (homework)
5.  Collation of final project results  (class discussion)

Teaching style:   

The overheads are used to stimulate and challenge a student’s understanding
of their profession.  The assignment explores the class’s use and
understanding of mathematics and mathematical philosophy.  At the end of the
course, the Final Project assesses how well students have developed an
integrated model of the field of discrete mathematics.  Emphasis on sharing
of beliefs and understandings.

Cultural:
Historical and developmental stories from the theory of computation.  Compare
and contrast various philosophers of mathematics with student opinions.
Stories relating the difficulty of simple mathematical questions.

Comments:
An introductory lecture/discussion to establish to the relevance of discrete
mathematics for Computer Science.



Selection 2:  Abstract Data Structures  (ADS)

Class:  SE500  Data Structures and Algorithms

Theme:  Data abstraction separates mathematical modeling from
implementation details.

Duration: two class periods (three hours) lecture
two class periods lab on ADS

Materials:
1.  Lecture notes for mathematical structures and data abstraction.  
2.  Examples, with code, of several domain theories
3.  Extended example of the N-dimensional Boolean hypercube

(the 2D square)
4.  Three related assignments

Teaching style:   
The lecture on data abstraction focuses heavily on formal mathematical
structures and how to use them both for modeling and in implementation.  The
ADS for a square provides an in-depth example of how to think about and
construct data abstractions, with emphasis on implicit properties.   A
student’s initial understanding of the course content is assessed in
Assignment 1.  Assignment 2 provides direct experience in constructing a data
abstraction.  Assignment 3 measures the student’s growth in understanding of
data structures.

Cultural:   
Visual examples of data abstractions. Discussion of how to discover implicit
properties.



Selection 3:  LISP Coding and Abstraction Techniques

Class:  SE553  Artificial Intelligence (AI)  

Theme: AI is the art of successive abstraction.  
LISP is the ideal language for abstract programming.

Duration: two class periods (3 hours) lecture
three periods (4 hours) code walk-through and review
three periods discussion and lecture on abstract programming
three periods discussion of student’s LISP programs

Materials:
1.  public distribution LISP language system
2.  Eight LISP programs emphasizing abstract programming techniques
3.  Comments on the LISP language
4.  Code distribution #2:  Abstraction techniques
5.  Program modification exercises, parts I and II (homework)

Teaching style:
LISP programs are used to familiarize students with coding techniques,
conceptual issues, and approaches to abstraction. Programming assignments
scaled for difficulty as homework.

Cultural:
About 50 pages of distributed LISP code.  Code review and debugging.
Relation of code to programming concepts.

Comments:   
The eight LISP programs cover the majority of AI implementation issues
(interactivity, logic programming, search, parsing, automated problem
solving, filters, object-oriented approaches, and natural language
understanding).



COURSE NOTES FOR MATHEMATICAL FOUNDATIONS

Nearly the entire set of lecture notes for the current Fall 2000 course in
Mathematical Foundations SE502 is enclosed in Section VII in order to
illustrate several points about teaching content and style.  Comments follow
the listing of handouts.

Sequence Title page count

1.  Course Information and Syllabus   3
2.  Final Project   1
3.  Chapter 0 Exercises   6
4.  Formal Symbol Systems   7
5.  Models of Computation   4
6.  Logic and Computation   5
7.  The Age of Mathematical Concepts and Symbols   2
8.  Propositional Logic           2
9.  History of Logic   5
10.  Logical Proof   4
11.  Lattice and Boolean Cube Reasoning  21
12.  Deduction Exercises   1
13.  Algebraic Logic   2
14.  Predicate Calculus   2
15.  Boundary Logic   7
16.  Induction and Recursion   3
17.  Sets   1
18.  Relations   7
19.  Functions   5
20.  Algebraic Systems   3
21.  Exotic Number Systems  28
22.  Graphs   4

Commentary

1.  Course Information and Syllabus

Students get this on the first day of class.  It explains homework,
participation, and evaluation policies.  I emphasize that I expect the
students to take direct responsibility for their learning as mature and
motivated adults.  This reduces game playing, shallow learning, knowledge as
commodity, and the expectation of spoon-feeding.

2.  Final Project

I give the final project out during the first week of class so that the
students can prepare for it throughout the course.  The emphasis is on
integration and synthesis, not on specific rote skill acquisition.  This more



difficult requirement assures that the students stay focused on the global
aspects of the course.  Responses from two different classes follow.

3.  Chapter 0 Exercises

The first homework assignment is challenging, while acknowledging each
student’s own skills and knowledge.  Mathematical philosophy allows students
to reflect on the deeper meaning of the course and its content.  It
challenges students’ expectations of “right answers”, easy content,
avoidability of thinking, and brittle learning.  I compile the results and
show the class where they are in agreement, and where they strongly disagree
with each other.  The main goal, however, is to deconstruct assumption,
thoughtlessness, preconception, and the idea of absolute truth.  I
demonstrate that truth is a function of belief.  This is particularly
important for engineers, who have little exposure to humanities or to
critical thinking.  Importantly, the exercise introduces modern mathematical
thinking, which intimately includes subjectivity, uncertainty, and
falsibility.  Several questions challenge mechanistic thinking.  During
discussion, the class is exposed directly to issues which require broad
thinking and critical analysis.  The central question, “Why does mathematics
work so well?” is supported by an essay by Hamming, a foundational figure in
CS.  The compilation of results from two classes follows.  

4.  Formal Symbol Systems

My first goal is to establish the relevance of mathematics to software
engineering.  I then teach the nature of formality, supporting the lecture
with a handout listing the rules of formal systems, rules which no textbook
directly teaches or acknowledges.  The students are reminded that computation
is ill-defined, that computers are currently accretions of old ideas, that
there are many different implementations of computation, and that the level
of analysis in computational systems is of critical importance.  The central
uniformity of all formal definitions of computation is stressed.
Mathematical models are critiqued and the patterns of growth of mathematical
knowledge are studied.

5.  Models of Computation

A quick review of the theory of computation, its strengths and weaknesses,
and the history of the idea of computability.

6.  Logic and Computation

This is a summary of previous lectures, organized as a roadmap for the
construction of mathematical models.  I introduce the concepts of complexity
in the context of deductive techniques and proof.  More theory of
computation, emphasizing that the essential concepts in the field are
inherently paradoxical.



7.  The Age of Mathematical Concepts and Symbols

Placing the subject matter into an historical context.

8.  Propositional Logic

A quick review of the simplest mathematical system and the importance of the
hardest computational problem.

9.  History of Logic

An in-depth presentation of the history of the growth of logic, from
Aristotle, through scholasticism, to the breakdown of certainty in the early
twentieth century.  Slides include reproductions of actual historical
documents.

10.  Logical Proof

Methods of logical proof:  tables and natural deduction, in the context of a
difficult study problem.  Two large sections are not included;  the study of
Lakatos and the historical evolution of mathematical theorems, and a section
of examples of visual, spatial proof.

11.  Lattice and Boolean Cube Reasoning

Alternative approaches to logical proof.  This section includes an
introduction to lattice theory as an organizing principle, and presentation
of a dozen different interpretations of Boolean algebra.  Boolean cube
computation gives students a hands-on experience of logical computation in a
spatial format.

12.  Deduction Exercises

Exercises exemplifying the application of logical technique to programming.

13.  Algebraic Logic

Preparing to join logic and algebra.

14.  Predicate Calculus

For organizational completeness, prior to moving on to complex objects (i.e.
relations and functions).

15.  Boundary Logic

A cultural lecture on a very different spatial approach to proof.
Demonstration of the power of boundary techniques in Boolean minimization.



Previous problems in other notations are revisited.  This lecture is on my
research area.  It ends with an impressive physical and visual manipulation
(using blocks and fruit) that is morphic to deductive proof systems.

16.  Induction and Recursion

The turning point of the course.  Mathematical objects have been introduced,
along with proof systems.  Now everything is phrased in terms of induction.
The goal is to demonstrate that all computational objects and problems can be
defined by recursive relations.  The first step toward deeper mathematical
thinking.

17.  Sets

A quick review of finite set theory, focusing on morphisms with Boolean
algebra.  More exercises in recursive definition.

18.  Relations

I assume students are familiar with the basic concepts of discrete math.
Here the goal is to broaden their understanding by organizing the basic ideas
of relation theory in a mathematical framework, and then presenting a dozen
different ways you can think about relations.  Relational structure and tools
are presented.

19.  Functions

Functions are presented as a subset of relations.  The distinctions between
programming with relations and functions are discussed.  Then a dozen
different ways to think about functions.  Mappings are introduced.

20.  Algebraic Systems

Moving onto a deeper level of abstraction, the material on logic and
functions is cast in the terms of modern algebra (group theory).

21.  Exotic Number Systems

Another cultural lecture, again from my research.  Although this handout is
large, we only cover the basic ideas and set an historical context.  The goal
is to shock students in a subject they believe they know intimately
(integers).  Emphasis on the evolution of mathematical concepts.  I introduce
a new imaginary number here, as well as some substantively different ways of
conceiving of and computing with integers.



22.  Graphs

I close with the most important mathematical structure for Computer Science.
Graph concepts, operations, and algorithms.  This is an advanced organizer
for the following course in data structures and algorithms.  The class ends
with students sharing their final assignment papers.

Commentary

These materials and a short discussion of educational goals and approaches
have been included to address concerns expressed during my four year review.
Most of my foundational classes are similar in style.  Advanced elective
courses tend more toward discussion and group project work.  To summarize the
style:

1)  Strong emphasis on exposure rather than skill practice.
2)  Exposure to a huge amount of material.
3)  Deep cultural and historical embedding of the knowledge.
4)  Continual challenge to students certainty of knowledge.
5)  Exposure to many completely new ideas.
6)  Unrelenting sophistication of material

(“Welcome to graduate school.”).
7)  Deconstruction of assumptions and preconceptions.
8)  Continual exposure to multiple perspectives and interpretations.
9)  Integrated and cross-connected lecture material.
10)  Sophisticated teaching strategies.
11)  Always entertaining (attention before understanding).
12)  Intolerance for shallow, brittle, and rote learning.
13)  Disempowering the comfort of stable knowledge.
14)  Individual customization of curricula.
15)  Tolerance for diversity of opinion.
16)  An attempt to leave every student challenged and thinking

after each class.
17)  Use of confusion as a technique to sharpen sensation

and attention.

The ultimate goal is long-term learning.  I expect students to recall the
content of the class after five years.

Several students have difficulty with this approach.  I resist
categorization, however:

•  Students who expect to be hand-feed, who think knowledge is a
transferable commodity, who want not to think too hard, and who do not
continually question their knowledge are rudely surprised.



•  Some students have been required to take this course, others are
waived.  Those who are resentful of the requirement sometimes criticize the
course rather than the requirement.

•  Students rigidly expecting a conventional structure in the classroom
often get confused.  Few leave confused.  Generally these students cannot
differentiate between alternative structure and “lack of structure”.

•  Students narrowly focused on job skills are basically in the wrong
program.  (They should be in one of the hundred institutions in Seattle which
teach computer skills.)


