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ILOC was originally developed as an area minimization tool for combinational

and sequential netlists.  There is commercial motivation to extend ILOC to

delay optimization for two generic capabilities:  delay optimization without

regard for area, and delay optimization while maintaining low area.  Both

capabilities require a deep integration of area and timing decisions within

the ILOC reduction engines.  This memo outlines the steps to achieve

competitive delay optimization in ILOC.

EXECUTIVE SUMMARY

Capabilities

The ILOC implementation of Boundary Logic provides an integrated and complete

approach to network transformation, including area and delay minimization.

ILOC improves optimization performance both through more efficient algorithms

and through an integrated theory that organizes the currently haphazard and

scattered approaches of competitive products.

Roadmap

  1.  Extend ILOC logic and network transformations to include delay

reduction choices.

  2.  Add specialized delay reduction tools to the network reduction engine.

  3.  Incorporate a sophisticated timing model into ILOC.

  4.  Implement top-level delay reduction control algorithms.

Level of Effort

Two senior and four junior software personnel over a development timeline of

eleven months.  The product is an alpha release ASIC optimization capability

usable by EDA engineers.  Timelines and resource estimates are attached.
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ILOC COMPARISON TO SYNOPSYS FOR DESIGN AREA REDUCTION

The objective of the ILOC comparison study is to generate reliable data that

documents a differential ILOC capability to reduce the area of ASIC circuit

designs while holding timing constant.  

Preamble

ILOC is a system consisting of hundreds of Boundary Logic algorithms, and

dozens of parameterizations.  Many netlist manipulation algorithms and all

core Boundary Logic reduction algorithms are complete, validated, and

extensively tested.  Newer algorithms, especially those pertaining to delay

optimization, are new, partial, and still potentially buggy.  Some techniques

are implemented schematically, and require hand steerage for accurate

application.  Others are purely experimental.

The current study is the first comprehensive test of ILOC against the

Synopsys commercially developed and field tested product.  Thus it is

appropriate to take an incremental approach, seeking to identify and

calibrate the comparative strengths and weaknesses of ILOC tools.

In the past, we have made several methodological errors that are corrected in

the proposed study.  In particular, we need to separate different aspects of

what is to be proved.  We first need to provide functional equivalence; for

this it is necessary that I can verify ILOC transformations within ILOC using

test vectors.  Another factor is demonstrating that ILOC outperforms

Synopsys.  This factor has components of area minimization, delay

minimization, and combined area/delay minimization.  Methodologies include

ILOC and Synopsys performance starting from a common non-optimized basis, and

ILOC as a post-process after Synopsys delay optimization.  Another factor,

separate from performance, is application of ILOC to large and complex

industrial designs.  Yet another factor is the usability of ILOC and ILOC

results by others, including common data transfer formats.  Another factor is

technology mapping, including the selection of cell libraries.  Finally, we

need to distinguish our current stage of establishing a case from that of

empirical validation of that case using random testing.

Scope of Study

We have a few data points comparing ILOC to Synopsys.  This study extends the

number of data points to a dozen or more.  ILOC transforms structure and has

the capability of identifying almost all of the common structures used in

circuit design.  These structures apply to all functionalities; large design

is simply combinations of these structures.  The set of functions, designs,

and partial designs that we ware comparing cover almost all types of circuit
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structure.  Each tested design is included to provide data for a specific

purpose.

Study Parameters

Since we are interested in a pragmatic comparison, we will use the full TSMC

logic cell library, permitting Synopsys to engage in whatever transformations

it chooses to achieve

Methodologies

We have two comparative methodologies: separate optimization by both systems,

and post-processing optimization.  Separate optimization is good for

establishing and comparing absolute capabilities;  post-processing is useful

in our case because Synopsys can provide its expertise at delay optimization,

and ILOC can then apply its expertise at area optimization while holding

delay constant.  Schematically:

Separate Optimization

                    ==> optimized-by-Synopsys

                  /                           \

non-optimized-RTL                               ==> compare

                  \                           /

                    ==>   optimized-by-ILOC

Post-processing Optimization

                     ------------------------

                   /                          \

optimized-by-Synopsys                           ==> compare

                   \                          /

                     ==>   optimized-by-ILOC

At this time, ILOC is not competitive with Synopsys for delay optimization,

so post-processing should demonstrate that ILOC can still provide significant

area optimization and competitive timing, given a good timing model and delay

algorithms.  
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DELAY OPTIMIZATION IN ILOC

ILOC uses a transformation system based entirely on Boundary Logic.  The ILOC

software consists of three independent components:  

--  the core logic reduction engine

--  the network reduction application engine, and

--  the technology mapping interface.

For delay optimization, all three components need to be integrated.  No new

capabilities need to be added to the core engine, however optimization

decisions made within the core must be guided by new control systems based on

a sophisticated timing model.

Goal-Driven Reduction

The core ILOC reduction engine uses six transformations to achieve network

reduction.  These formal rules define all functionally invariant

transformations of any given network structure, including all possible

transformations to achieve delay reduction.  

ILOC is an algebraic system, which means that all transformations can be

applied in two directions, using deletion for reduction and using creation

for construction.  

   reduce area <==> increase area

A = X Y Z        delete  <==> construct

increase delay <==> decrease delay

Applying Boundary Logic transformations in the reductive direction achieves

area reduction; applying them in the constructive direction achieves the full

range of existing (and possible) delay reduction transformations.   Reducing

area increases delay, while increasing area reduces delay.  The primary

difference between area and delay reduction in ILOC is the underlying model

that determines which transformations are to be applied in which directions.

Almost all conventional delay reduction techniques map directly onto

reversing the six basic internal ILOC rules used for area reduction.  Each

rule can be applied independently and locally to part of a previously reduced

network in order to reduce network delay.  Each rule can be characterized by

an area/delay trade-off, the direction of application determines which

measure is reduced.  The current version of ILOC can be extended into a

competitive goal-directed delay reduction tool by connecting a sophisticated

timing and signal propagation model to the constructive use of existing

transformations.  By providing both area and delay goals, ILOC

transformations can be applied in both directions to achieve concurrent area

and delay optimization that meet specific design objectives.
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Thus, to extend ILOC to delay reduction, the existing Boundary Logic

equations must be associated with a direction of application, and the choice

of direction must be associated with a delay reduction timing model.

General Plan

  1.  Extend logic and network transformations with delay reduction metrics.

  2.  Add specialized delay reduction macros to the network reduction engine.

  3.  Incorporate a sophisticated timing model.

  4.  Implement top-level control algorithms.

The general plan is to associate each logic and network transformation with a

delay-related cost, and then to use each transformation to achieve

prespecified timing and area objectives.  The internal transformations are

few in number, simple to identify, and localized in effect; thus goal-driven

transformation to reduce delay, and to reduce delay while maintaining a small

area, requires relatively direct and simple control and measurement

algorithms.  Many decisions about timing interact, however ILOC provides a

canonical internal format that can serve as a baseline for selecting globally

advantageous transformations.

The logic and network reduction engines first convert a design into simple

internal data structures, called parens forms.  Then transformations are

applied to the parens forms to achieve structural goals such as area

minimization.  Finally the resulting parens network is mapped back into a

conventional gate library.  Certain simple cells, such as NAND gates, possess

very desirable delay characteristics.  These can be pre-selected during logic

transformation, thus achieving technology mapping during logic reduction.

Network transformation then serves to integrate these pre-selected types.

Importantly, this process does not involve search or trail-and-error, as do

existing high-performance competitive approaches.  

To achieve area reduction, it is sufficient to identify which gate library

cells are area efficient, and to map the simplified internal ILOC structures

into these cells.  This is accomplished as a final step in the area

optimization process.  For delay reduction, library cells have specific

intrinsic delays, however the network topology -- how the cells are

interconnected -- also contributes significantly to delay.  Thus technology

mapping for delay must be integrated into the logic and network reduction

decisions, it cannot be applied as an independent terminal process.  Network

topology becomes more dominant as process sizes shrink.   

Top-Level Control

Top-level delay reduction control algorithms will apply the ILOC fine-grain

cell transformations to each cell.  Each Boundary Logic transformation,
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applied constructively, changes the connectivity of a single cell in the

entire design.  Delay minimization can be accomplished by successively

selecting each high delay cell in the network, transforming it to decrease

its delay, and iterating over the entire network.  

Identifying which cell to transform is quite simple.  The control algorithms

can be guided by a few basic principles, applied in order:

--  Many cell types are undesirable, they can be converted into

desirable types.  Desirability is determined by area and delay goals.  For

minimization of delay, only XOR2, NAND-N and INV cells are needed, with an

occasional NOR-N to accommodate inverters.

--  Almost all inverters can be incorporated into other desirable

cells.

--  Cells with high capacitance can be buffered or replicated,

depending on area/delay goals.

--  NAND3 and NAND4 cells can be trimmed to provide a more efficient

NAND2 critical path.

--  Finally, to shorten critical paths, desirable NAND and XOR cells

can be expanded through distribution.

Note that for delay reduction, changing drive strength is not necessary.  The

top-level control sets all drive strengths at maximum, and then after delay

goals have been achieved, those cells not on the critical path can be reduced

in drive strength to save area.   Similarly for area reduction, all drive

strengths are set to minimum, and if delay needs to be improved, the drive

strength of cells along the critical path is increased.

The ILOC top-level control sequence replaces the plethora of partial

techniques now used in competitive products.  Due to the theoretical

organization of the transformation rules, these steps are more efficient than

existing EDA tools, both for identifying possible transformations that

achieve design goals, and in the amount of computational effort required.

ILOC Capabilities To Be Added

A sophisticated timing model for signal propagation must be developed to

guide the goal-directed transformations.  This model needs to include

information about how signals traverse a network of library gates,

capacitance and parasitic effects, wire length models, etc.  Sophisticated

timing models are generally known and available, we will need to attract some

expertise in this area.
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Delay-driven transformation must be accompanied by new, specialized delay

reduction tools within the network reduction engine.  These tools are

relatively easy to express and to implement in Boundary Logic.  In general

they are macros, combinations of two or three of the basic ILOC

transformations.  The technical commentary contains some examples.

TECHNICAL COMMENTARY

Technical Advantages

Boundary Logic is exceedingly elegant and efficient, providing ILOC with a

competitive advantage for area reduction.  Boundary Logic confers the same

advantages to network transformation for delay reduction.  The technical

advantages of Boundary Logic can be summarized as:

1.  Structural patterns are constructed from a single component type,

rules for different cell types are not necessary.

2.  Gates and wiring are a single concept, permitting path-oriented

transformation and fluidity in meeting logic and connectivity design goals.

3.  Less computational effort is required to achieve conventional

objectives, including simpler representations that permit identification of

advantageous transformations, and more powerful and efficient

transformations.

4.  A simple, integrated, and comprehensive theory guides all possible

network transformations.  This advantage provides a substantive competitive

advantage since current commercial and academic techniques consist of a

haphazard collect of unrelated ideas and algorithms.

Boundary Logic Delay Reduction Transformations

The current state of the art in delay minimization consists of a collection

of apparently unrelated network modifications that are applied quite

haphazardly.  No general theory of delay optimization exists.  Sutherland's

Logical Effort theory, for example, is a set of rules of thumb that can guide

good design, however each type of logic gate has a different set of desirable

characteristics, the consequences of the Logical Effort rules are calculated

separately for each design element, and pre-computed tables that incorporate

good design choices are used to guide decisions.  In Boundary Logic, there is

only one type of gate (the parens), transformation patterns are very limited

and easy to identify, and the transformations have quantified local

consequences for both area and delay.
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A significant aspect of delay optimization is the appropriate placement of

inverters.  In Boundary Logic, each parens can be interpreted as an inverter.

Thus the Boundary Logic transformations incorporate optimal inverter

placement directly within the basic boundary transformation equations.  For

example, the propagation of an inverter through a MUX is:

(((A) (B)) (A (C)))  <==>  ((A) B) (A C)      PIVOT

Conventionally, cells with large delays can be buffered, replicated, bypassed

or distributed.  Each of these transformations is achieved by a particular

Boundary Logic transformation already used within ILOC.

        ((A)) = A                   buffer     <==>  clarify

         A A  = A                   replicate  <==>  coalesce

      A {A B} = A {B}               bypass     <==>  extract

 ((A B)(A C)) = A ((B)(C))          distribute <==>  collect

Buffer insertion is the inverse of the basic Involution rule; replication,

the inverse of the Coalesce rule; bypassing, the inverse of the Extract rule;

and path shortening, the inverse of the Distribute rule.

Several commonly used techniques are simple combinations of the basic network

transformations used in ILOC.  A buffer tree is the repeated application of

Replication and Involution.

A ==> A A ==> ((A)) ((A))                  BUFFER TREE

The conventional generalized select algorithm is considered to be a complex,

somewhat advanced technique.  A slow internal signal is used as the selector

to a MUX of the Boolean difference of paths for which that signal has been

eliminated.  This effectively advances the slow signal to the top of a path.

In ILOC, generalized select is the Distribute rule followed by the Pervasion

rule and the Distribution rule again in the other direction.

    (A  ) ((      B) (          C))

    ==>         (((A  ) B) (      (A) C))        distribute

    ==>         (((A B) B) ((A B) (A) C))        pervade (A B)

    ==>   (A B) ((      B) (      (A) C))        collect

Here, signal B begins nested two levels deep on the critical path, it ends up

both one and two levels deep.  In the case that B=1, a 0 result is returned

immediately from the shallower B signal.  When B=0, the result (A) is again

returned immediately from the shallower instance of B.  In all cases, the
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signal B immediately determines the path result, rather than having to

propagate from the lower portions of the path.

Boundary Logic makes this complex transparent quite understandable, and quite

accessible for implementation, by putting it into the theoretical structure

of ILOC rules.

The generalized bypass algorithm is another advanced technique motivated by

the bypass adder architecture.  The Boolean difference formula suppresses a

particular slow signal, while the difference itself is used to select between

the suppressed signal or the critical path with the suppressed signal

eliminated.  This eliminates a logic chain by making it a false path,

swapping the chain for two copies of that same chain with the slow input

omitted.  ILOC reduces this rather complex structure to the conjunction of

the signal value and the network value when the particular signal is

irrelevant.

((B) (F/B))  =  ((b) (F/b=0 F/b=1) ((F/b=0)(F/b=1)))

where  F/b=0 is the network with signal b deleted (the wire cut) and F/b=1 is

the network with the cell for which the signal b is an input deleted.  That

is,

F/b=0:  cut the wire b

F/b=1:  cut the output wire of any cell that wire b enters.

Rather than requiring an elaborate calculation of Boolean differences MUXed

together, the ILOC model requires only an AND and two versions of the network

with deleted signals.

These examples illustrate that Boundary Logic and the ILOC implementation

place current delay reduction techniques into a broader framework of a small

set of transformation rules that are easily implemented.  The net result is

that ILOC can achieve competitively superior delay reduction and area

reduction at the same time.
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ROUGH DRAFT OF REQUIRED RESOURCES

Estimates include personnel with expertise in building timing models, and in

developing comprehensive synthesis testbeds.  The deliverable is an alpha

release software product for ASIC logic synthesis with highly competitive

area and delay reduction capabilities.

Software Level ff Effort

=======================================================================

TASKS    person-months         total

   senior junior     person-months

system design SSUM       3 1      4

software 2

integration 1 1

software SSUM      14    20     34

parsers 4

ILOC synthesis 6 6

application interface 1 4

user interface 7 6

integration SSUM       5 3      8

configuration suite 2

tool suite 3 3

testing and documentation SSUM            11     11

design configuration test suite 1

software      10

TOTALS      22    35     57

=======================================================================
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Development Effort

Software development is projected for 11 months and will require six

employees:  2 senior programmers, 3 junior programmers, and one quality

control/documentation person.

For the two lead programmers and the four junior programmers, we expect an

average productivity of fifty lines of functional code per day, from an

average of 4 persons.  The other 2 allocations consist of

1 full-time junior person for testing and documentation

1/2 full-time junior person for integration

1/2 full-time senior person for management duties.

The Chief Scientist and the lead programmers are expected to be capable of a

sustained effort of about 100 lines of functional code per day.  Each

programmer should generate their daily code allowance for three days each

week, the other time going to planning, meetings, etc.  Thus

4 programmers at 50 lines/day at 3 days/week = ~600 lines/week

Total development effort is

13,000 lines core = 23 weeks x 6 persons = 138 person/weeks

15,000 interface = 24 weeks x 6 persons = 144 person/weeks

28,000 ILOC system = 47 weeks x 6 persons = 282 person/weeks
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Software Development Timelines

=======================================================================

ACTIVITY            PERSON-MONTHS            TIME-LINE

SOFTWARE DEVELOPMENT     338

                              0  1  2  3  4  5  6  7  8  9 10 11 12

system design             4   x-----x

parsers                   4      x--------x

ILOC synthesis           11      x-----------------------x

application interface     3               x--------x

user interface           13               x--------------------x

design test suite         3         x--------x        x--------x

=======================================================================

INTEGRATION/TESTING      119

                              0  1  2  3  4  5  6  7  8  9 10 11 12

integration               8                     x--------------x

design test suite         1      x--------x

testing                  10         x--------------------------x

=======================================================================

OVERALL PROJECT           57

                              0  1  2  3  4  5  6  7  8  9 10 11 12

software                 38   x--------------------------------x

integration               8               x--------------------x

testing                  11         x--------------------------x

=======================================================================
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Projected Software Personnel

=====================================================================

                              0  1  2  3  4  5  6  7  8  9 10 11 12

    MONTHS

senior software I 111

design O-----x

synthesis    x--------------------x

interface          x--------------------x

integration                   x--------------x

senior software II 111

design O-----x

      timing                     x--------------------x

interface                   x--------------x

junior software I 110

parsers    O--------x

configuration       x-----x        x-----x

testing       x--------------------------x

integration                   x--------------x

junior software II 110

synthesis    O-----------------x

interface                   x--------------x

application                            x-----x

junior software III   8

interface       O--------------x

synthesis                           x--------------x

testing                   x--------------x

testing/documentation   7

synthesis    O--------------x

interface                x--------------x

testing          x--------------------x

manuals                                         x--------x

TOTAL 557

                              0  1  2  3  4  5  6  7  8  9 10 11 12

=====================================================================

Estimated level of effort for the junior software III and

testing/documentation positions is less than full-time; however it is

necessary for these people to be available over the duration of the project.
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NOTE ON INTERNAL DEVELOPMENT ENVIROMENTS

The software level of effort, timeline and personnel attached above are

predicated on some assumptions about development languages, environments, and

personnel.  In particular, they assume

1.  A functional LISP code base with an object-oriented user interface

2.  A UNIX/LINUX/MAC OSX development environment

3.  Personnel who have worked with the Chief Scientist on prior

projects.  Further training is already included in the above levels of

effort.

4.  A dedicated systems administrator/web site coordinator not included

in the project staffing

5.  A version control and coordination system administered through an

internal Company internet.

The above timeline and level of effort schedules are aggressive and allow

little room for misjudgment, and no room for mid-course modification of the

development environment.

It should be understood that the internal code development environment

imposes no restrictions on the user base.  The interface design incorporates

the general principle that a user would perceive no difference at the

interface between ILOC and conventional tools from Synopsis or Synplicity

(except, naturally, better performance).

Internal development environments do have business implications, some of

which include:

1.  Prior to hiring, the internal tools must be decided, so that hired

personnel are skilled in these tools.  The risk associated with training

software personnel in new tool sets, or in changing internal tools mid-way

through a project, would be to approximately double development time.

2.  Internal tools that are exotic (i.e., not Windows and C based)

restrict the available hiring base.

3.  Internal tools that are not object-oriented or functional (i.e. are

C language based) incur the risk of obsolesce and of not being upgradable.

4.  Object-oriented/functional environment images (i.e. the code

infrastructure to be shipped) are approximately 20% the size of C/Windows

code.
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5.  For a non-exotic C/Windows development environment, development

time and personnel estimates should be doubled.

6.  The risk of hiring lead programmers who have not previously worked

with the Chief Scientist is to double development time.

7.  The risk of adopting development environments not familiar to the

Chief Scientist and to the Lead Programmer is complete failure.


