
ABSTRACT SPECIFICATION RATHER THAN HDL PROGRAMMING

William Bricken

November 2002

Here's a summary leap-of-concept: We can offer "C-to-hardware". Not a parser

which converts the C language to an HDL, but a parser which converts C

programming into Comesh configuration files. OK, to be more accurate, the C

language would be good only cause it is crafted for particular

microprocessors, which are not Comesh. More correctly, we want "Java-to-

Comesh", but not through the Java virtual machine. Some (to me wonderful)

qualities of this business strategy;

-- It is easy to write an HDL to Java parser, offering total

compatibility.

-- Java has been developed explicitly for this kind of abstraction;

our parser would be supported by the language constructs. (E.g., Java has

garbage collection as its memory reclamation mechanism, which means that

memory management is not part of the programmer's job. HDL has no memory

management concepts either.)

-- Java is a superb language for stating abstract performance

specifications. It bypasses the clumsiness of HDL, and perhaps more

importantly, it sends a clear message that we do not want "your Mother's HDL"

as an input language to Comesh. This is obvious since we want to toss 80% of

the HDL mechanism. It mediates the culture shock.

-- Java has extensive machine-level design and support features. It

also has huge public libraries of other programming tools. An example: Java-

to-Comesh would allow co-development of product interfaces (physical or

software) which are from-the-beginning integrated with hardware performance

resources.

-- Java-to-Comesh turns every software programmer into a hardware

programmer, and gives hardware programmers a tool which is far easier to use

than HDL.

-- Java-to-Comesh clearly defines a territory and a strategy which is

consistent with a disruptive technology, while bypassing many of the awkward

transitional issues of asking users to change their skill sets.

-- Java-to-Comesh puts us in a virgin territory strategically. We are

not competing with EDA, we are redefining it.

-- Java-to-Comesh solves our two-cultures problem, since the software

rewrite will be the same as the internal hardware tools development.

-- Java-to-Comesh solve the training/retraining problem, we do not have

to take on any specialized skill set instruction, not even teaching hardware

designers how to write less.

-- Java is quite customizable. We can build an object library which is

tailored to Comesh, and the customization would be invisible to the

specifications programmer.

BIG CAVEAT: This idea is not as smooth as it may sound, since Java is still

designed for the microprocessor, so we'd need to, for e.g., throw out 80% of

it too. I just couldn't bring myself to say "we need a brand new language".

But several sub-points are accurate:

-- We want a software language interface (or even a graphic design

interface) rather than an HDL as a specification language for Comesh. We

want a specification language, not an HDL language designed for telling fab
houses how to construct circuits, not a software language designed for

telling microprocessors how to run instructions set.

-- We can always be backward compatible with existing HDL

specifications. The question is one of encouraging wrong behavior in the

future. We can always use the formal specification aspects of HDL such as

state machine description, logic equation description, and look-up tables.

-- In any event, we need to provide a customized shell language which

pre-filters undesired language constructs, rather than taking anything that

anyone writes and sifting it later. We basically will need a filter/compiler

at the Verilog/C/Java level which says "This specification is valid for

Comesh". The question is: do we want Synopsis to be making this decision?

-- REITERATION: The Comesh hardware/software suite does not need an

engineer to address optimization, timing, or place&route, which is about 90%

of what EDA tools do.

-- I want to be very clear that this perspective applies to the

reconfigurables market, a very small $3B segment of the $175B annual

semi-conductor market. We are not moving the Earth, we are simply

providing a better tool and (I'm suggesting) asking people to use it to

simplify their design tasks.

